
Prepared by EBIN P.M (AP, CSE)

IES College of Engineering

1

MODULE 5
Run-Time Environments: Source Language issues,

Storage organization, Storage- allocation strategies.

Intermediate Code Generation (ICG): Intermediate

languages – Graphical representations, Three-Address

code, Quadruples, Triples. Assignment statements,

Boolean expressions.

Prepared by EBIN P.M (AP, CSE)

IES College of Engineering

2

5.1 RUN-TIME ENVIRONMENTS

A translation needs to relate the static source text of a program to the dynamic actions that

must occur at runtime to implement the program. The program consists of names for

procedures, identifiers etc., that require mapping with the actual memory location at runtime.

Runtime environment is a state of the target machine, which may include software libraries,

environment variables, etc., to provide services to the processes running in the system.

5.1.1 SOURCE LANGUAGE ISSUES

Procedure

A procedure definition is a declaration that associates an identifier with a statement. The

identifier is procedure name, and statement is the procedure body.

For example, the following definition of procedure named readarray

When a procedure name appears with in an executable statement, the procedure is said to be

called at that point.

Activation Tree

Each execution of procedure is referred to as an activation of the procedure. Lifetime

of an activation is the sequence of steps present in the execution of the procedure.

If ‘a’ and ‘b’ be two procedures, then their activations will be non-overlapping (when

one is called after other) or nested (nested procedures).

A procedure is recursive if a new activation begins before an earlier activation of the

same procedure has ended. An activation tree shows the way control enters and

leaves, activations.

Properties of activation trees are :-

 Each node represents an activation of a procedure.

 The root shows the activation of the main function.

 The node for procedure ‘x’ is the parent of node for procedure ‘y’ if and only

if the control flows from procedure x to procedure y.

Prepared by EBIN P.M (AP, CSE)

IES College of Engineering

3

EXAMPLE

Consider the following program of quicksort

main()

{

readarray();

quicksort(1,10);

}

quicksort(int m, int n)

{

int i= partition(m,n);

quicksort(m,i-1);

quicksort(i+1,n);

}

First main function as root then main calls readarray and quicksort.

Quicksort in turn calls partition and quicksort again. The flow of control in a program

corresponds to the depth first traversal of activation tree which starts at the root.

Prepared by EBIN P.M (AP, CSE)

IES College of Engineering

4

Control Stack

Control stack or runtime stack is used to keep track of the live procedure activations

i.e the procedures whose execution have not been completed.

A procedure name is pushed on to the stack when it is called (activation begins) and

it is popped when it returns (activation ends).

Information needed by a single execution of a procedure is managed using an

activation record.

When a procedure is called, an activation record is pushed into the stack and as soon

as the control returns to the caller function the activation record is popped.

Then the contents of the control stack are related to paths to the root of the activation

tree. When node n is at the top of the control stack, the stack contains the nodes along

the path from n to the root.

Consider the above activation tree, when quicksort(4,4) gets executed, the contents of

control stack were main() quicksort(1,10) quicksort(1,4), quicksort(4,4)

The Scope Of Declaration

A declaration is a syntactic construct that associates information with a name.

Declaration may be explicit such as

var i : integer;

or may be explicit. The portion of program to which a declaration applies is called the

scope of that declaration.

Binding Of Names

Even if each name is declared once in a program, the same name may denote different

data object at run time. “Data objects” corresponds to a storage location that hold

values.

The term environment refers to a function that maps a name to a storage location.

The term state refers to a function that maps a storage location to the value held there.

Prepared by EBIN P.M (AP, CSE)

IES College of Engineering

5

When an environment associates storage location s with a name x, we say that x is

bounds to s. This association is referred to as a binding of x.

5.1.2 STORAGE ORGANIZATION

The executing target program runs in its own logical address space in which each

program value has a location

The management and organization of this logical address space is shared between the

compiler, operating system and target machine. The operating system maps the

logical address into physical addresses, which are usually spread through memory.

Typical subdivision of run time memory.

Code area: used to store the generated executable instructions, memory locations for

the code are determined at compile time

Static Data Area: Is the locations of data that can be determined at compile time

Stack Area: Used to store the data object allocated at runtime. eg. Activation records

Heap: Used to store other dynamically allocated data objects at runtime (for ex:

malloac)

This runtime storage can be subdivided to hold the different components of an

existing system

1. Generated executable code

2. Static data objects

3. Dynamic data objects-heap

4. Automatic data objects-stack

Prepared by EBIN P.M (AP, CSE)

IES College of Engineering

6

Activation Records

It is LIFO structure used to hold information about each instantiation.

Procedure calls and returns are usually managed by a run time stack called control

stack.

Each live activation has an activation record on control stack, with the root of the

activation tree at the bottom, the latter activation has its record at the top of the stack

The contents of the activation record vary with the language being implemented.

The diagram below shows the contents of an activation record.

The purpose of the fields of an activation record is as follows, starting from the field

for temporaries.

1. Temporary values, such as those arising in the evaluation of expressions, are

stored in the field for temporaries.

2. The field for local data holds data that is local to an execution of a procedure.

3. The field for saved machine status holds information about the state of the

machine just before the procedure is called. This information includes the

values of the program counter and machine registers that have to be restored

when control returns from the procedure.

4. The optional access link is used to refer to nonlocal data held in other activation

records.

5. The optional control /ink paints to the activation record of the caller

6. The field for actual parameters is used by the calling procedure to supply

parameters to the called procedure.

7. The field for the returned value is used by the called procedure to return a

value to the calling procedure, Again, in practice this value is often returned

in a register for greater efficiency.

Returned value

Actual parameters

Optional control link

Optional access link

Saved machine status

Local data

temporaries

General Activation Record

Prepared by EBIN P.M (AP, CSE)

IES College of Engineering

7

5.1.3 STORAGE ALLOCATION STRATEGIES

The different storage allocation strategies are:

Static allocation - lays out storage for all data objects at compile time

Stack allocation - manages the run-time storage as a stack.

Heap allocation - allocates and deallocates storage as needed at run time from a data

area known as heap.

Static Allocation

In static allocation, names bound to storage as the program is compiled, so there is no

need for a run-time support package.

Since the bindings do not change at runtime, every time a procedure activated, its run-

time, names bounded to the same storage location.

Therefore, values of local names retained across activations of a procedure. That is

when control returns to a procedure the value of the local are the same as they were

when control left the last time.

From the type of a name, the compiler decides amount of storage for the name and

decides where the activation records go. At compile time, we can fill in the address at

which the target code can find the data it operates on.

Stack Allocation

All compilers for languages that use procedures, functions or methods as units of user

functions define actions manage at least part of their runtime memory as a stack run-

time stack.

Each time a procedure called, space for its local variables is pushed onto a stack, and

when the procedure terminates, space popped off from the stack

Calling Sequences

Procedures called implemented in what is called as calling sequence, which consists

of code that allocates an activation record on the stack and enters information into its

fields.

A return sequence is similar to code to restore the state of a machine so the calling

procedure can continue its execution after the call.

The code is calling sequence of often divided between the calling procedure (caller)

and a procedure is calls (callee)(callee).

When designing calling sequences and the layout of activation record, the following

principles are helpful:

Prepared by EBIN P.M (AP, CSE)

IES College of Engineering

8

1. Value communicated between caller and callee generally placed at the caller

beginning of the callee’s activation record, so they as close as possible to the

caller’s activation record.

2. Fixed length items generally placed in the middle. Such items typically include

the control link, the access link, and the machine status field.

3. Items whose size may not be known early enough placed at the end of the

activation record.

4. We must locate the top of the stack pointer judiciously. A common approach

is to have it point to the end of fixed length fields in the activation is to have it

point to fix the end of fixed length fields in the activation record. Fixed length

data can then be accessed by fixed offsets, known to the intermediate code

generator, relative to the top of the stack pointer.

The calling sequence and its division between caller and callee are as follows:

1. The caller evaluates the actual parameters.

2. The caller stores a return address and the old value of top_sp into the callee’s

activation record. The caller then increments the top_sp to the respective

positions.

3. The callee-saves the register values and other status information.

4. The callee initializes its local data and begins execution.

A suitable, corresponding return sequence is:

1. The callee places the return value next to the parameters.

2. Using the information in the machine status field, the callee restores top_sp

and other registers, and then branches to the return address that the caller

placed in the status field.

3. Although top_sp has been decremented, the caller knows where the return

value is, relative to the current value of top_sp; the caller, therefore, may use

that value.

Prepared by EBIN P.M (AP, CSE)

IES College of Engineering

9

Variable length data on the stack

The run-time memory-management system must deal frequently with the allocation

of space for objects the sizesof which are not known at compile time, but which are

local to a procedure and thus may be allocated on the stack.

In modern languages, objects whose size cannot be determined at compile time are

allocated space in the heap

However, it is also possible to allocate objects, arrays, or other structures of

unknown size on the stack.

We avoid the expense of garbage collecting their space. Note that the stack can be

used only for an object if it is local to a procedure and becomes inaccessible when the

procedure returns.

A common strategy for allocating variable-length arrays is shown in following figure

10

CS304 Compiler Design /B.Tech/S6

Heap Allocation

Stack allocation strategy cannot be used if either of the following is possible :

1. The values of local names must be retained when an activation ends.

2. A called activation outlives the caller.

Heap allocation parcels out pieces of contiguous storage, as needed for activation

records or other objects.

Pieces may be deallocated in any order, so over the time the heap will consist of

alternate areas that are free and in use.

Records for live activations need not be adjacent in heap

The record for an activation of procedure r is retained when the activation ends.

Therefore, the record for the new activation q(1 , 9) cannot follow that for s physically.

If the retained activation record for r is deallocated, there will be free space in the heap

between the activation records for s and q.

11

CS304 Compiler Design /B.Tech/S6

5.2 INTERMEDIATE CODE

GENERATION (ICG)
In compiler, the front-end translates a source program into an intermediate representation

from which the back end generates target code.

Need For ICG

1. If a compiler translates the source language to its target machine language without

generating IC, then for each new machine, a full native compiler is required.

2. IC eliminates the need of a new full compiler for every machine by keeping the

analysis portion for all the compilers.

3. Synthesis part of back end depends on the target machine.

2 important things:

 IC Generation process should not be very complex

 It shouldn’t be difficult to produce the target program from the intermediate code.

A source program can be translated directly into the target language, but some benefits of

using intermediate form are:

 Retargeting is facilitated: a compiler for a different machine can be created by

attaching a Back-end (which generate Target Code) for the new machine to an

existing Front-end (which generate Intermediate Code).

 A machine Independent Code-Optimizer can be applied to the Intermediate

Representation.

Logical Structure of a Compiler Front End

12

CS304 Compiler Design /B.Tech/S6

5.2.1 INTERMEDIATE LANGUAGES
The most commonly used intermediate representations were:-

 Syntax Tree

 DAG (Direct Acyclic Graph)

 Postfix Notation

 3 Address Code

5.2.1.1 GRAPHICAL REPRESENTATION

Includes both

 Syntax Tree

 DAG (Direct Acyclic Graph)

Syntax Tree Or Abstract Syntax Tree (AST)

Graphical Intermediate Representation

Syntax Tree depicts the hierarchical structure of a source program.

Syntax tree (AST) is a condensed form of parse tree useful for representing language

constructs.

EXAMPLE

Parse tree and syntax tree for 3 * 5 + 4 as follows.

Grammar Parse Tree Syntax Tree

E  E + T

E  E - T

E T

TT * F

TF

F digit

E

E + T

T F

T * F digit

F digit 4

digit 5

3

+

* 4

3 5

13

CS304 Compiler Design /B.Tech/S6

Parse Tree VS Syntax Tree

Parse Tree Syntax Tree

A parse tree is a graphical representation of

a replacement process in a derivation

A syntax tree (AST) is a condensed form of

parse tree

Each interior node represents a grammar

rule

Each interior node represents an operator

Each leaf node represents a terminal Each leaf node represents an operand

Parse tree represent every detail from the

real syntax

Syntax tree does not represent every detail

from the real syntax

Eg : No parenthesis

Syntax tree for a * (b + c) /d

Constructing Syntax Tree For Expression

Each node in a syntax tree can be implemented in arecord with several fields.

In the node of an operator, one field contains operator and remaining field contains

pointer to the nodes for the operands.

When used for translation, the nodes in a syntax tree may contain addition of fields

to hold the values of attributes attached to the node.

Following functions are used to create syntax tree

1. mknode(op,left,right): creates an operator node with label op and two

fields containing pointers to left and right.

2. mkleaf(id,entry): creates an identifier node with label id and a field

containing entry, a pointer to the symbol table entry for identifier

3. mkleaf(num,val): creates a number node with label num and a field

containing val, the value of the number.

Such functions return a pointer to a newly created node.

14

CS304 Compiler Design /B.Tech/S6

EXAMPLE

a – 4 + c

The tree is constructed

bottom up

P1 = mkleaf(id,entry a)

P2 = mkleaf(num, 4)

P3 = mknode(-, P1, P2)

P4 = mkleaf(id,entry c)

P5 = mknode(+, P3, P4)

Syntax Tree

Syntax directed definition

Syntax trees for assignment statements are produced by the syntax-directed

definition.

Non terminal S generates an assignment statement.

The two binary operators + and * are examples of the full operator set in a typical

language. Operator associates and precedences are the usual ones, even though they

have not been put into the grammar. This definition constructs the tree from the input

a:=b* -c + b* -c

The token id has an attribute place that points to the symbol-table entry for the

identifier.

A symbol-table entry can be found from an attribute id.name, representing the lexeme

associated with that occurrence of id.

15

CS304 Compiler Design /B.Tech/S6

If the lexical analyser holds all lexemes in a single array of characters, then attribute

name might be the index of the first character of the lexeme.

Two representations of the syntax tree are as follows.

In (a), each node is represented as a record with a field for its operator and additional

fields for pointers to its children.

In Fig (b), nodes are allocated from an array of records and the index or position of

the node serves as the pointer to the node.

All the nodes in the syntax tree can be visited by following winters, starting from the

root at position 10.

Direct Acyclic Graph (DAG)

Graphical Intermediate Representation

Dag also gives the hierarchical structure of source program but in a more compact

way because common sub expressions are identified.

16

CS304 Compiler Design /B.Tech/S6

EXAMPLE

a=b*-c + b*-c

Postfix Notation

Linearized representation of syntax tree

In postfix notation, each operator appears immediately after its last operand.

Operators can be evaluated in the order in which they appear in the string

EXAMPLE

Source String : a := b * -c + b * -c

Postfix String: a b c uminus * b c uminus * + assign

Postfix Rules

1. If E is a variable or constant, then the postfix notation for E is E itself.

2. If E is an expression of the form E1 op E2 then postfix notation for E is E1’ E2’ op, here

E1’ and E2’ are the postfix notations for E1and E2, respectively

3. If E is an expression of the form (E), then the postfix notation for E is the same as the

postfix notation for E.

4. For unary operation –E the postfix is E-

Ex: postfix notation for 9- (5+2) is 952+-

Postfix notation of an infix expression can be obtained using stack

17

CS304 Compiler Design /B.Tech/S6

5.2.1.2 THREE-ADDRESS CODE

In Three address statement, at most 3 addresses are used to represent any statement.

The reason for the term “three address code” is that each statement contains 3

addresses at most. Two for the operands and one for the result.

General Form Of 3 Address Code

a = b op c

where,

a, b, c are the operands that can be names, constants or

compiler generated temporaries.

op represents operator, such as fixed or floating point

arithmetic operator or a logical operator on Boolean valued

data. Thus a source language expression like x + y * z

might be translated into a sequence

t1 := y*z

t2 := x+t1 where, t1 and t2 are compiler generated

temporary names.

Advantages Of Three Address Code

 The unraveling of complicated arithmetic expressions and of nested flow-of-control

statements makes three-address code desirable for target code generation and

optimization.

 The use of names for the intermediate values computed by a program allows three-

address code to be easily rearranged - unlike postfix notation.

Three-address code is a linearized representation of a syntax tree or a DAG in which explicit

names correspond to the interior nodes of the graph.

Three Address Code corresponding to the syntax tree and DAG given above (page no:)

18

CS304 Compiler Design /B.Tech/S6

Types of Three-Address Statements

1. Assignment statements

x := y op z, where op is a binary arithmetic or logical operation.

2. Assignment instructions

x : = op y, where op is a unary operation . Essential unary operations include unary

minus, logical negation, shift operators, and conversion operators that for example,

convert a fixed-point number to a floating-point number.

3. Copy statements

x : = y where the value of y is assigned to x.

4. Unconditional jump

goto L The three-address statement with label L is the next to be executed

5. Conditional jump

if x relop y goto L This instruction applies a relational operator (<, =, =, etc,) to x

and y, and executes the statement with label L next if x stands in relation relop to y.

If not, the three-address statement following if x relop y goto L is executed next, as

in the usual sequence.

6. Procedural call and return

param x and call p, n for procedure calls and return y, where y representing a

returned value is optional. Their typical use is as the sequence of three-address

statements

param x1

param x2

……….

param xn

call p,n

generated as part of the call procedure p(xl , x2, . . . , xn) . The integer n indicating

the number of actual-parameters in ''call p , n" is not redundant because calls can be

nested.

7. Indexed Assignments

Indexed assignments of the form x = y[i] or x[i] = y

8. Address and pointer assignments

Address and pointer operator of the form x := &y, x := *y and *x := y

19

CS304 Compiler Design /B.Tech/S6

Syntax-Directed Translation Into Three-Address Code

When three-address code is generated, temporary names are made up for the interior

nodes of a syntax tree. for example id : = E consists of code to evaluate E into some

temporary t, followed by the assignment id.place : = t.

Given input a:= b * - c + b + - c, it produces the three address code in given above

(page no:) The synthesized attribute S.code represents the three address code for

the assignment S. The nonterminal E has two attributes:

1. E.place the name that will hold the value of E, and

2. E.code. the sequence of three-address statements evaluating E.

Syntax-directed definition to produce three-address code for assignments.

Semantic rule generating code for a while statement

20

CS304 Compiler Design /B.Tech/S6

The function newtemp returns a sequence of distinct names t1, t2,……… in respose

of successive calls. Notation gen(x ‘:= ‘y ‘+’ z is used to represent the three address

statement x := y + z.

Expressions appearing instead of variables like x, y and z are evaluated when passed

to gen, and quoted operators or operand, like ‘+’ are taken literally.

Flow of control statements can be added to the language of assignments. The code for

S while E do S1 is generated using new attributes S.begin and S.after to mark the

first statement in the code for E and the statement following the code for S,

respectively.

The function newlabel returns a new label every time is called. We assume that a

nonzero expression represents true; that is when the value of E becomes zero, control

laves the while statement

Implementation Of Three-Address Statements

A three address statement is an abstract form of intermediate code. In a compiler, these

statements can be implemented as records with fields for the operator and the operands.

Three such, representations are

 Quadruples

 Triples

 Indirect triples

5.2.1.3 QUADRUPLES

A quadruple is a record structure with four fields, which are op, ag1, arg2 and result

The op field contains an internal code for the operator. The three address statement

x:= y op z is represented by placing y in arg1, z in arg2 and x in result.

The contents of arg1, arg2, and result are normally pointers to the symbol table

entries for the names represented by these fields. If so temporary names must be

entered into the symbol table as they are created.

EXAMPLE 1

Translate the following expression to quadruple triple and indirect triple

a + b * c | e ^ f + b * a

For the first construct the three address code for the expression

t1 = e ^ f

t2 = b * c

t3 = t2 / t1

t4 = b * a

t5 = a + t3

t6 = t5 + t4

21

CS304 Compiler Design /B.Tech/S6

Location OP arg1 arg2 Result

(0) ^ e f t1

(1) * b c t2

(2) / t2 t1 t3
(3) * b a t4

(4) + a t3 t5

(5) + t3 t4 t6

Exceptions

 The statement x := op y, where op is a unary operator is represented by placing op in

the operator field, y in the argument field & n in the result field. The arg2 is not used

 A statement like param t1 is represented by placing param in the operator field and

t1 in the arg1 field. Neither arg2 not result field is used

 Unconditional & Conditional jump statements are represented by placing the target

in the result field.

5.2.1.4 TRIPLES

In triples representation, the use of temporary variables is avoided & instead reference

to instructions are made

So three address statements can be represented by records with only there fields OP,

arg1 & arg2.

Since, there fields are used this intermediated code formal is known as triples

Advantages

 No need to use temporary variable which saves memory as well as time

Disadvantages

 Triple representation is difficult to use for optimizing compilers

 Because for optimization statements need to be suffled.

 for e.g. statement 1 can be come down or statement 2 can go up ect.

 So the reference we used in their representation will change.

EXAMPLE 1

a + b * c | e ^ f + b * a

t1 = e ^ f

t2 = b * c

t3 = t2 / t1

t4 = b * a

t5 = a + t3

t6 = t5 + t4

22

CS304 Compiler Design /B.Tech/S6

 Statement

35 (0)

36 (1)

37 (2)

38 (3)

39 (4)

40 (5)

Location op arg1 arg2

(0) ^ E f

(1) * B c

(2) / (1) (0)

(3) * B a

(4) + A (2)

(5) + (4) (3)

Location OP arg1 arg2

(0) ^ e f

(1) * b c

(2) / (1) (0)

(3) * b a

(4) + a (2)

(5) + (4) (3)

EXAMPLE 2

A ternary operation like x[i] : = y requires two entries in the triple structure while x : = y[i] is

naturally represented as two operations.

x[i] := y

x := y[i]

INDIRECT TRIPLES

This representation is an enhancement over triple representation.

It uses an additional instruction array to led the pointer to the triples in the desired

order.

Since, it uses pointers instead of position to stage reposition the expression to produce

an optimized code.

EXAMPLE 1

23

CS304 Compiler Design /B.Tech/S6

Comparison

When we ultimately produce the target code each temporary and programmer

defined name will assign runtime memory location

This location will be entered into symbol table entry of that data.

Using the quadruple notation, a three address statement containing a temporary can

immediately access the location for that temporary via symbol table.

But this is not possible with triples notation.

With quadruple notation, statements can often move around which makes

optimization easier.

This is achieved because using quadruple notation the symbol table interposes high

degree of indirection between computation of a value and its use.

With quadruple notation, if we move a statement computing x, the statement using x

requires no change.

But with triples, moving a statement that defines a temporary value requires us to

change all references to that statement in arg1 and arg2 arrays. This makes triples

difficult to use in optimizing compiler

With indirect triples also, there is no such problem.

A statement can be moved by reordering the statement list.

Space Utilization

Quadruples and indirect triples requires same amount of space for storage (normal

case).

But if same temporary value is used more than once indirect triples can save some

space. This is bcz, 2 or more entries in statement array can point to the same line of

op-arg1-arg2 structure.

Triples requires less space for storage compared to above 2.

Quadruples

 direct access of the location for temporaries

 easier for optimization

Triples

 space efficiency

Indirect Triples

 easier for optimization

 space efficiency

24

CS304 Compiler Design /B.Tech/S6

 Statements

35 (1)

36 (2)

37 (3)

38 (4)

39 (5)

40 (6)

Location OP arg1 arg2

(1) uniminus C

(2) * B (1)

(3) uniminus C

(4) * B (3)

(5) + (2) (4)

(6) = A (5)

PROBLEM 1

Translate the following expression to quadruple tuples & indirect tuples

a = b * - c + b * - c

Sol : - Three address code for given expression is

TAC

t1 = uniminus c

t2 = b* t1

t3 = uniminus c

t4 = b* t3

t5 = t2 + t4

Q = t5

QUADRUPLES

Location OP arg1 arg2 result

(0) uniminus c t1

(1) * b t1 t2

(3) uniminus c t3

(4) * b t3 t4

(5) + t2 t4 t5

(6) = t5 a

TRIPLES

Location OP arg1 arg2

(1) uniminus c

(2) * b (1)

(3) uniminus c

(4) * b (3)

(5) + (2) (4)

(6) = a (5)

INDIRECT TRIPLES

25

CS304 Compiler Design /B.Tech/S6

5.2.1.5 ASSIGNMENT STATEMENTS

Translation Scheme (SDT) To Produce Three-Address Code For

Assignments

Production Semantic action

S->id : = E { p : = lookup (id.name);

if p ≠ nil then

emit(p ‘ : =’ E.place)

else error }

E->E1 + E2

{ E.place : = newtemp;

emit(E.place ‘: =’ E1.place ‘ + ‘ E2.place) }

E->E1 * E2 { E.place : = newtemp;

emit(E.place ‘: =’ E1.place ‘ * ‘ E2.place) }

E->-E1 { E.place : = newtemp;

emit (E.place ‘: =’ ‘uminus’ E1.place) }

E-> (E1) { E.place : = E1.place }

E->id { p : = lookup (id.name);

if p ≠ nil then

E.place : = p

else error }

emite  generate the three address code to the output file.

newtemp  return a new temporary variable.

lookup identifier  check if the id is in symbol table

26

CS304 Compiler Design /B.Tech/S6

EXAMPLE : Annotated Parse Tree For Generation Of TAC For Assignment Statements

Syntax-directed definition to produce three-address code for assignments.

27

CS304 Compiler Design /B.Tech/S6

5.2.1.6 BOOLEAN EXPRESSIONS

Boolean expressions have two primary purposes.

 They are used to compute logical values.

 But more often they are used as conditional expressions in statements that alter

the flow of control, such as if-then-else, or while-do statements.

Boolean expressions are composed of the Boolean operators (and, or, and not) applied

to elements that are Boolean variables or relational expressions.

Relational expressions are of the form E1 relop E2, where E1 and E2 are arithmetic

expressions and relop can be <, <=, =!, =, > or >=

Here we consider Boolean expressions generated by the following grammar :

E->E or E | E and E | note | (E) |id relop id | true | false

Methods Of Translating Boolean Expressions

There are two principal methods of representing the value of a boolean expression.

They are :

Numerical Representation - To encode true and false numerically and to evaluate

a Boolean expression analogously to an arithmetic expression. Often, 1 is used to

denote true and 0 to denote false.

Jumping Method (Short-circuit Method) - To implement Boolean expressions by

flow of control, that is, representing the value of a Boolean expression by a position

reached in a program. This method is particularly convenient in implementing the

Boolean expressions in flow-of-control statements, such as the if-then and while-do

statements.

Method 1: Numerical Representation

Here, 1 denotes true and 0 denotes false. Expressions will be evaluated completely

from left to right, in a manner similar to arithmetic expressions.

EXAMPLE

The translation for a or b and not c will result following three-address sequence

t1 : = not c

t2 : = b and t1

t3 : = a or t2

28

CS304 Compiler Design /B.Tech/S6

Translation Scheme Using A Numerical Representation For Boolean Expression

where the function emit() output the three address statement into the output file and

nextstat() gives the index of the next three address statement in the output sequence

and emit increments nextstat after producing each three address statement.

A relational expression such as a < b is equivalent to the conditional statement

if a < b then 1 else 0 which can be translated into the three-address code sequence (let

statement numbers start at 100)

100 if a < b goto 103

101 t : = 0

102 goto 104

103 t : = 1

104

Method 2: Jumping or Short-Circuit Code

We can also translate a boolean expression into three-address code without generating

code for any of the boolean operators and without having the code necessarily

evaluate the entire expression. This style of evaluation is sometimes called “short-

circuit” or “jumping” code.

This is normally used for flow-of-control statements, such as the if-then, if-then-else

and while-do statements those generated by the following grammar:

29

CS304 Compiler Design /B.Tech/S6

S → if E then S1

| if E then S1 else S2

| while E do S1

Code for if-then, if-then-else and while-do is given below:

Consider the grammar

S → if E then S1

| if E then S1 else S2

| while E do S1

In each of these productions, E is the Boolean expression to be translated. In the

translation, we assume that a three-address statement can be symbolically labeled,

and that the function newlabel returns a new symbolic label each time it is called.

With each E we associate two labels E.true and E.false. E.true is the label to which

control flows if E is true, and E.false is the label to which control flows if E is false.

The inherited attribute S.next is a label that is attached to the first three-address

instruction to be executed after the code for S and another inherited attribute S.begin

is the first instruction of S

30

CS304 Compiler Design /B.Tech/S6

Syntax Directed Definition for flow –of –control statements

S→if E then S1 { E.true := newlabel;

E.false := S.next;

S1.next := S.next;

S.code := E.code || gen (E.true ‘:’) || S1.code }

S→if E then S1 else S2 { E.true := newlabel;

E.false := newlabel;

S1.next := S.next;

S2.next := S.next;

S.code := E.code || gen (E.true ‘:’) || S1.code

||gen(‘goto’ S.next) || gen(E.false ‘:’)|| S2.code }

S→while E do S1

{ S.begin := newlable;

E.true := newlabel;

E.false := S.next;

S1.next := S.begin;

S.code := gen (S.begin’:’) || E.code || gen (E.true ‘:’)

||S1.code || gen (‘goto’ S.begin) }
