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MODULE 6 
Code Optimization: Principal sources of optimization, 

Optimization of Basic blocks 

Code generation: Issues in the design of a code 

generator. The target machine, A simple code generator. 
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6.1 CODE OPTIMIZATION 
 

The code generated by the compiler can be made faster or take less space or both. 

Some transformations can be applied on this code called optimization or optimization 

transformations. 
 

Compilers that can apply optimizing transformations are called optimizing compilers. 
 

Code optimization is an optional phase and it must not change the meaning of the 

program. 
 

2 points concerning the scope of optimization: 

 
1. CO aims at improving a program, rather than improving the algorithm used 

in the program. Thus replacement of an algorithm by a more efficient 

algorithm is beyond the scope of CO. 

2. Efficient code generation for a specific target machine (eg: by fully exploiting 

its instruction set) is also beyond the scope of CO. 
 

Compiler was found to consume 40% extra compilation time due to optimization. The 

optimized program occupied 25% less storage and executed 3 times faster than 

unoptimized program. 

Need For Optimization Phase In Compiler 

1. Code produced by a compiler may not be perfect in terms of execution speed and 

memory space. 

2. Optimization by hand takes much more effort and time. 

3. Machine level details like instructions and addresses are not known to the 

programmer. 

4. Advanced architecture features like instruction pipeline requires optimized code. 

5. Structure reusability and maintainability of the code are improved. 

Criteria For Code Optimization 

1. It should preserve the meaning of the program ie, it should not change the output or 

produce error for a given input. This approach is called safe approach. 

2. Eventually it should improve the efficiency of the program by a reusable amount. 

Sometimes it may increase the size of the code or may slow the program slightly but 

it should improve the efficiency. 

3. It must be worth with the effort, ie, the effort put on optimization must be worthy 

when compared with the improvement. 
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Optimization can be applied in 3 places. 

 Source code 

 Intermediate code 

 Target code 
 
 
 

Source code 
 

Intermediate code 
 

Target code 
 

   

 
 
 

user can 
profile program 
change algorithm 
transform loops 

compiler can 
improve loops 
procedure calls 

address calculations 

compiler can 
use registers 

select instructions 
do peephole transformations 

 

There are two types of optimization 

1. Machine dependent optimization – run only in particular machine. 

2. Machine independent optimization – used for any machine. 

Organization Of Code Optimizer 
 

 

Optimization can be done in 2 phases 

1. Local optimization 

Transformations are applied over a small segment of the program called basic block, 

in which statements are executed in sequential order. Speed-up factor for local 

optimization is 1.4. 

2. Global optimization 

Transformations are applied over a large segment of the program like loop, 

procedures, functions etc. Local optimization must be done before applying global 

optimization. Speed-up factor is 2.7. 

Front End 
Code 

Generator 
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Basic Block 
 

Basic block is a sequence of consecutive 3 address statements which may be entered 

only at the beginning and when entered statements are executed in sequence without 

halting or branching. 
 

To identify basic block, we have to find leader statements. Rules for leader statements 

are 
 

 

From a leader statement to all statements up to but, not including the next leader is a 

basic block. 
 

Flow Graphs 
 

Basic block is a sequence of consecutive 3 address statements which may be entered 

only at the beginning and when entered statements are executed in sequence without 

halting or branching. 
 

To identify basic block, we have to find leader statements. Rules for leader statements 

are 
 

It is the pictorial representation of control flow analysis in a program. It shows the 

relationship among basic blocks. 
 

Nodes are basic blocks and edges are control flow. It is a directed graph G = (N,E n0). 
 

Where, N – set of basic blocks 

 
E – set of control flows 

n0 – starting node 

If there is a directed edge from B1 to B2, the control transfers from the last statement 

of B1 to the first statement of B2. B1 is called predecessor of B2 and B2 is successor of 

B1. 
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EXAMPLE 

Consider the code for quick sort 
 

Three address code for quick sort fragment 
 



 
 Prepared by EBIN P.M (AP, CSE)  
IES College of Engineering 
  

6 

 

 

Flow graph for quick sort 
 

 

6.1.1 PRINCIPAL SOURCES OF OPTIMIZATION 

A transformation of a program is called local if it can be performed by looking only at the 

statements in a basic block; otherwise, it is called global. Many transformations can be 

performed at both the local and global levels. Local transformations are usually performed 

first. 
 
 

1. Function preserving transformations 

a. Common subexpression elimination 

b. Copy propagation 

c. Dead code elimination 

d. Constant folding 

2. Loop optimization 

a. Code motion 

b. Induction variable elimination 

c. Reduction in strength 

 

Function-Preserving Transformations 
 

There are a number of ways in which a compiler can improve a program without 

changing the function it computes. 

Some function preserving transformations examples are given below 

Common Sub Expression Elimination (CSE) 

An occurrence of an expression E is called a common sub-expression if E was 

previously computed, and the values of variables in E have not changed since the 

previous computation. 



 
 Prepared by EBIN P.M (AP, CSE)  
IES College of Engineering 
  

7 

 

 

We can avoid recomputing the expression if we can use the previously computed 

value. Two types are: - 

 Local common sub expression elimination

 Global common sub expression elimination 

Consider the flow graph of quick sort fragment

 

 

 

Local common sub expression elimination 

 

EXAMPLE 1 

B5 
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EXAMPLE 2  

t1: = 4*i 

t2: = a [t1] 

t3: = 4*j 

t4: = 4 *i 

t5: = n 
t6: = b [t4] +t5 

 

t1: = 4*i 

t2: = a [t1] 

t3: = 4*j 

t5: = n 
t6: = b [t1] +t5 

 

The common sub expression t4: =4 * i is eliminated as its computation is already in t1 and the 

value of i is not been changed from definition to use. 

 

Global common sub expression elimination 

After local common subexpressions are eliminated, B5 stiil evaluates 4 * i and 4+ j, as 

shown in EXAMPLE 1 of local common subexpression elimination. 
 

t8 = 4 * j 

t9 = a[t8] 

a[t8] =x 

 

in B5 can be replaced by 

t9 = a[t4] 

a[t4] = x 

 
using t4 computed in block B3 

 
In Flow graph given above, observe that as control passes from the evaluation of 4 * j 

in B3 to B5, there is no change to j and no change to t4, so t4 can be used if 4 * j is 

needed. 

Another common subexpression comes to light in B5 after t4 replaces t8. The new 

expression a[t4] corresponds to the value of a[j] at the source level. 

Not only does j retain its value as control leaves B3 and then enters B5, but a[j], a value 

computed into a temporary t5, does too, because there are no assignments to elements 

of the array a in the interim. 

The statements  ,    t9  = a[t4] 

a[t6] = t9 in B5 therefore can be replace by a[t6] = t5 the 
same as the value assigned to t3 in block B2. 

Block B5 is the result of eliminating common sub expressions corresponding to the 

values of the source level expressions a[i] and a[j] from. 

A similar series of transformations has been done to B6 in Flow graph. The expression 

a[tl] in blocks B1 and B6 is not considered a common sub expression, although tl can 

be used in both places. 

After control leaves B1 and before it reaches B6, it can go through B5, where there are 

assignments to a. Hence, a[t1] may not have the same value on reaching B6 as it did 

on leaving B1, and it is not safe to treat a[t1] as a common sub expression. 
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B5 and B6 after common subexpression elimination. 

 

 
Copy Propagation 

Assignments of the form f : = g called copy statements, or copies for short. The idea 

behind the copy-propagation transformation is to use g for f, whenever possible after 

the copy statement f: = g. 

Copy propagation means use of one variable instead of another. Copy statements 

introduced during common subexpression elimination. 

 

 
EXAMPLE 1 

The assignment x : = t3 in block B5 of Flow graph is a copy. 

 

This change may not appear to be an improvement, but it gives us the opportunity to eliminate 

the assignment to x. 
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EXAMPLE 2 
 

When the common subexpression in c := d+e is dominated in fig given below, the algorithm 

uses a new variable t to hold the value of d+e. 

Since control may reach c := d+e either after the assignment to a or after the assignment to b, 

it would be incorrect to replace c := d+e by either c := a or by c := b. 

 

 

ADVANTAGE 
 

One advantage of copy propagation is that it often turns the copy statement into dead code. 

 
 

Dead-Code Elimination 
 

A variable is live at a point in a program if its value can be used subsequently; 

otherwise, it is dead at that point. 
 

A related idea is dead or useless code, statements that compute values that never get 

used. 
 

While the programmer is unlikely to introduce any dead code intentionally, it may 

appear as the result of previous transformations. 

 

 

EXAMPLE 1 
 

Consider B5 of flow graph. 
 
 

 

 

Copy propagation followed 

by dead-code elimination 

removes the assignment to x 

and transforms into: 
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EXAMPLE 2 

i=0; 

if(i==1) 

{ 

a=b+5; 

} 

 
Here, ‘if’ statement is dead code because this condition will never get satisfied. 

 

Constant Folding 
 

If all operands are constants in an expression, then it can be evaluated at compile time 

itself. The result of the operation can replace the original evaluation in the program. 
 

This will improve the run time performance and reducing code size by avoiding 

evaluation at compile- time. 
 

EXAMPLE 
 

a=3.14157/2 can be replaced by a=1.570 thereby eliminating a division operation. 

 

Loop Optimization 
 

The running time of a program may be improved if the number of instruction in an 

inner loop is decreased, even if we increase the amount of code outside the loop. 
 

Mainly 3 techniques are there :- 

 
 Code Motion 

 Induction Variable 

 Reduction In Strength 

 

Code Motion 
 

An important modification that decreases the amount of code in a loop is code motion. 
 

Execution time of a program can be reduced by moving code from a part of a program 

which is executed very frequently to another part of the program which is executed 

fewer times 
 

Ex: Loop optimization – loop invariant code motion 
 

A fragment of code that resides in the loop and computes the same value of each 

iteration is called loop invariant code. 
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EXAMPLE 1 
 
 

for i = 1 to 100 begin 

{ 

z := 1; 

x := 25 * a ; 

y := x + z ; 

end; 

} 

x := 25 * a ; 

for i = 1 to 100 begin 

{ 

z := 1; 

y := x + z ; 

end; 

} 

 

Here x := 25 * a ; is a loop variant. Hence in the optimised program it is computed 

only once before entering the for loop. y := x + z ; is not loop invariant. Hence it 

cannot be subjected to frequency reduction. 

EXAMPLE 2 

Evaluation of limit-2 is a loop-invariant computation in the following while-statement: 

while (i <= limit - 2) /* statement does not change limit*/ 

Code motion will result in the equivalent of 

 
t= limit - 2; 

while (i<=t) /* statement does not change limit or t */ 

 
Induction Variables 

Loops are usually processed inside out. For example consider the loop around B3. 
 

 

Note that the values of j and t4 remain in lock-step; every time the value of j decreases 

by 1, that of t4 decreases by 4 because 4*j is assigned to t4. Such identifiers are called 

induction variables. 
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Reduction In Strength 
 

When there are two or more induction variables in a loop, it may be possible to get 

rid of all but one, by the process of induction-variable elimination. For the inner loop 

around B3 we cannot get rid of either j or t4 completely; t4 is used in B3 and j in B4. 
 

However, we can illustrate reduction in strength and illustrate a part of the process of 

induction-variable elimination. Eventually j will be eliminated when the outer loop of 

B2- B5 is considered. 

 

EXAMPLE 
 

As the relationship t4:=4*j surely holds after such an assignment to t4 in Figure. and 

t4 is not changed elsewhere in the inner loop around B3, it follows that just after the 

statement j:=j-1 the relationship t4:= 4*j-4 must hold. 

 

We may therefore replace the assignment t4:= 4*j by t4:= t4-4. The only problem is that 

t4 does not have a value when we enter block B3 for the first time. 

 

Since we must maintain the relationship t4=4*j on entry to the block B3, we place an 

initializations of t4 at the end of the block where j itself is initialized, shown by the 

dashed addition to block B1 in Figure 
 

 
The replacement of a multiplication by a subtraction will speed up the object code if 

multiplication takes more time than addition or subtraction, as is the case on many 

machines. 

6.1.2 OPTIMIZATION OF BASIC BLOCKS 

Many of the structure preserving transformations can be implemented by constructing a dag 

for a block. There is a node n associated with each statement s within the block. The children 

of n are those nodes corresponding to statement that are the last definitions prior to s of the 

operands used by s. 
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Directed Acyclic Graph 
 

In compiler design, a DAG is an abstract syntax tree with a unique node for each 

value. DAG is an useful data structure for implementing transformation on basic 

block. DAG is constructed from three address code. 
 

Common subexpression can be detected by noticing, as a new node m is about to 

added, whether there is an existing node n with the same children, in the same order, 

and with the same operator. If so, n computes the same value as m and may be used 

in its place. 

 
 

 

 

 

 

 

When we construct the node for the third statement c = b + c, we know that the use 

of b in b + c refers to the node labeled -, because that is the most recent definition of 

b. 

Application of DAG 
 

 Determine the common subexpression.
 

 Determine which names are used in the block and compute outside the block.
 

 Determine which statement of the block could have their computed value 
outside the block.

 

 Simplify the list of quadruples by eliminating common subexpression and not 
performing the assignment of the form x = y and unless it is a must.

 

Rules For The Construction Of A DAG 
 

1. In a DAG Leaf node represents identifiers, names, constants. Interior node represents 
operators. 

 

2. While constructing DAG, there is a check made to find if there is an existing node with 
same children. A new node is created only when such a node does not exist. This 
action allows us to detect common subexpression and eliminate the same. 

 

3. Assignment of the form x = y must not be performed until unless it is a must. 
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EXAMPLE 1 
 
 

a = b + c 

b = b - d 

c = c + d 

e = b + c 

 

 

The two occurrences of the 

sub-expressions b + c 
computes the same value. 

 

Value computed by a and e 
are the same. 

 
EXAMPLE 2 

 
 

d = b * c 

e = a + b 

b = b * c 

a = e – d 

 

 

 

EXAMPLE 3 

 

( a + b ) * ( a + b + c ) 
 
 

Three address code will be 

t1 = a + b 

t2 = t1 + c 

t3 = t1 * t2 

 

 

 

EXAMPLE 4 

 

( ( ( a + a ) + ( a + a ) ) + ( ( a + a ) + ( a + a ) ) ) 
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The Use of Algebraic Identities 
 

It represents another important class of optimizations on basic blocks. 

x + 0 = 0 + x = x 

x – 0 = x 

x * 1 = 1 * x = x 

x / 1 = x 

Another class of algebraic optimization includes reduction in strength. 

x ** 2 = x * x 

2 * x = x + x  

x / 2 = x * 0.5 

associative laws may also be applied to expose common subexpression. 

a = b + c 

e = c + d + b 

With the intermediate code might be 

a = b + c 

t = c + d 

e = t + b 

If t is not needed outside this block, the sequence can be 

a = b + c 

e = a + d 

 

6.2 CODE GENERATION 
 

The final phase in our compiler model is the code generator. It takes as input an 

intermediate representation of the source program and produces as output an 

equivalent target program. 
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6.2.1 ISSUES IN THE DESIGN OF A CODE 

GENERATOR 
 

The following issues arise during the code generation phase: 

 
1. Input to code generator 

 
2. Target program 

 
3. Memory management 

 
4. Instruction selection 

 
5. Register allocation 

 
6. Evaluation order 

 

7. Approaches to code generation 

 

Input To The Code Generator 
 

The input to the code generator consists of the intermediate representation of the 

source program produced by the front end, together with information in the symbol 

table that is used to determine the run-time addresses of the data objects denoted by 

the names in the intermediate representation. 
 

There are several choices for the intermediate language including postfix notation, 

three address representation such as quadruple, virtual machine representations such 

as stack machine code, and graphical representations such as syntax trees and dags. 
 

We assume that prior to code generation the front end scanned, parsed and translated 

the source program into a reasonably detailed intermediate representation, so the 

values of names appearing in the intermediate language, type checking has taken 

place, so type conversion operators have been inserted wherever necessary. The code 

generation phase can therefore proceed on the assumption that its input is free of 

errors. 

 

Target programs 
 

The output of the code generator is the target program. This output may take on a 

variety of forms- absolute machine language, relocatable machine language or 

assembly language. Producing an absolute machine language as output has the 

advantage that it can be placed in a fixed location in memory and intermediate 

executed. 
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Producing a relocatable machine language program as output allows subprograms to 

be compiled separately. A set of relocatable object modules can be linked together and 

loaded for execution by a linking loader. 
 

Producing an assembly language program as output makes the process of code 

generation somewhat easier. We can generate symbolic instructions and use the 

macro facilities of the assembler to help generate code. 
 

The instruction set architecture of the target machine has a significant impact on the 

difficulty of constructing a good code generator that produces high quality machine 

code. The most common target machine architectures are RISC (reduced instruction 

set computer), CISC (complex instruction set computer) and stack based. 
 

The RISC machine has many registers, three-address instructions, simple addressing 

modes and a relatively simple instruction set architecture. In contrast, a CISC machine 

has few registers, two-address instructions, a variety of addressing modes, several 

register classes, variable length instructions and instructions with side effects. 
 

In stack based machine, operations are done by pushing operands onto the stack and 

then performing the operations on the operands at the top of the stack. To achieve 

high performance, the top of the stack is typically kept in registers. 
 

Stack based architectures were revived with the introduction of Java Virtual Machine 

(JVM). The JVM is a software interpreter for java bytecodes, an intermediate language 

produced by Java compiler. The interpreter provides software compatibility across 

multiple platforms. To overcome the high-performance penalty of interpretation, 

which can be on the order of a factor of 10, just-in-time java compiler. 

 

Memory Management 
 

Mapping of variable names to address is done co-operatively by the front end and 

code generator. Name and width are obtained from symbol table. Width is the amount 

of storage needed for that variable. Each three-address code is translated to addresses 

and instructions during code generation. A relative addressing is done for each 

instruction. Al the labels should be addressed properly. Backward jump is easier to 

manage than the forward jump. 

 

Instruction Selection 
 

The code generator must map the IR program into a code sequence that can be 

executed by the target machine. The complexity of performing this mapping is 

determined by a factor such as, 

 

 the level of the IR 

 the nature of the instruction-set architecture 

 the desired quality of the generated code. 
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If the IR is high level, the code generator may translate each IR statement into a 

sequence of machine instructions using code templates. Such statement-by-statement 

code generation often produces poor code that needs further optimization. If IR 

reflects some of the low-level details of the underlying machine, then the code 

generator can use this information to generate more efficient code sequence. 
 

The nature of the instruction set of the target machine has a strong effect on the 

difficulty of instruction selection. Uniformity and completeness of the instruction set 

are important factors. 
 

If the target program does not support each data type in a uniform manner, then each 

exception to the general rule requires special handing.eg: in some machines floating 

point operations are done using separate registers. Instruction speed and machine 

idioms are other important factors. 
 

If we do not care about the efficiency of the target program, instruction selection is 

straightforward. For each common three-address statement, a general code can be 

designed. 

 

Eg: x = y + z 

 
MOV y, R0 

ADD z, R0 

MOV R0, x 

Eg: 
 

a = b + c 

d = a + e 

MOV b, R0 

ADD c, R0 

MOV R0, a 

MOV a, R0 ------------------- can be avoided. 
 

ADD e, R0 

MOV R0, d 

The quality of the generated code is usually determined by its speed and size. On 

most machines, a given IR program can be implemented by many different code 

sequence, with significant cost difference between the different implementations. 
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Eg: if the target machine has an increment instruction INC, then the three-address 

statement a = a+1 may be implemented more efficiently by the single instruction INC 

a, rather than by a more obvious sequence that loads a into a register, adds one to the 

register, and then store the result back into a. 

 

MOV a, R0 

ADD #1, R0 

MOV R0, a 
 

Register Allocation 
 

A key problem in code generation is deciding what values to hold in what registers. 

Registers are the fastest computational unit on the target machine, but we usually not 

have enough of then to hold all values. 
 

The use of registers is often subdivided into two sub problems: 

 
 Register allocation, during which we select the set of variables that will reside 

in registers at each point in the program. 

 Register assignment, during which we pick the specific register that a variable 

will reside in. 
 

Finding on optimal assignment of registers to variables is difficult, even with single- 

register machines and it is an NP-complete problem. 
 

This problem becomes more complicated, if the target machine has certain 

conventions on register use. 
 

Eg: in 8085, one of the operand of some operations should be placed in register A. 

 

Choice Of Evaluation Order 
 

The order of evaluation can affect the efficiency of target code. Some order requires 

fewer registers and instructions than others. 
 

Picking the best order is an NP-complete problem. This can be solved up to an extend 

by code optimization in which the order of instruction may change. 

 

Approaches To Code Generation 
 

The target code generated should be correct. Correctness depends on the number of 

special cases the code generator might face. Other design goals of code generator are, 

it should be easily implemented, tested and maintained. 
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6.2.2 TARGET MACHINE 
 

Familiarity with the target machine and its instruction set is a prerequisite for 

designing a good code generator. 

Our target computer is a byte-addressable machine with four bytes to a word and n 

general purpose registers, R0, R1, R2…. Rn-1. It has two address instructions of the 

form 

op source, destination 
in which op is an op-code and source and destination are data fields. It has the 

following op-codes 

 

 MOV (move source to destination) 

 ADD (add source to destination) 

 SUB (subtract source from destination) 
 

The source and destination fields are not long enough to hold memory addresses, so 

certain bit patterns in these fields specify that words following an instruction contain 

operands and/or addresses. 
 

The source and destination of an instruction are specified by combining registers and 

memory locations with address mode. contents(a) denotes the contents of the register 

or memory address represented by a.The address modes together with their 

assembly-language forms and associated costs are as follows: 
 

MODE FORM ADDRESS ADDED COST 

absolute 
 

M 
 

M 
 

1 

register 
 

R 
 

R 
 

0 

indexed c(R) c+ contents(R) 

 

1 

indirect register 
 

*R contents(R) 

 

0 

indirect indexed *c(R) contents(c+ contents (R)) 

 

1 

 

MOV R0, M – stores the contents of register R0 into memory location M. 

MOV 4(R0), M – stores the value contents(4 + contents(R0)) 

MOV *4(R0), M – stores the value contents(contents(4 + contents(R0))) 
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MODE FORM ADDRESS ADDED COST 

literal 
 

#C 
 

C 
 

1 

 

MOV #1, R0 – load constant 1 into register R0. 

 

Instruction Cost 
 

Cost of an instruction is one plus the costs associated with the source and destination 

address modes, indicated by add cost in the above table. 
 

This cost corresponds to the length of the instruction. Address modes involving 

registers have cost zero, while those with a memory location or literal in them have 

cost one, because such operands have to be stored with the instruction. 
 

We should clearly minimize the length of instructions. Minimizing the instruction 

length will tend to minimize the time taken to perform the instruction as well. 

 

1. The instruction MOV R0, R1 copies the contents of register R0 into register R1. 

This instruction has cost one, since it occupies only one word of memory. 

2. The (store) instruction MOV R5 , M copies the contents of register R5 into memory 

location M. This instruction has cost two, since the address of memory location M 

is in the word following the instruction. 

3. The instruct ion ADD # 1 , R3 adds the constant I to the contents of register 3, and 

has cost two, since the constant I must appear in the next word following the 

instruction. 

4. The instruction SUB 4 (R0) , * 12 (R) stores the value 

 
contents (contents (12+ contents (R1))) - contents (contents (4 +R0)) 

into the destination *12 (R1) .The cost of this instruction is three, since the constants 4 

and 12 are stored in the next two words following the instruction. 
 

Here are some examples 
 

1. MOV b, R0  

ADD c, R0 cost = 6 
MOV R0, a  

2. MOV 

ADD 

b, a 

c, a 

 
cost = 6 

Assuming R0, R 1 , and R2 contain the addresses of a, b, and c. respectively, we can use: 
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3. MOV *R1, *R0 

ADD *R2, *R0 cost = 2 

Assuming R1 and R2 contain the values of b and c, respectively, and that the value of b is not 

needed after the assignment, we can use: 
 

4. ADD R2, R1 

MOV R1, a cost = 3 

6.2.3 SIMPLE CODE GENERATOR 
 

The code generation strategy is the generation of target code for a sequence of three- 

address statement. We assume that computed result is in registers as long as possible, 

storing them only a) if their register is needed for another computation or b) just 

before a procedure call, jump or labelled statement. 
 

For a three-address statement a = b + c, generate instruction ADD Rj, Ri with cost one, 

leaving the result a in register Ri. 
 

This sequence is possible only if register Ri contains b, Rj contains c and b is not live 

after the statement; that is, b is not used after the statement. 
 

If Ri contain b but c is in a memory location, 

ADD c, Ri cost =2 

Or 

MOV c, Rj 

ADD Rj, Ri cost =3 

 
Register And Address Descriptors 

The code generation algorithm uses descriptors to keep track of register contents and 

addresses for names. 

 

1. A Register Descriptor keeps track of what is currently in each register. It is 

consulted whenever a new register is needed. 

 

2. An Address Descriptor keeps track of the location where the current value of the 

name can be found at run time. The location might be a register, a stack location or a 

memory address. This information can be stores in the symbol table and is used to 

determine the accessing method for a name. 
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A code-generation algorithm 

Code generation algorithm takes input as a sequence of three-address statements constituting 

a basic block. Statement of the form x = y op z performs the following actions. 

 

1. Invoke a function getreg to determine the location L where the result of the 

computation y op z should be stored. 

2. Consult the address descriptor for y to determine y’, the current location of y. 

Prefer the register for y’ if the value of y is currently both in memory and a 

register. If the value of y is not already in L, generate the instruction MOV y’ , L 

to place a copy of y in L. 

3. Generate the instruction OP z’ , L where z’ is a current location of z. Prefer a 

register to a memory location if z is in both. Update the address descriptor of x 

to indicate that x is in location L. If x is in L, update its descriptor and remove x 

from all other descriptors. 

4. If the current values of y or z have no next uses, are not live on exit from the 

block, and are in registers, alter the register descriptor to indicate that, after 

execution of x : = y op z , those registers will no longer contain y or z 

The Function getreg M 

The function getreg returns the location L to hold the value of x for the assignment x= y op z. 
 

1. If the name Y is in a register that holds the value of no other names and Y is not live 

and has no next use after X := Y op Z then return register of Y for L. Update the address 

descriptor of y to indicate that y is no longer in L. 

2. Failing (1) return an empty register for L if there is one. 

3. Failing (2) if X has a next use in the block or op is an operator, such as indexing that 

requires a register, find an occupied register R. Store the value of R into a memory 

location (by MOV R, M ) If it is not already in proper memory location M, update the 

address descriptor for M, and return R. if R hold the value of several variables, a MOV 

instruction must be generated for each variable that need to be stored. A suitable 

occupied register might be one whose datum is referenced furthest in the future, or 

one whose value is also in memory. We leave the exact choice unspecified, since there 

is no one proven best way to make the selection. 

 
4. If X is not used in the block. Or no suitable occupied register can be found, select the 

memory location of X as L. 
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Generating Code For Assignment Statements 

The assignment d : = (a-b) + (a-c) + (a-c) might be translated into the following three-address 

code sequence: t := a – b 

u := a – c 

v := t + u 

d := v + u with d live at the end. 
 

Generating Code for other type of statements 
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PEEPHOLE OPTIMIZATION 
Peephole optimization is a simple and effective technique for locally improving target code. 

This technique is applied to improve the performance of the target program by examining 

the short sequence of target instructions (called the peephole) and replace these instructions 

replacing by shorter or faster sequence whenever possible. Peephole is a small, moving 

window on the target program. 

 

Characteristics Of Peephole Optimization 

 
So The peephole optimization can be applied to the target code using the following 

characteristic. 

1. Redundant instruction elimination 

• Especially the redundant loads and stores can be eliminated in this type of 

transformations. Example: 

MOV R0, x 

MOV x, R0 

• We can eliminate the second instruction since x is in already R0. But if MOV x, R0 is a 

label statement then we cannot remove it. 

2. Unreachable Code 

Unreachable code is a part of the program code that is never accessed because of 

programming constructs. Programmers may have accidently written a piece of code that can 

never be reached. 

EXAMPLE 

 
void add_ten(int x) 

{ 

return x + 10; 

printf(“value of x is %d”, x); 

} 

In this code segment, the printf statement will never be executed as the program control 

returns back before it can execute, hence printf can be removed. 

3. The flow of control optimization 

There are instances in a code where the program control jumps back and forth without 

performing any significant task. These jumps can be removed. Consider the following chunk 

of code: 
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... 

MOV R1, R2 

GOTO L1 

... 

L1 : GOTO L2 

L2 : INC R1 

In this code,label L1 can be removed as it passes the control to L2. So instead of jumping to 

L1 and then to L2, the control can directly reach L2, as shown below: 

... 

MOV R1, R2 

GOTO L2 

... 

L2 : INC R1 

4. Algebraic simplification 

There are occasions where algebraic expressions can be made simple. For example, the 

expression a = a + 0 can be replaced by a itself and the expression a = a + 1 can simply be 

replaced by INC a. 

5. Reduction in strength 

There are operations that consume more time and space. Their ‘strength’ can be reduced by 

replacing them with other operations that consume less time and space, but produce the same 

result. 

For example, x * 2 can be replaced by x << 1, which involves only one left shift. Though the 

output of a * a and a2 is same, a2 is much more efficient to implement 

6. Machine idioms 

So The target instructions have equivalent machine instructions for performing some have 

operations. 

Hence we can replace these target instructions by equivalent machine instructions in order to 

improve the efficiency. 

Example: Some machines have auto-increment or auto-decrement addressing modes.These 

modes can use in a code for a statement like i=i+1. 

 
 

********** 


