

 Prepared by EBIN P.M (AP, CSE)

 IES College of Engineering

1

QUESTION

BANK

 Prepared by EBIN P.M (AP, CSE)

 IES College of Engineering

2

MODULE 1
1. Describe input buffering scheme in lexical analyzer. (KTU, MAY 2019)

2. Construct a regular expression to denote a language L over ∑= {0,1} accepting

all strings of 0’s and 1’s that do not contain substring 011 (KTU, MAY 2019)

3. Develop a lexical analyzer for the token identifier. (KTU, MAY 2019)

4. Scanning of source code in compilers can be speeded up using input buffering.

Explain. (KTU, DECEMBER 2019)

5. Draw the DFA for the regular expression (a | b)* (abb | a+ b). (KTU,

DECEMBER 2019)

6. Explain compiler writing tools. (KTU, DECEMBER 2019) (KTU, MAY 2019)

7. Explain how the regular expressions and finite state automata are used for the

specification and recognition of tokens? (KTU, DECEMBER 2019)

8. Explain the working of different phases of a compiler. Illustrate with a source

language statement. (KTU, DECEMBER 2019) (KTU, MAY 2019)

9. Describe input buffering scheme in lexical analyzer.

10. Draw the transition diagram for the regular definition,

relop➔< I <= I = I <> I >= I > (KTU, APRIL 2018)

11. With an example source language statement, explain tokens, lexemes and

patterns. (KTU, APRIL 2018)

12. Apply bootstrapping to develop a compiler for a new high level language P on

machine N. (KTU, APRIL 2018)

13. Now I have a compiler for P on machine N. Apply bootstrapping to obtain a

compiler for P on machine M. (KTU, APRIL 2018)

14. Define cross-compilers. (KTU, APRIL 2018)

15. For a source language statement, a= b*c - 2, where a, b and c are float variables,

* and - represents multiplication and subtraction on same data types, show the

input and output at each of the compiler phases. (KTU, APRIL 2018)

16. Write a short note on compiler construction tools. (KERALA, MARCH 2015),

(CALICUT, APRIL 2017),(CALICUT, APRIL 2017), (CALICUT, APRIL 2015)

17. Explain the role of lexical analyser. (KERALA, MARCH 2015), (CALICUT,

JUNE 2010)

18. Explain structure and different phases of compiler. (KERALA, MARCH 2015)

19. Explain Bootstrapping with example. (KERALA, APRIL 2014)

20. Write a short note on error handling. (KERALA, APRIL 2014)

21. Discuss the role of symbol table in compiler design process. (CALICUT, APRIL

2017)

 Prepared by EBIN P.M (AP, CSE)

 IES College of Engineering

3

MODULE 2
1. Find the FIRST and FOLLOW of the non-terminals in the grammar

SaABe

AAbc|b

Bd (KTU, MAY 2019)

2. Consider the context free grammar S1aSbS | bSaS | € Check whether the

grammar is ambiguous or not. (KTU, MAY 2019)

3. What is Recursive Descent parsing? List the problems faced in designing such

a parser. (KTU, MAY 2019)

4. Design a recursive descent parser for the grammar

EE + T | T

TT*F | F

F(E) | id (KTU, MAY 2019)

5. What is left recursive grammar? Give an example. What are the steps in

removing left recursion? (KTU, MAY 2019)

6. Differentiate leftmost derivation and rightmost derivation. Show an example

for each. (KTU, DECEMBER 2019)

7. Find out context free language for the grammar given below:

S abB

A aaBb | ε

B bbAa (KTU, DECEMBER 2019)

8. Given a grammar :

S (L)|a

L L,S | S

Is the grammar ambiguous? Justify. (KTU, DECEMBER 2019)

9. Give the parse tree for the string (a,((a,a), (a,a))) (KTU, DECEMBER 2019)

10. Can recursive descent parsers used for left recursive grammars? Justify your

answer. Give the steps in elimination of left recursion in a grammar. (KTU,

DECEMBER 2019)

11. Compute FIRST and FOLLOW for the grammar: S SS+ | SS* | a (KTU,

DECEMBER 2019)

12. Construct the predictive parsing table for the following grammar:

S (L) | a

L L,S | S (KTU, DECEMBER 2019)

13. Define LL(1) grammars. (KTU, APRIL 2018)

14. Is the grammar S➔S(S)S/ ambiguous? Justify your answer. (KTU, APRIL

2018)

15. Design a recursive descent parser for the grammar S➔cAd, A➔ab/ b (KTU

APRIL 2018)

 Prepared by EBIN P.M (AP, CSE)

 IES College of Engineering

4

16. Consider the following grammar

E➔ E or T |T

T➔ T and F |F

F ➔ not F | (E) | true | false

(i) Remove left recursion from the grammar.

(ii) Construct a predictive parsing table.

(iii) Justify the statement " The grammar is LL (1)". (KTU, APRIL 2018)

17. Compute the FIRST and FOLLOW for the following Grammar.

S➔Bb/Cd

B➔aB/

C➔cC/ (KTU, APRIL 2018)

18. Compute the FIRST and FOLLOW set of A in the following grammar

A(A) A| (KERALA, MARCH 2015)

19. Transforms the following grammar so that it will be LL(1) without changing

the language.

SaAC|bB

AAbc|Abd|

Bf|g

Ch|i (KERALA, MAY 2011)

20. Define parse tree and syntax tree (KERALA, APRIL 2014), (CALICUT,

APRIL 2016)

21. Explain drawbacks of top down parsing. (KERALA, APRIL 2014)

22. What is left recursion? How is eliminated? Explain with examples. (CALICUT,

JUNE 2010)

23. Explain the stack implementation of shift reduce parsing technique with

suitable examples. (CALICUT, JUNE 2010)

24. Consider following grammar

SAaAb|BbBb

A

B

(i) Construct predictive parser table

(ii) Is it LL(1) parser (CALICUT, APRIL 2017)

MODULE 3
1. Explain operator grammar and operator precedence parsing.(KTU, MAY 2019)

2. Find the LR(0) items for the grammar SSS | a| €. (KTU, MAY 2019)

3. Derive LALR (1) parsing algorithm for following grammar

SAS/b

ASA/a (KTU, MAY 2019)

 Prepared by EBIN P.M (AP, CSE)

 IES College of Engineering

5

4. Explain the main actions in a shift reduce parser. (KTU, MAY 2019)

5. What are different parsing conflicts in SLR parsing table? (KTU, MAY 2019)

6. Write the algorithm to construct LR(1) collection for a grammar. (KTU,

DECEMBER 2019)

7. Write algorithm for SLR paring table construction. (KTU, DECEMBER 2019)

8. Construct the SLR table for the grammar: S aSbS | a (KTU, DECEMBER

2019)

9. Differentiate CLR and LALR parsers. (KTU, DECEMBER 2019)

10. Construct canonical LR(0) collection of items for the grammar below.

S➔ L=R

S➔R

L ➔ *R

L ➔ id

R ➔ L

Also identify a shift reduce conflict in the LR(0) collection constructed above.

(KTU, APRIL 2018), (KERALA, APRIL 2014)

11. Demonstrate the identification of handles in operator precedence parsing?

(KTU, APRIL 2018)

12. Construct L ALR parse table for the grammar SCC, CcC|d (KTU,

APRIL 2018)

13. List all the LR(0) items for the grammar SAS|b , ASA|a (KERALA,

MARCH 2015)

14. Explain bottom up parsing. (KERALA, MARCH 2015)

15. Define operator grammar with example. (KERALA, APRIL 2014)

16. Construct a CLR parsing table for the following grammar

SBa|bBc|dc|bda

Bd

Write the algorithm for the construction of ACTION and GOTO table

(KERALA, MAY 2011)

17. Compare LR Canonical LR and LALR parsers. (KERALA, APRIL 2014)

MODULE 4
1. Design a type checker for simple arithmetic operations. (KTU, MAY 2019)

2. Explain the syntax directed definition of a simple desk calculator. (KTU, MAY

2019)

3. What is an SDD? Show an example. (KTU, DECEMBER 2019)

4. Give the annotated parse tree for the expression: 1*2*3*(4+5)n (KTU,

DECEMBER 2019)

 Prepared by EBIN P.M (AP, CSE)

 IES College of Engineering

6

5. Distinguish between synthesized and inherited attributes. (KTU, DECEMBER

2019)

6. Construct syntax directed translation scheme for infix to postfix translation.

(KTU, DECEMBER 2019)

7. Explain the specification of a simple type checker. (KTU, DECEMBER 2019)

8. Design a Syntax Directed Definition for a Desk calculator that prints the result.

(KTU, APRIL 2018), (CALICUT, JUNE 2010)

9. Describe the type checking of functions. (KTU, APRIL 2018)

10. Define S-attributed and L -attributed definitions. Give an example each. (KTU,

APRIL 2018), (KTU, MAY 2019), (CALICUT, APRIL 2017), (CALICUT, APRIL

2016)

11. Explain bottom- up evaluation of S- attributed definitions. (KTU, APRIL 2018),

(KTU, MAY 2019)

12. With an SDD for a desk calculator, give the appropriate code to be executed at

each reduction in the LR parser designed for the calculator. Also give the

annotated parse tree for the expression (3 * 5) - 2 (KTU, APRIL 2018)

13. Consider the following grammar

S En

EE+T|T

TT*F|F

F(E)|id

Draw an annotated parse tree for the expression 7*9+5

14. Perform the bottom up evaluation and show the result (CALICUT, APRIL

2015)

15. What is annotated parse tree? Give example (KERALA, MAY 2011), (KTU,

MAY 2019)

16. Write the syntax directed translation scheme for a desk calculator and give the

parse tree (with translations) for the input (24 + 51) * 9 + 17 (KERALA, APRIL

2014)

17. Define synthesized and inherited translations. (KERALA, APRIL 2014)

18. Explain the process of type checking and type conversion done for arithmetic

operations (CALICUT, JUNE 2010)

MODULE 5
1. Explain quadruples, triples and dags with an example each. (KTU, MAY 2019)

2. Explain the principal sources of optimization (KTU, MAY 2019)

3. Explain optimization of basic blocks. (KTU, MAY 2019)

4. With suitable examples explain loop optimization. (KTU, MAY 2019)

5. Explain issues in design of a code generator (KTU, MAY 2019)

6. Explain simple code generation algorithm. (KTU, MAY 2019)

 Prepared by EBIN P.M (AP, CSE)

 IES College of Engineering

7

7. Explain intermediate code generation of an assignment statement (KTU, MAY

2019)

8. Explain storage organization and storage allocation strategies. (KTU, MAY

2019)

9. Explain how DAGs help in intermediate code generation? (KTU, DECEMBER

2019)

10. Define the following and show an example for each.

Three-address code

Triples

Quadruples

Indirect triples (KTU, DECEMBER 2019)

11. How is storage organization and management done during runtime? (KTU,

DECEMBER 2019)

12. Write the algorithm for partitioning a sequence of three-address instructions

into basic blocks. (KTU, DECEMBER 2019)

13. Construct the DAG and three address code for the expression

a+a*(b-c)+(b-c)*d (KTU, DECEMBER 2019)

14. Write syntax directed definitions to construct syntax tree and three address

code for assignment statements. (KTU, APRIL 2018)

15. Explain quadruples and triples with an example each. (KTU, APRIL 2018)

16. Construct the syntax tree and then draw the DAG for the statement

e:= (a*b) + (c-d) * (a*b) (KTU, APRIL 2018)

17. Explain static allocation and heap allocation strategies. (KTU, APRIL 2018)

18. Write quadruples for the expression (a+b) * (c+d) - (a+b+c) (KERALA,

MARCH 2015)

19. Show that the following grammar is LR(1) but note LALR(1)

SAa|bAC|Bc|bBa

Ad

Bd (KERALA, MARCH 2015)

20. Write a translation scheme to implement Boolean expression. (KERALA,

MARCH 2015), (KERALA, MAY 2011)

21. Write notes on translation of assignment statement into three address code.

(KERALA, MARCH 2015), (KERALA, APRIL 2014)

22. Write a note on quadruples. (KERALA, APRIL 2014)

23. Write a note on triples and indirect triples with examples. (KERALA, APRIL

2014)

24. Construct the Directed Acyclic Graph for the basic block given below and

simplify the three address code

d = b * c

e = a + b

b = b * c

a = e – d (CALICUT, APRIL 2016), (CALICUT, APRIL 2015)

 Prepared by EBIN P.M (AP, CSE)

 IES College of Engineering

8

25. Discuss the storage allocation strategies. (CALICUT, APRIL 2017) (CALICUT,

JUNE 2010)

26. What are the different ways to representing intermediate codes? Give

examples. (CALICUT, APRIL 2016)

MODULE 6
1. Explain the code generation algorithm. Illustrate with an example. (KTU,

DECEMBER 2019)

2. State the issues in design of a code generator. (KTU, DECEMBER 2019)

3. Explain different code optimization techniques available in local and global

optimizations? (KTU, DECEMBER 2019)

4. How the optimization of basic blocks is done by a compiler? (KTU,

DECEMBER 2019)

5. With an example each explain the following loop optimization techniques:

Code motion

Induction variable elimination and

strength reduction (KTU, APRIL 2018)

6. Explain any two issues in the design of a code generator. (KTU, APRIL 2018)

(CALICUT, APRIL 2015)

7. Explain the optimization of basic blocks. (KTU, APRIL 2018)

8. Write the Code Generation Algorithm and explain the getreg function. (KTU,

APRIL 2018)

9. Generate a code sequence for the assignment d=(a-b)+(a-c)+(a-c) (KTU, APRIL

2018)

10. Discuss on loop optimization. (KERALA, MARCH 2015), (KERALA, APRIL

2014)

11. Explain the operation of a simple code generator for pointer assignments and

conditional statements. (KERALA, MARCH 2015)

12. Discuss the issues in design of a code generator. (CALICUT, APRIL 2017)

13. What is the use of algebraic identities in optimization of basic blocks?

(CALICUT, APRIL 2016)

14. What is a flow graph? Explain the process of constructing flow graphs and the

use of flow graphs in code optimization. (CALICUT, DECEMBER 2010)
