
Prepared by EBIN P.M (AP, CSE)

IES College of Engineering

MODULE 2

Prepared by EBIN P.M (AP, CSE)

IES College of Engineering

2.1 SYNTAX ANALYSIS
Syntax analysis or parsing is the second phase of a compiler.

A lexical analyzer can identify tokens with the help of regular expressions and pattern rules.

But a lexical analyzer cannot check the syntax of a given sentence due to the limitations of the

regular expressions. Regular expressions cannot check balancing tokens, such as parenthesis.

Therefore, this phase uses context-free grammar (CFG), which is recognized by push-down

automata.

The output of a syntax analyzer is a parse tree. For performing the syntax analysis, the

grammar of the language has to be specified. CFG is used to define the grammar of the

language. This process of verifying whether an input string matches the grammar of the

language is called parsing.

2.1.1 REVIEW OF CONTEXT FREE GRAMMARS

A grammar is defined as a quadruple G= (V, T, P, S)

V = Set of variables, i.e. Non-Terminals
T = Terminal symbols
P = Set of productions
S = Start symbol

A grammar G = (V, T, P, S) is said to be context free, if all productions in P have the form

α→β, where |α | <= |β| and α is element of V. That is, left-hand side contains only non-

terminals.

Prepared by EBIN P.M (AP, CSE)

IES College of Engineering

A context-free grammar (grammar for short) consists of terminals, nonterminal, a start

symbol, and productions.

1. Terminals are the basic symbols from which strings are formed. The term "token

name" is a synonym for "terminal" and frequently we will use the word "token" for

terminal when it is clear that we are talking about just the token name.

2. Nonterminals are syntactic variables that denote sets of strings. The nonterminals

define sets of strings that help define the language generated by the grammar. They

also impose a hierarchical structure on the language that is useful for both syntax

analysis and translation.

3. In a grammar, one nonterminal is distinguished as the start symbol, and the set of

strings it denotes is the language generated by the grammar. Conventionally, the

productions for the start symbol are listed first.

4. The productions of a grammar specify the manner in which the terminals and

nonterminals can be combined to form strings. Each production consists of:

a. A nonterminal called the head or left side of the production; this production

defines some of the strings denoted by the head.

b. The symbol →. Sometimes : : = has been used in place of the arrow.

c. A body or right side consisting of zero or more terminals and nonterminals.

All the production rules are of the form X→Y. Production rules are the heart of the grammar.
Consider the production rules
S → aSB
S → aB
B → b
Here, V= {S, B} , T={a, b} and Starting symbol is S. Using this production rule , we can derive the
string aabb by
S → aSB
 → aaBB
 → aabB
 →aabb
Here all the individual steps are called sentential form or Sequential form. All steps together
called Derivation

Eg: Let V= {S, C} , T={a, b} P={S→aCa, C→aCa, C→b}. Generate the string a2ba2 from the
grammar given above?

S → aCa
 →aaCaa
 →aabaa
 → a2ba2

EXAMPLE:

The grammar with the following productions defines simple arithmetic expression:

Prepared by EBIN P.M (AP, CSE)

IES College of Engineering

In this grammar, the terminal symbols are : id + - * / ()

The nonterminal symbols are : expression, term, factor

Start symbol : expression

Notational Conventions

To avoid always having to state that "these are the terminals," "these are the nonterminals,"

and so on, the following notational conventions for grammars will be used.

These symbols are terminals:

a. Lowercase letters early in the alphabet, such as a, b, c.

b. Operator symbols such as +, *, and so on.

c. Punctuation symbols such as parentheses, comma, and so on.

d. The digits 0, 1, . . . , 9.

e. Boldface strings such as id or if, each of which represents a single terminal

symbol.

These symbols are nonterminals:

a. Uppercase letters early in the alphabet, such as A, B, C.

b. The letter S, which, when it appears, is usually the start symbol.

c. Lowercase, italic names such as expr or stmt.

d. When discussing programming constructs, uppercase letters may be used to

represent nonterminals for the constructs. For example, nonterminals for

expressions, terms, and factors are often represented by E, T, and F,

respectively.

Uppercase letters late in the alphabet, such as X, Y, Z, represent grammar symbols;

that is, either nonterminals or terminals.

Lowercase letters late in the alphabet , chiefly u, v, ... ,z, represent (possibly empty)

strings of terminals.

Lowercase Greek letters α, β, γ for example, represent (possibly empty) strings of

grammar symbols.

A set of productions A → α1 , A → α2 , ... , A → αk with a common head A (call them

A-productions) , may be written A → α1| α2|.....| αk · We call α1, α2,.., αn the

alternatives for A.

Prepared by EBIN P.M (AP, CSE)

IES College of Engineering

Unless stated otherwise, the head of the first production is the start symbol.

Using these conventions, the grammar for arithmetic expression can be rewritten as:

E→ E + T | E - T | T

T→ T * F | T / F | F

F→ (E) | id

Eg: Consider the derivation

E → E+ T |T
T→ T * F |F
F → (E) | a

Check the input a + a* a comes under the above grammar?

Leftmost Derivation Right most derivation
E → E+T E →E +T
 → T+T → E+T * F
 → F+T → E+T * a
 → a+T → E+F * a
 → a+T * F → E+ a * a
 → a+F *F → T +a * a
 → a+a*F → F + a * a
 → a+a *a → a + a * a

We can represent it in a tree like structure called parse tree

Prepared by EBIN P.M (AP, CSE)

IES College of Engineering

2.1.1.1 DERIVATION TREES AND PARSE TREES

The construction of a parse tree can be made precise by taking a derivational view, in which

productions are treated as rewriting rules.

Beginning with the start symbol, each rewriting step replaces a nonterminal by the body of

one of its productions.

For example, consider the following grammar, with a single nonterminal E:

E → E + E | E * E | - E | (E) | id

The production E → - E signifies that if E denotes an expression, then – E must also denote an

expression. The replacement of a single E by - E will be described by writing E => -E which

is read, "E derives - E."

The production E -+ (E) can be applied to replace any instance of E in any string of grammar

symbols by (E) , e.g., E * E => (E) * E or E * E => E * (E)

We can take a single E and repeatedly apply productions in any order to get a sequence of

replacements. For example, E => - E => - (E) => - (id)

We call such a sequence of replacements a derivation of - (id) from E. This derivation provides

a proof that the string - (id) is one particular instance of an expression.

Leftmost and Rightmost Derivation of a String

Leftmost derivation − A leftmost derivation is obtained by applying production to

the leftmost variable in each step.

Rightmost derivation − A rightmost derivation is obtained by applying production

to the rightmost variable in each step.

Prepared by EBIN P.M (AP, CSE)

IES College of Engineering

Example

Let any set of production rules in a CFG be

X → X+X | X*X |X| a

over an alphabet {a}.

The leftmost derivation for the string "a+a*a" may be –

X → X+X → a+X → a + X*X → a+a*X → a+a*a

The stepwise derivation of the above string is shown as below –

The rightmost derivation for the above string "a+a*a" may be

X → X*X → X*a → X+X*a → X+a*a → a+a*a

Parse Tree

Parse tree is a hierarchical structure which represents the derivation of the grammar

to yield input strings.

Simply it is the graphical representation of derivations.

Prepared by EBIN P.M (AP, CSE)

IES College of Engineering

Root node of parse tree has the start symbol of the given grammar from where the

derivation proceeds.

Leaves of parse tree are labeled by non-terminals or terminals.

Each interior node is labeled by some non terminals.

If A xyz is a production, then the parse tree will have A as interior node whose

children are x, y and z from its left to right.

Construct parse tree for E E + E / E * E /id

Yield Of Parse Tree

The leaves of the parse tree are labeled by nonterminals or terminals and read from

left to right, they constitute a sentential form, called the yield or frontier of the tree.

Figure above represents the parse tree for the string id+ id*id. The string id + id * id,

is the yield of parse tree depicted in Figure.

2.1.1.2 AMBIGUITY

An ambiguous grammar is one that produces more than one leftmost or more than

one rightmost derivation for the same sentence.

Prepared by EBIN P.M (AP, CSE)

IES College of Engineering

For most parsers, it is desirable that the grammar be made unambiguous, for if it is

not, we cannot uniquely determine which parse tree to select for a sentence.

In other cases, it is convenient to use carefully chosen ambiguous grammars, together

with disambiguating rules that "throw away" undesirable parse trees, leaving only

one tree for each sentence.

EXAMPLE

Consider the following Grammar

E → E + E | E * E | - E | (E) | id

 And the string (Sentence) is id+ id * id.

1st Leftmost Derivation 2nd Leftmost Derivation

E ===> E + E
===> id + E
===> id + E * E
===> id + id * E
===> id + id * id

E ===> E * E
===> E + E * E
===> id + id * E
===> id + id * E
===> id + id * id

1st Parse Tree 2nd Parse Tree

E
/ | \
E + E

| / | \
id E * E

| |
id id

E
/ | \

E * E
/ | \ |

E + E id
| |
id id

2.2 TOP DOWN PARSING
Parsing is the process of determining if a string of token can be generated by a

grammar.

Mainly 2 parsing approaches:

 Top Down Parsing

 Bottom Up Parsing

In top down parsing, parse tree is constructed from top (root) to the bottom (leaves).

In bottom up parsing, parse tree is constructed from bottom (leaves)) to the top (root).

It can be viewed as an attempt to construct a parse tree for the input starting from the

Prepared by EBIN P.M (AP, CSE)

IES College of Engineering

root and creating the nodes of parse tree in preorder.

Pre-order traversal means: 1. Visit the root 2. Traverse left subtree 3. Traverse right

subtree.

Prepared by EBIN P.M (AP, CSE)

IES College of Engineering

Top down parsing can be viewed as an attempt to find a leftmost derivation for an

input string (that is expanding the leftmost terminal at every step).

2.2.1 RECURSIVE DESCENT PARSING

It is the most general form of top-down parsing.

It may involve backtracking, that is making repeated scans of input, to obtain the correct

expansion of the leftmost non-terminal. Unless the grammar is ambiguous or left-recursive,

it finds a suitable parse tree

EXAMPLE

Consider the grammar:

S cAd

A ab | a

and the input string w = cad.

 To construct a parse tree for this string top down, we initially create a tree consisting

of a single node labelled S.

 An input pointer points to c, the first symbol of w. S has only one production, so we

use it to expand S and obtain the tree as:

Prepared by EBIN P.M (AP, CSE)

IES College of Engineering

 The leftmost leaf, labeled c, matches the first symbol of input w, so we advance the

input pointer to a, the second symbol of w, and consider the next leaf, labeled A.

 Now, we expand A using the first alternative A → ab to obtain the tree as:

 We have a match for the second input symbol, a, so we advance the input pointer to

d, the third input symbol, and compare d against the next leaf, labeled b.

 Since b does not match d, we report failure and go back to A to see whether there is

another alternative for A that has not been tried, but that might produce a match.

 In going back to A, we must reset the input pointer to position 2 , the position it had

when we first came to A, which means that the procedure for A must store the input

pointer in a local variable.

 The second alternative for A produces the tree as:

 The leaf a matches the second symbol of w and the leaf d matches the third symbol.

Since we have produced a parse tree for w, we halt and announce successful

completion of parsing. (that is the string parsed completely and the parser stops).

 The leaf a matches the second symbol of w and the leaf d matches the third symbol.

Since we have produced a parse tree for w, we halt and announce successful

completion of parsing. (that is the string parsed completely and the parser stops).

2.2.2 PREDICTIVE PARSING

A predictive parsing is a special form of recursive-descent parsing, in which the

current input token unambiguously determines the production to be applied at each

Prepared by EBIN P.M (AP, CSE)

IES College of Engineering

step. The goal of predictive parsing is to construct a top-down parser that never

backtracks. To do so, we must transform a grammar in two ways:

 Eliminate left recursion, and

 Perform left factoring.

These rules eliminate most common causes for backtracking although they do not

guarantee a completely backtrack-free parsing (called LL(1) as we will see later).

Left Recursion

A grammar is said to be left –recursive if it has a non-terminal A such that there is a

derivation A A, for some string .

EXAMPLE

Consider the grammar

A A

A

 It recognizes the regular expression *. The problem is that if we use the

first production for top-down derivation, we will fall into an infinite

derivation chain. This is called left recursion.

 Top–down parsing methods cannot handle left recursive grammars, so a

transformation that eliminates left-recursion is needed. The left-recursive

pair of productions A A| could be replaced by two non-recursive

productions.

A A’

A’ A’|

Consider The following grammar which generates arithmetic expressions

E E + T|T

T T * F|F

F (E)|id

Eliminating the immediate left recursion to the productions for E and then for T, we

obtain

E T E’

E’ + T E’|

T F T’

T’ * F T’|

F (E)|id

Prepared by EBIN P.M (AP, CSE)

IES College of Engineering

No matter how many A-productions there are, we can eliminate immediate left

recursion from them by the following technique. First, we group the A productions as

A A1 | A2 | . . . | Am|1|2| . . . |n

where no i begins with an A. Then we replace the A-productions by

A 1 A’|2 A’| . . . |n A’

A’ 1 A’|2 A’| . . . |m A’|

Left Factoring

Left factoring is a grammar transformation that is useful for producing a grammar

suitable for predictive parsing.

The basic idea is that when it is not clear which of two alternative productions to use

to expand a non-terminal A, we may be able to rewrite the A-productions to defer the

decision until we have seen enough of the input to make the right choice

A 1| 2

are two A-productions, and the input begins with a non-empty string derived from

we do not know whether to expand A to 1 or 2.

However, we may defer the decision by expanding A to B. Then, after seeing the

input derived from , we may expand B to 1 or 2 .

The left factored original expression becomes:

A B

B 1|2

For the “dangling else “grammar:

stmt if cond then stmt else stmt |if cond then stmt

The corresponding left – factored grammar is:

stmt if cond then stmt else_clause

else_clause else stmt |

Non Recursive Predictive parser

It is possible to build a nonrecursive predictive parser by maintaining a stack

explicitly, rather than implicitly via recursive calls.

The key problem during predictive parsing is that of determining the production to

be applied for a nonterminal.

The nonrecursive parser in looks up the production to be applied in a parsing table

Prepared by EBIN P.M (AP, CSE)

IES College of Engineering

Requirements

1. Stackv

2. Parsing Table

3. Input Buffer

4. Parsing

Figure : Model of a nonrecursive predictive parser

Input buffer - contains the string to be parsed, followed by $(used to indicate end of

input string)

Stack – initialized with $, to indicate bottom of stack.

Parsing table - 2 D array M[A,a] where A is a nonterminal and a is terminal or the

symbol $

The parser is controlled by a program that behaves as follows. The program considers

X, the symbol on top of the stack, and a current input symbol. These two symbols

determine the action of the parser.

There are three possibilities,

1. If X = a = $, the parser halts and announces successful completion of parsing.

2. If X = a $, the parser pops X off the stack and advances the input pointer to

the next input symbol,

3. If X is a nonterminal, the program consults entry M|X, a | of the parsing table

M. The entry will be either an X-production of the grammar or an error entry.

If, for example, M |X, u |= {X UVW}, the parser replaces X on top of the stack

by WVU (with U on top). As output we shall assume that the parser just prints

the production used; any other code could be executed here. If M|X, a| = error,

the parser calls an error recovery routine.

Prepared by EBIN P.M (AP, CSE)

IES College of Engineering

Construction of Predictive Parsing Table

Steps to construct a predictive parsing table for a grammar G is given below:

1. Eliminate Left recursion in Grammar G

2. Perform Left factoring on the Grammar G

3. Find First and follow on the symbol in Grammar G

4. Construct the predictive parse table

5. Check if the given input string can be accepted by the parser

Uses 2 functions:

 FIRST()

 FOLLOW()

These functions allows us to fill the entries of predictive parsing table

FIRST

If 'α' is any string of grammar symbols, then FIRST(α) be the set of terminals that begin

the string derived from α . If α==*>є then add є to FIRST(α).First is defined for both

terminals and non-terminals.

To Compute First Set

1. If X is a terminal , then FIRST(X) is {X}

2. If X є then add є to FIRST(X)

3. If X is a non-terminal and XY1Y2Y3...Yn , then put 'a' in FIRST(X) if for some i,

a is in FIRST(Yi) and є is in all of FIRST(Y1),...FIRST(Yi-1).

EXAMPLE

Consider Grammar:

E T E’

E' +T E' | Є

T F T'

T' * F T' | Є

F (E) | id

Prepared by EBIN P.M (AP, CSE)

IES College of Engineering

FOLLOW

FOLLOW is defined only for non-terminals of the grammar G.

It can be defined as the set of terminals of grammar G , which can immediately follow

the non-terminal in a production rule from start symbol.

In other words, if A is a nonterminal, then FOLLOW(A) is the set of terminals 'a' that

can appear immediately to the right of A in some sentential form.

Rules to Compute Follow Set

1. If S is the start symbol, then add $ to the FOLLOW(S).

2. If there is a production rule A αBβ then everything in FIRST(β) except for є is

placed in FOLLOW(B).

3. If there is a production A αB , or a production AαBβ where FIRST(β) contains

є then everything in FOLLOW(A) is in FOLLOW(B).

EXAMPLE

Consider Grammar:

E T E’

E' +T E' | Є

T F T'

T' * F T' | Є

F (E) | id

Prepared by EBIN P.M (AP, CSE)

IES College of Engineering

EXAMPLE

EXAMPLE

Prepared by EBIN P.M (AP, CSE)

IES College of Engineering

Algorithm To Construct A Predictive Parsing Table.

INPUT: Grammar G.

OUTPUT: Parsing table M.

METHOD

1. For each production A of the grammar, do steps 2 and 3.

2. For each terminal a in FIRST(), add A to M|A, a|

3. If is in FIRST(), add A to M|A, b | for each terminal b in FOLLOW

(A). If is in FIRST ()j and $ is in FOLLOW(A), add A to M |A, $|

4. Make each undefined entry of M be error

Prepared by EBIN P.M (AP, CSE)

IES College of Engineering

Parsing Table

Blank entries are error states. For example, E cannot derive a string starting with ‘+’

Moves made by predictive parser for the input id+id*id

Prepared by EBIN P.M (AP, CSE)

IES College of Engineering

2.2.3 LL(1)GRAMMARS

LL(l) grammars are the class of grammars from Which the predictive parsers can be

constructed automatically.

A context-free grammar G = (VT, VN, P, S) whose parsing table has no multiple entries

is said to be LL(1).

In the name LL(1),

 the first L stands for scanning the input from left to right,

 the second L stands for producing a leftmost derivation,

 and the 1 stands for using one input symbol of look ahead at each step to make

parsing action decision.

A language is said to be LL(1) if it can be generated by a LL(1) grammar. It can be

shown that LL(1) grammars are

 not ambiguous and

 not left-recursive

EXAMPLE

Consider the following grammar

S → i E t S S' | a

S' → eS | ϵ

E → b

This is not LL(1) grammar

Prepared by EBIN P.M (AP, CSE)

IES College of Engineering
