
n» !|lv:Gm\-P Hiifiompwvm "

ADVANCED IIDHPIITIEII ARCHITECTURE
Parallelism, Scalability, mgranunamuw

Second Edition

About the Authors
Kai Hwang is a Proiessor of Electrical Engineering and Computer Science at the University of Southern
California. Prior to joining USC, he was a faculty at Purdue University ibr I'D years. He received his
tmdergraduate education at the National Taiwan University in China and eamed his PhD degree from
the University of California at Berkeley. Dr Hwang has been engaged in research and teaching on
computer architecture, parallel processing and network-based computing for well over 3-D years. He
has authored or coauthored live books and 120 journal and conference papers in the Computer Science
and Engineering areas. He is the founding Cocditor-in-Chiefof the .J'oumrn' ofP.nr.r1Hef rmd Distributed
Conn-mring.

He has served as the founding Director of the USC Computer Research Institute and a Distinguished
Visitor of the IEEE Computer Society. He has chaired several international computer conferences and
lectured worldwide on advanced computcrtopics. His researches have been supported by NSF, IBM, AT&T,
AFOSR, ONR, DOT,Alliant, and Intel. He has been a consultant ibr IBM, .IPL, Fujitsu, Japan's ETL, GMD
i11 Germany, and ITRI and Academia Sinica in Chi11a. He is also a member ofthc advisory boards ofseweral
international journals and research organization s.

The Institute of Electrical and Electronics Engineers elected him as an IEEE Fellow in 1986 for his
contributions in computer architectures, digital arithmetic, and parallel processing. He was the holder ofthe
Distinguished CDC Visiting Chair Professorship in Computer Science at the University of Minnesota during
the spring quarter of I939. He has guided over a dozen PhD students at Purdue and USC. At present, he
heads a sponsored research project on Grid Security at USC. His current research interests are i11 the areas of
network-based computing, Intcmet security, and clustered systems. Clver the years, he has received numerous
awards ibroutstanding teaching and research, and delivered invited and keynote lectures in many countries.

Naresh Jotwani is presently serving as Director, School of Solar Energy, Pandit Doendayal Petroleum
University, Gandhinagar. Earlier, he has served as Professor and Dean ('R&D) at DA-IICT, Gandhinagar, and
as Principal at G H Patel College ofEngineering and Technology, Vallabh Vidyanagar.

Dr Jotwani obtained his BTech degree in Electrical Engineering from IIT Bombay, a.nd Doctorate in
Computer Science from Rice University, Houston. His teaching career has spalmed over twenty-five years,
in India, Singapore and the US. He has also worked in the IT indusuy for about five years, in India and
Singapore, with brief stints in the US. In the early I9BD‘s, he worked on system software development for a
64-bit multiprocessor system with microcoded instructions for inter-process communication.

Dr Jotwani has carried out several consultancy assignments, written four books and several research
publications, and delivered numerous invited lecttu'es. His textbook Computer .5:1-‘.S‘I£"J'fl Organisation was
published by Tata Mefiraw-Hill. His current research interests are in the field of solar photovoltaic devices.

1'?» iiilrfimu- Hrii Ccinoflilri l _.

ADVANCED CQMPUTER I-\RC|Il'l'|§CTIIR|i
Parallelism, Scalability, Prugrainmaliilitii

Second Edition

Kai Hwang
Professor of Eiectricai Engineering and Computer Science

University of Soutiiem Caiifomia, USA

Naresh Jotwani
Director, Schooi of Soiar Energy

Panciit Dee-ndayai F-‘etroietrrn University
Ganizininagar, Giiiarat

Tata McC-iraw Hill Education Private Limited
NEW DELHI

M‘cGr¢a W-Hiii Offices
New Delhi New York St Louis San Francisco Auckland Bogota Caracas

Koala Lumpur l_lS-IJDFI London II-ibdrid Meiiuoofiity Milan Montreal
San Juan Santiago Singapore Sydney Tokyo Toronto

Fr-1-Mrfiraw HJ'lft'=>-rm.--im-. _

It 1
'Tata llllcfiraw-Hill

Published by the Tata l'vIcCraw llill Education Private Limited__
Twest Patel Hagar, New Delihi IIDDDB.

Advanced Computer Archltecltl re, 2e

Copyright -E1 ‘.10! I. 2000, by Tata Mtflraw llill Education Private Limited.
No part of this publication may be reproduced or distributed in any form or by any means, electronic, mechanicai,
photocopying, recording, or otherwise or stored in a database or retrieval system without the prior written permission of
the publishers. ‘The program listings (if any) may be entered, stored and executed in a computer system, ltut they may not
be reproduced for publication.

This edition can be exported from India only by the publishers,
Tata Mcflmw Ilill Education Private Limited.

L? BN {I3 digit]-L 9TB-DJTTJTTUZID-3
ISBN {IO digit}: D-D?-DTDZID-I

Vice President and Managing Director hrlcfiraw-Hill Education: Asia Pacific Region: .=t_;'a_v .'H1';tr.i\'.ft.r
liead lliglter Education Publishing and Marketing: Pibha .'Hahq,iun
Manager: Sponsoring SEM & Tech Ed: She-Jini Jim
Asst Sponsoring Editor. Sumbhi Shulda
Deveboprnent Editor: Surfi-hi Strman
Executive Editorial Services: .S'ohlni Mulcire-q'ee
Jr Manager-- Production: Aqjufiflurdun
Dy Marketing Manager: SEM & Tech Ed: Elia Ga-nesan

General Manager Production: Rqjendcr P G.h'an.te'fa
Asst General Manager Production: B L Dogrsr

Information contained in this work has been obtained by Tata McGraw-Hill, front sources beiieved to be reliable.
Howeter, neither Tata McGraw-I-l ill nor its authors guarantee the accuracy or completeness of auty information pub-
Eished herein, and neither Tata Mcfiraw-Hill nor its authors shall be responsible forany errors, omissions, ordamages
arising out of use of this information. This work is published with the understanding that Tata Mctlraw-llill and its
authors are supplying information but are not attempting to render engineering or other professional services. If such
services are required, the assistance ofan appropriate profem ionai should be sought.

Typeset at Tej Composers, W2 3‘£I'l, Madipur, New Deflti I ID U63 and printed at Pashupati Printers Pvt Ltd., l»'42'J'.!l-Ei,
Gali No. I, Friends Colony, Industrial Area, GIT. Road, Shahdara_ Deihi IIDUQS

Cover Printer: SDR Printers

RYACRRQZDRXAA

The MCG."flW'Hl'" Companies __ :

Fr-1-Mrfirow HJ'iic'|--r.-n.---in-~ _

This hook is dedicated to those who are eager to learn in a rapidiy changing woriafl
to those who teach and share knowiedge without discrimination, and to those who are

determined to moire a contribution through creative work.

Dedicated to G, R, I/and D.

Kai Hwang

Naresh Jotwani

Contents
Foreword to the First Edition
Ptetitce to the .S'eco.nd Edition
Preface to the First Edition

Part I Theory of Parallelism
1. Parallel Computer Models

1.1 The State oflfomputittg 3
1.1.1 Computer Development Milestones 3
1.1.2 Elements oflvlo-dern Computers 6
1.1.3 Evolution ofC'omputcr.-“architecture 8
1 .1.4 System Attributes to Performance iE

1.2 Multiptoeessots and Multicomputcrs I I-'
1.2.1 Shared-Memory Multiprocessors H’
1.2.2 Distributed-Memory Multicomputers
1.2.3 ATaxonomy ofMIMD Computers 24

1.3 Multiveclorand SIMD Computers E5
1.3. 1 Vectorflupcrcomputers 25
1.3.2 STMD Supercomputers 2?

1.4 PRAM and VLSI Models 29
1.4.1 Parallel Random-Access Machines 3|‘?
1.4.2 VLSI Complexity Model 33

1 .5 Architectural Development Tracks 36
1.5. 1 Multiple-Processor Tracks 36
1.5.2 Multivector and SIMD Tracks 38
1.5.3 Multithrcadcd and Datafiow Tracks 39
.Sitnuti.ort-‘ 4|’)
Exercises 4!

l'~.a 1'»:

.1"v
.1"vii
xtiii

1
3

Fhrrulffiffllli H“Pl'r>¢rIq|r_.\.I|n*\ ‘I _

viii i Contems

2. Program and Network Properties 44
2.1 Conditions of Parallelism 44

2.1.1 Data and Resource Dcpcndenccs 44
2.1.2 Hardware and Soflwzwc Parallelism 49
2.1.3 The Role of Compilers 52

2.2 Program Partitioning and Scheduling 52
2.2.1 Grain Sizes and Latency 52
2.2.2 Grain Packing and Scheduling 55
2.2.3 Static Multiprocessor Scheduling 38

2.3 Program Flow Mechanisms 6!
2.3.1 Control Flow Versus Data Flow fit
2.3.2 Demand-Driven Mechanisms 65
2.3.3 Comparison ofFlow Mechanisms 65

2.4 System Interconnect Architectures 66
2.4.1 Network Properties and Routing 6 F’
2.4.2 Static Connection Networks ?r'?
2.4.3 Dynamic Connection Networks ??
Srrrrimrtrr-' 83
E.t'ercises 84

3. Principles of Scalable Performance 89
3.1 Performance Metrics and Measures 89'

3.1.1 Parallelism Profile in Programs 39
3.1.2 Mean Performance 92
3.1.3 Efiiciency. Utilization, and Quality 93
3. 1.4 Benchmarks and Performance Measures 9?

3.2 Parallel Processing Applications 99
3.2.1 Massive Parallelism for Grand Challenges 99
3.2.2 Application Models of Parallel Computers I 11?.’
3.2.3 Scalability of Parallel ttlgorithms i 04

3.3 Speedup Performance Laws 108
3.3. 1 Amr:lahl's Law for a Fixed Workload IDS
3.3.2 Cn.rstafson‘s Law for Scaled Problems Hi
3.3.3 Memory-Bounded Speedup Model HI.’

3.4 Scalability Analysis and Approaches H6
3.4. l Scalability Metrics and Goals H6
3.4.2 Evolution of Scalable Computers I20
3.4.3 Research Issues and Solutions IE3
SIt.l'fl.l'flflt'__1-' i.?.'i
E.\'ercises i25

Thu‘ Ml.'I;Ifllb' HI" l'n¢r.q|r_.u|»rs -
CD’-“E,-"3 —

Part H Hardware Technologies
4. Processors and Memory Ilierarchy

4. 1 Advanced Processor Technology I33
4.1.1 Design Space of Processors 1'33
4.1.2 Instruction-SetArehitectures I3?
4.1.3 CISC Scalar Processors 139
4.1.4 RISC Scalar Processors 143

4.2 Superscalar and Vector Processors I50
4.2.1 Superscalar Processors I50
4.2.2 The VLIW Architecture 154’
4.2.3 Vector and Symbolic Processors 156

4.3 Memory Hierarchy Technology 1'60
4.3. 1 Hierarchical Memory Technology 161'?
4.3.2 Inclusion, Coherence, and Locality rs:
4.3.3 Memory Capacity Planning I65

4.4 Virtual Memory Technology .16?
4.4.1 Virtual Memory Models I6?
4.4.2 TLB, Paging, and Segmentation I69
4.4.3 Memory Replacement Policies I I-74
Smrmmrg-' I I’?
Exercises I 5'3

5. Bus. Cache. and Shared Memory
5. 1 Bus Systems I82‘

5.1.1 Backplane Bus Specification I82
5.1.2 Addressing and Timing Protocols I84
5. 1.3 Arbitration, Transaction, and Interrupt 186
5. 1.4 IEEE Futureb|.|.s+ and other Standards I89

5.2 Cache Memory Organizations I 92
5.2.1 Cache Addressing Models I 93
5.2.2 Direct Mapping and Associative Caches 195
5.2.3 Set-Associative and Sector Caches I 98
5.2.4 Cache Performance Issues 202

5.3 Shared-Memory Organizations 205
5.3.1 Interleaved Memory Organization 205
5.3.2 Bandwidth and Fault Tolerance 208
5.3.3 Memory Allocation Schemes EH?

5.4 Sequential and ‘Weak Consistency Models 213
5.4.1 Atomicity and Event Ordering 213
5.4.2 Sequential Consistency Model El 3-‘

Fr‘:-r Melirow rrrtrr-...¢-,.,..t.¢. '
x — _

5.4.3 Weak Consistency Models 213
Surrrmrrrt-' 3.?!
E.rr3'er'.s'es' 33.?

6. Pip-elining and Sup-erscalar Techniques
6. 1 Linear Pipeline Processors 22?

6.1.1 Asynchronous and Synchronous Models 2.73?
6.1.2 Clocking and Timing Control 329
6.1.3 Speedup, Efficienc-y, and Throughput 229

6.2 Nonlinear Pipeline Processors 232
6.2.1 Reservation and Latency Analysis 232
6.2.2 Collision-Free Scheduling 235
6.2.3 Pipeline Schedule Dptimization 23?

6.3 Instruction Pipeline Design 240
6.3.1 Instruction Execution Phases .240
6.3.2 Men-hanistns for Instruction Pipelining E43
15.3.3 Dynamic instruction Scheduling 24 F
15.3.4 Branch Handling Techniques 351?

6.4 Arithmetic Pipeline Design 255
6.4. 1 Computer Aritlurtetic Principles E55
6.4.2 Static Arithmetic Pipelines 25 F
15.4.3 Multiiirnctional Arithmetic Pipelines 363

6.5 Superscalar Pipeline Design J66
Srrrmrrrrry EF3
Exerer‘ses J 2'4

Part ITI Parallel and Scalable Architectures
7. Mulfiprocessors and llrlulticomputers

T.1 Multiprocessor System Interconnects 281'
'1". 1.1 Hierarchical Bus Systems .7382
7.1.2 Crossbar Switch and Multiport Memory 236
7.1.3 Multistage and Combining Networks 391'?

12 Cache Coherence and Synchronimtion Mechanisms 396
7.2.1 The Cache Coherence Problem .396
7.2.2 Snoopy Bus Protocols 299
7.2.3 Directory-Based Protocols 303
7.2.4 Hardware Synchronization Mechanisms 308

'F.3 Three Generations of Multicomputers 31.’
'i".3. 1 Design Choices in the Past 3.1.7.?

Cements

22'?

279
zsr

rs.-or o rtm- ;- _- 3,,,,,,,,,,, ._,

2.3.2 Present and Future Development 314
7.3.3 The lntel Paragon System 316

'l'.4 Message-Passing Mechanisms 313
']".4.l Message-Routing Schemes 319
T.-4.2 Deadlock Virtual Channels 32.?
11.4.3 Flow Control Strategies 324
7.4.4 Multicast Routing Algorithrrts 329

Srrrrrrrrort-‘ 334
Exercises 335

xi

8. Multivector and SIMD Computers 341
8. l Vector Processing Principles 341’

8. 1. l Vector lttstructiorn Types 341'
8.1.2 Vector-Access Memory Schemes 345
8.1.3 Early Supercomputers 34?

8.2 Multivector Multiproeessors 352
8.2.1 Perforrnance-Directed Design Rules 35.?
8.2.2 Cray Y-MP; C-90, and MPP 356
8.2.3 Fujitsu VPZGUD and VPPSUD 36.73
8.2.4 Mainframes and Minisupercornputers 365

8.3 Compound Vector Processing 3 Fl’
8.3. l Compound Vector Operations 3 F2
8.3.2 Vector Loops and Chaining _i?4
8.3.3 Multipipeline Networking 3 F3

8.4 SIMD Computer Organizations 332
8.4. l lmplementation Models 333
8.4.2 The CM-2 Architecture 385
8.4.3 The MasPar MP-1 Architecture 333

8.5 The Connection Machine CM-5 39.?
8. 5.1 A Synchronized MIMD Machine 39.?
8.5.2 The CM-5 Network Architecture 395
8.5.3 Control Processors and Processing Nodes 39?
8.5.4 lntetprocessor Communications 399
Surrrmort-' 403
E.t'r:r'e r’ses 404

9. Scalable, Multithreaded, and Dataflow Architectures 408
9. l Latency-Hiding Techniques 403

9.1.1 Shared Virtual Memory 4173
9.1.2 Prefetching Techniques 412
9. 1.3 Distributed Coherent Caches 413

Par MIGIITLH H1" l'mrJI||r_.u|r¢\ :

Jtil M CDITIBTQS

9.2

9.3

9.4

9.5

9. 1.4 Scalable Coherence Interface 415
9. 1.5 Relaxed Memory Consistency 413
Principles oflviultitlrreariing 421
9.2.1 Multithreariing Issues and Solutions 421
9.2.2 Multiple-Contest Processors 426
9.2.3 Multidimensional Architectures 43!
Fine-Grain Multicomputers 434
9.3. l Fine-Grain Parallelism 434
9.3.2 The MIT l-Machine 435
9.3.3 The Caltech Mosaic C 442
Scalable and Multithreaded Architectures 444
9.4.1 The Stanford Dash Multiprocessor 444
9.4.2 The Kendall Square Research KSR-1 448
9.4.3 The Tera Multiprocessor System 452
Dataflow and Hybrid Architectures 453
9.5.1 The Evolution ol‘Dataflow Computers 453
9.5.2 The ETIJEM-4 in Japan 461'
9.5.3 The M1T1lV[otorola *T Prototype 463
.S'rmr.rrmr__1-' 465
Exercises 4 66

Part IV Software for Parallel Programming
11). Parallel Models, Lallgtilages, and Compilers

10.1

111.2

10.3

10.4

Parallel Programming Models 4?3
10.1.1 Shared-Variable Model 4?3
10.1.2 Message-Passing Model 4??
10.1 .3 Data-Parallel Model 429'
10.1.4 Object-Oriented Model 431
10.1.5 Fturctional and Logic Models 433
Parallel Languages and Compilers 434
10.2.1 Language Features for Parallelism 485
10.2.2 Parallel Language Cortatrtrcts 43?
10.2.3 Optimizing Compilers for Parallelism 433
Dependence Analysis ofDataArrays 491
10.3.1 lteration Space and Dependence Analysis 4 91'
10.3.2 Subscript Separability and Partitioning 494
10.3.3 Categorized Dependence Tests 496
Code Optimization and Scheduling 501
10.4.1 Scalar Optimization with Basic Blocks 501

Contents

10. 5

Par MIGIITLH H1" l'mt'JI||r_.u|r¢\ _ xi i

10.4.2 Local and Global Optimizations 5115
10.4.3 Vcetorization and Parallelization Methods 503
10.4.4 Code Generation and Scheduling 514
10.4.5 Trace Scheduling Compilation 518
Loop Parallelization and Pipelining 5_-31'?
10.5.1 Loop Transformation Theory 520
10.5.2 Parallelization and Wsveti-onting 523
10.5.3 Tiling and Localization 526
10.5.4 Software Pipelining 53!
Sunrmrrrjr 533
Exercises 534

11. Parallel Program Development and Environments
11.1

11.2

11.3

11.4

11.5

Part V Instruction and System Level Parallelism

Parallel Programming Environments 53?
11.1.1 Software Tools and Environments 53?
11.1.2 Y-MP, Paragon and CM-5 Environments 54!
1 1.1.3 Visualization and PcrlonnanceTuning 543
Synchronization and Multiprocessing Modes 545
11.2.1 Principles of Synchronization 545
11.2.2 Multiprocessor Execution Modes 54 ?
11.2.3 Multitasking on Cray Iw'lultiprn-cessors 548
Shared-'v'ariahle Program Structures 552
1 1.3. 1 Locks for Protected Access 553
11.3.2 Semaphoros and Applications 556
1 1.3.3 Monitors and.-“tpplications 559
Message-Passing Program Development 563
1 1.4. 1 Distributing the Computation 56.?
11.4.2 Synchronous Message Passing 564
1 1.4.3 Asynchronous Message Passing 565
Mapping Programs onto Multicomputcrs 566
1 1.5. 1 Domain Decomposition Techniques 566
11.5.2 Control Decomposition Toohniquos 5?!)
11.5.3 Heterogeneous Processing 5?3
Sfrmrmort-' 5??
Etcrcistis 5 ?R

12. Instruction Level Parallelism
12.1
12.2

Introduction 585
Basie Design Issues 58?

rs» Mcfiruw Hl'I1r' :mrJI||r_.u||¢\

I1‘? M Comems

12.3 Problern Definition 589
12.4 Model of a Typical Processor 594
12.5 Compiler-detected Instruction Level Parallelism 5 9-6'
12.6 Dperand Forwarding 6112
12.7 Reorder Buffer 6115
12.8 Register Renaming 611?
12.9 Tomasulo‘s Algorithrn 61' 1'2

12.10 Branch Prediction 6.15
12.11 Limitations in Exploiting Instruction Level Parallelism 618
12.12 Thread Level Parallelism 623

."S'ummor_t-' 624
Exercises 626

13. Trends in Parallel Systems 629
13. l Brief Oven/icw o1'Technolog3-' 629

13.1 .1 Semiconductor Technology 630
13.1.2 Display Technology 632
13.1.3 Storage Technology 633
13.1.4 Interconnect and Network Technologies 635

13.2 Forms of Parallelism 639
13.2.1 Structural Parallelism versus Instruction loet-'el Parallelism 641')
13.2.2 A Simple Parallel Computation 642
13.2.3 Parallel Algorithms 646
13.2.4 Stream Processing 651

13.3 Case Studies 654
13.3.1 Cray Linc ofComputcr S}-‘stems 654
13.3.2 PowerPC Architecture. IBM Power? 8: Blue Gene 65 2
13.3.3 Ti1era‘s T1LE64 System 653
13.3.4 S1111 Ulh‘flSparc T2 Processor 6611'
13.3.5 AMD Optcron 662
13.3.6 lntel Pentium Processors 663

13.4 Parallel Programming Models and Languages 665
13.4.1 Parallel Programming Language Chapel 665
13.4.2 Ftrttction Libraries for Parallel Programming 669

.'i'unun.orft-' 6 ?3
Exercises 6 74

Answers to Selected Exercises 679
Bibliography 68'?
Index 7117

Foreword to the First Edition
Kai Hwang has introduced the issues in designing and using high pcrlbrmancc parallel computers at a time
when a plethora of scalable computers utilizing commodity microprocessors o'1'Tcr higher peak pcrlbrrrtance
than traditional vector supercomputers. These new machines, their operating environments including the
operating system and languages, and the programs to cfi'eetivcly utilize them are introducing more rapid
changes for researchers, builders, and uscrs than at any time in the history ofcomputer str|.|etures.

For the first time since the introduction of C-ray l vector processor in 1925, it may again be necessary to
change and evolve the programming paradigm—provided that massively parallel computers can be shown
to be usefi.|l outside of research on massive parallelism. Vector processors required modest data parallelism
and these operations have been reflected either explicitly in Fortran programs or implicitly with the need to
cvoh-'e Fortran {e.g. , Fortran 90] to build in vector operations.

So far, the main line of supcrcomputing as measured by the usage -fhours, jobs, number of programs,
program portability] has been the shared memory, vector multiprocessor as pioneered by Cray Research.
Fujitsu, IBM, Hitachi, and NEC all produce computers ofthis type. In 1993, the Cray C90 supercomputer
delivers a peak of 16 billion floating-point operations per second (a Gigaflops) with 16 processors and costs
about $30 million, providing roughly 500 floating-point operations per second per dollar.

In contrast, massively parallel computers introduced in the early 1990s are nearly all based on utilizing the
same powcrlill, Ftl SC-based, CMOS microprocessors that are used in workstations. These scalar processors
provide a peak of = 101] million floanngpoint operations per second and cost $20 thousand. providing art
order ofmagnitude more peak per dollar (5 001] flops pcr dollar}. Unfortunately, to obtain peak power requircs
large-scale problems that can rcqu ire Ute‘) operations over supers, and this significantly increases the running
time when peak power is the goal.

The multicomputcr approach interconnects computers built from microprocessors through high-
bandwidth switches that introduce latency. Programs are written in either an evolved parallel data model
utilizing Fortran or as independent prograrn.s that communicate by passing messages. The book describes
a variety of multicompulcrs including Thinking Machines‘ CM5, the first computer announced that could
reach a tcraflops using SK indcpcndcnt computer no-dcs, caeh ofwhich can deliver 128 Mflops utilizing four
32-Mflops floating-point units.

The architecture research trend is toward scalable, shared-memory multiproccssors in order to handle
general workloads ranging from technical to commercial tasks and workloads, negate the need to explicitly
pass messages for communication, and provide memory addressed accessing. KSR’s scalable multiprocessor
and Stanford's Dash prototype have proven that such machines are possible.

xvi i Foremu-ad at the ram sum»

The author startsby positing a framewoflc based on evolution that outlines the n1ain approaches to designing
oomputer structures. He covers both the scaling ofcomputets and workloads, various multiproccssors, vector
processing, lnulticomputcrs. and emerging scalable or multifltreaded multiproccssors. The final fltrec chapters
describe parallel programming techniques and discuss the host operating environment necessary to utilize
these new computers.

The book provides case studies ofboth industrial and research computers, including the lllinois Cedar,
lntel Paragon, TMC CM-2, It-'lasPar Ml , TMC CM-5, Cray Y-MP, C-90, and Cray MPP, Fujitsu VPZIDDD and
VPPSDU, SX, Stanford Dash, KSR- I , MIT J-Machine, MIT *T, ETL EM-4, Caltech Mosaic C, and Tera
Computer.

The book presents a balanced treatment ofthe theory, teelmology, architecture, and s-ol‘twane ofadvanc-ed
oomputer systems. The emphasis on parallelism, scalability, and programmalzlility makes this book rather
unique and educational.

I highly recommend Dr. I-lwang‘s timely book. I believe it will benefit many readers and he a fine reference.

C. Gordan Bell

Preface to the Second Edition
Technologies underlying computer architecturc—i-‘IE1, communication, storage, graphics and others—have
undergone tremendous advances over the last two decades. High performance computing, which was earlier
reserved forvery large research projects, has today become far more afibrdable, and the range ofapplications
of computer systems has expanded enormously. The digital revolution in communication technology, the
n-'0r!r1in'idt' nefr, and increased user awareness ofthe huge power of computers have been rrtajor contributors
to the enormous growth in computer applications.

Against the backdrop ofthis scenario, the revision of a well-accepted textbook on computer architecture
is necessary. The first edition cf.»in’t-um-ed Conipurer Arefrireetrtre by Kai llwang has been hugely successful
with teachers and student.s—the basic reason being that it explains simply and effectively the key principles
and techniques ofhigh performance computing systems.

New to this Edition
The first edition of the book provides a faithful and very usefitl record of developments in computer
architecture in its creative and formative years, beyond the original uniproccssor systems based on the von
Ncumann model. This was the exciting period when many innovative research ideas were tried out which
have had a long-lasting impact on the field. This record of developments remains valuable even today—
almost two decades later—bcca|.ise often the same innovative ideas and co ncepts reappear at a latter stage in
a different form, on a more advanced technology platibrm.

Keeping this factor in mind, the required revisions have been made in chapters l to ll of the first edition.
Some revisions are necessitated by changes i11 technology. For example, the successful Sr-oirrbfc Coherent
Inrerjirc-e (SCI) and InfiniBand standards grew out of the IEEE Futurebus+ standard, while the latter itself
failed to take off. Thus it became necessary to describe this development in the revised edition of the book,
since it has had an impact on the evolution of system interconnect technology.

The topic of In.srrrrt-Hon Level Par.n!fci'i.s'm has been discussed in a self-contained manner in the newly
introduced Chapter 12. The basic concepts and techniques of instn.|ction-level parallelism have been
described, followed by a discussion ofthe relevant system design and pcribrmance issues which often place
a practical upper limit on its successful exploitation.

The trends and advances in underlying technologies have been discussed in another newly added Chapter
I3, which also touches upon issues such as the design trade-oifs involved in multi-core processors. The
basic concepts ofpnrnflef n!gorr'rhnt.s and stream processing have been described. Th is chapter also includes
several specific ease-studies of recently introduced processors, systems, multi-core .~r_vsrems-on-tr-c-M111,
function libraries, and also the parallel programming language Chapel being developed at Cray.

_ _ rm‘ MIGIELH H“ l'm'rIq|r_.\.I|n*\ _

Jwiii '1' Preface to the Second same»

[ssues related to in.srruen'on Iev-ei'parr1Heh'sm,proees's0.r rind: speed and power consumption have defined
the recent direction of development ofproccssor design. These issues have been discussed as appropriate in
both the newly introduced chapters.

Chapter Summary has been added to all the chapters. ln the interests of usability and topical relevance,
Chapter [2 of the first edition and bibliographic notes provided at the end of each chapter in the first edition
have been moved to the website associated with the book.

To summarize, the new features are as tbllows:
I Two new chapters on Instruction Let-'ef Parallelism and T'ends' in Pamilef S_t-'.tre:n.s
I Topical inclusioris—

' Pipeiining hazards, data hazards, control hazards
~ PCI has and PCI Express
' Cluster computing, interconnection networks and clusters
' MP1, openMP, PVM, Ptlireads
' Multi-core processors
~ Impact of technology
' Stream processing
' Programming language Chapel
' Introduction to VLSI computing structures

- Updated coverage of recent processors and systems—Intel Pentium IV; UltraSparc, Blue Gene (from
IBM), Cray XT series, XT5 and XMT

- Chapters l to ll revised to better reflect the contributions of earlier systems to the development of
computer architecture

' Chapter Srirnmnrjv added in each chapter
- Strong pedagogical features:

- sen illustrations
- 114 Solved Examples
- 251 Exercise Problems
- 6 (new) Case Studies

Chapter Organization
The book is divided into five parts and 13 chapters.
Part I is on the 'l'?ieo:j_t-' q,f'ParoHeIisnr and contains chapters l to 3.

Ch ap terl on Parallel Computer Modelsdescribesthe state ofoomput ing,multiprocessors,m1.|lt ieomputers,
multivector and S-IMD computers, and PR.-‘KM and VLSI models. lt also gives an o\»'cr\-'iew of architectural
development tracks.

Chapter 2 discusses Program and Network Properties. Conditions of parallelism, program partitioning
and scheduling, program flow mechanisms and system interconnect architectures are explained in depth.

Chapter3deals with the Principles ol'Scalable Perfo rmance. Thischaptercovers the topics on performance
metrics and measures, parallel processing applications, speedup performance laws and scalability analysis
and approaches.

P.refi|cetothe5-econdEdition H - ‘i ,5,

Parr H deals with Hard“-‘are Tirehrioiogies and contains chapters 4 to 6.
Chapter 4 provides coverage on Processors and Memory Hierarchy. Advanced processor technology,

memory hierarchy technology a.nd virtual memory technology are discussed in detail.
Chapter 5 presents the concepts of Bus, Cache and Shared Memory. [t n'eat:s the topics ofbackplane bus

systems, cache memory organizations, shared memory organizations and sequential and weak consistency
models in depth.

Chapter ti is on Pipelining and Superscalar Techniques. Linear and nonlinear pipeline processors; and
instruction, arithmetic and supcrscalardesign are explained in detail.

Parr HI is on Porrrffef and Scaltrhie .+t:ehr'rec-runzs and contains chapters 7 to 9.
Multiprocessors and Multicomputers are taken up in Chapter T. Multiprocessor system imcrconnects,

cache co hercnce and synchronization mechanisms, three generations ofmulticomputcrs and message-passing
mechanisms are covered in detail.

Chapter 8 is on Multivector and SIMD Computers. This deals with voctor processing principles,
multivector multiproccssors, compound vector processing and SIMD computer organizations. An overview
ofthe Connection Machine CM-5 is also given here.

Chapter 9 is on Scalable, Multitltreaded and Dataflow Architecture. This chapter takes up the concepts of
latency-hiding teehiniques, principles ofmultithreading, tin-e~grain multicomputers, scalable, multithreaded,
datafiow and hybrid architectures.

Par! ll/discusses Sqfi'urrre_,for Parallel Programming. This part contains chapters ltl and l l.
Chapter ll] covers Parallel Models, Languages and Computers. Parallel programming models, languages

and compilers are discussed first. Dependence analysis of data arrays and code optimization and scheduling
are taken up thercafier Finally, the chapter ends with detailed section on loop parallelization and pipeli11ing.

Parallel Program Development and Environments are explained in Chapter ll. Here, parallel program
environments, synchronization and multiprocessing modes, shared-variable program structures, message-
passing program development and mapping programs onto multicomputers are dealt with in depth.

Part V deals with the lrrsnrnerion om! Qvsreni Level Prrrsnflefisnt. This part contains the two newly introduced
chapters 12 and I3.

Chapter 12 is on Instruction Level Parallelism. Design issues are brought out using the basic problem
definition in the context of a typical processor model. Specific techniques discussed include reorder buffer,
register renaming, operand forwarding, branch prediction, and Tomasulo‘s algorithm. Compiler-detected
in st n.|ction level parallelism and thread level parallelism are also explained, along with the practical limitations
encoimtered in exploiting instruction level parallelism.

Chapter I3 eluc idates the current trends in parallel systems. A brief overview of relevant semiconductor,
display, storage. interconnect and network technologies is taken up first, followed by forms of parallelism,
some relevant concepts ofparallel algorithms, and several ease studies ofcurrent processors and systems. ln
the latter part ofthe chapter, parallel programming models and the parallel programming language Chapel
are discussed.

All chapters are supplemented with exhaustive pedagogical foimres like summary, solved examples and
exercise problems. Moreover, case studies are given at relevant places.

JUI M i Preface teIhe5-ecendfiditien

‘Web Supplements
The web supplements can be accessed at h§m:.-'g.mhhe,§gm/h1v_ggg{g;Q and contain the following
material:

For Instructors
1 PcrwcrP‘oirtt slides

For Strident:

1' Sample chapter [Chapter 4)
I Additional case studies
- Web links to reference material
- Extra reading (Chapter 12 of the previous edition)

Acknowledgements
lam indebted to the following reviewers fortheir feedback and con sttuc tive suggestions, all of which wenta
long way in enriching this edition.

P K M ish ra
Bananas Hindu University
Varanasi, Uttar Pradesh

Rashid Ali
Zakir Hussain College of Engineering and
Technolog].-',AIigarh Muslim University
Aligarh, Uttar Ptadesh

Lalit Kfiswasthl
National Institute ofTechnoIogy (NIT)
Harnirpur, I-Iirnachal Pradesh

Amit Jain
Bharat Institute oi'Technology
Meerut, Uttar Ptadesh

P K Jan:
Indian School of Mines University
Dhanbad, Jharkhand

‘Ir’ S Shnnlcar Sriram
Birla Institute oi'Tcchnology, Mesra
Ranchi, Iharkhand

Mann] Kumar Mishra
Institute of Technical Education and Research
Bhuhaneswa r, Orissa

‘V R Khapli
K K Wagh College of Engineering
Nasik, Maharashtra

Anjali Yenle
Vivekanand Education Society's Institute of
Technology
Murnbai, Maharashtra

MA Shulcla
Smt Kashibai Navale College ofEng,ineerlng
Pune, Maharashtra

Jaimnn Jacob
Model Engineering College
Kochi, Kcrala

Madhu M utyam
IIT Madras
Chennai, Tamil Nadu

A P S ha nt hi
College of Engineering, Anna University
Chennai, Tamil Nadu

,,,,,,,,,,,,,,,,,,,,,,,, U,
K V Madhu Murthy N Subrahrrlanynm
College of Engineering, S V University National Institute ofTechnoIogy (NIT-W]
'firupati, Tamil Nadu Warangal, Andhra Pradesh

Sincere thanks are due to the editorial and production team at Tata lvicfiraw-Hill who have worked on the
book and specifically to Surbhi Suman, Surbhi Shukia, Anj ali Ra:-vclan and Sehini Muklrerjee.

Naresh Jotwani

Feedback

We hope that teachers and students will find the revised edition of this book useful, as they set out to explore
the fascinating world of high performance computer archiwcture. Please send your oomments, views and
suggestions to tmh.csefeedback,’iitgmail.eom, mentioning the title and author name in the subject line.
Please, also do report any piracy ofthe book spotted by you.

Preface to the First Edition
The Aims
This book provides a comprehensive study of scalable and parallel computer architectures for achieving a
proportional increase in performance with increasing system resources. System resources arc scaled by the
number of processors used, the memory capacity enlarged, the access latency tolerated, the lit} bandwidth
required, the performance level desired, etc.

Scalable architectures delivering a sustained performance arc desired in both sequential and parallel
computers. Parallel architecture has a higher potential to deliver scalable performance. The scalability varies
with different architecture-algorithm combinations. Both hardware and software issues need to be studied in
building scalable computer systems.

It is my intent to put the reader in a position to design scalable computer systems. Scalability is defined
in a broader sense to reflect the interplay among arelritoettrres, algorithrns, software, and environments. The
integration between hardware and software is emphasised for building cost-effective computers.

We should explore cutti ng -edge technologies in scalable parallel computing. Systems architecture is thus
studied with generality, scalability, programmability, and pcrformability in mind.

Since high technology changes so rapidly, I have presented the material in a generic manner, unbiased
toward particular machine implementations. Representative processors and systems are presented only if
they contain important features which may last into the future.

Every author faces the same dilemma in writing a techno logy-dependent book which may become obsolete
quickly. To cope with the problem, frequent updates with newer editions become a necessity, and I plan to
make revisions every few years in the future.

The Contents
This book consists oftwclve chapters divided into fo|.u' parts covering theory-‘, rrehnofogv, ra'ehircr-hire, and
.-rojht-‘tire aspects of parallel and vector computers as shown in the flowchart.

Part I prcsentsprinciples ofparallel processing in three chapters. These include parallel computer models,
scalability analysis, theory of parallelism, data dependenees, program flow nlechanisms, network topologies,
benchmark measures, performance laws, and program behaviors. These chapters lay the necessary foundations
for readers to study hardware and software in subsequent chapters.

In Part ll, three chapters are devoted to studying advanced processors, cache and memory technology,
and pipelining techniques. Technological bases touched include RISC, C ISC, supcrscalar, supcrpipelining,
and VLIW architectures. Shared memory, consistency models, cache architecture, and coherence protocols
are studied.

uh: ii Preface w the Fm Edition

Eleclric-al Engineering Track E Computer Science Track

Chapter 1: Chapter 2:
Machine Models Programs. Networks

Pad I:
Cha.p‘l1er 3; '"\==W

Perlrerrrlance.
Scalability

.......
Ch ple 4: =-=c~*=>

Part ll: 2
Technology C

5 Ch
Bus Cache Pip-elm

MB Supere

...... .. E

Chapter 7: Chapter 8:
Multipmeeseurs, Multivector.
Mullloompumrs SIMD Machines

E
Perl lll: < i
Ar|=l'Iite-clures E

Chapter 9:
Scalable.

Multllhreadacl
- ‘ _ - _ _ - Architectures iEE9pflq-H5]

E Chapter 10:
_ : Programming

{EE op-uenel) 5 Models, Gernpllere
E Part IV:
E Soltware

cheprer 11: Chapter 12;
g Parallel Program Parallel
E Development UNIX

Pipclining is cxtcnsivcly applicd in nwmnry-access, instruction cxccutirm, scalar, supcrscalar, and vcctnr
arithmetic opcratirms. Instruction prclbtch, data forwarding, :-znfiwarc intcrlocking, scnnzbnarding, branch
handling, and nut-of-mtlcr issur: and completion an: studied for designing advanced pmccssurs.

,=,,,,,,,,,,,,.m,E.,l,,,,, _ M
In Part Ill, three chapters are provided to cover shared-memory multiproccssors, vector and SIMD

supercomputers, message-passing multicomputers, and scalable or multithreaded architectures. Sinoc we
emphasize scalable architectures, special treatment is given to the [EEE Futurebus+ standards, multistage
networlts, cache coherence, latmcy tolerance, fast synchronization, and hierarchical and multidimensional
structures ibr building shared-memory systems.

lviass ive parallelism is addressed in message-passing systems as well as in synchronous SIMD computers.
Shared virtual memory and multithreaded architectures are the important topics, in addition to compound
vector processing on pipclined supercomputers and coord irrated data parallelism on the CM-5.

Part IV consists of three chapters dealing with parallel programming models, multiprocessor LFNLX,
software environments, and compiler development for parallelfvector computers. Both shared variables
and message-passing schemes are studied For interprocessor commtmications. Languages, compilers, and
software tools for program and benchmark development and performance monitoring are studied.

Among various UNIX extensions, we discuss master-slave, floating-executive, and multithreaded kernels
for resource management in a network of heterogeneous computer systems. The Machr'OS and OSFE1 are
studied as example systems.

This book has been completely newly written based on recent material. The contents are rather diFI'crent
from my earlier book coauthored with Dr. Faye Briggs in 1983. The two books, separated by 10 years, have
very little in common.

The Audience
The material included in this test is an outgrowth of two graduate-les-'el courses: Computer Systems
Architecture (_EE 55?) a.nd Parallel Processing (EE 65?) that l have taught at the University of Southern
California, the University of Minnesota {Spring 1939], and National Taiwan University -[Fall i991) during
the last eight years.

The book can be adopted as a textbook in senior- or graduate-level courses offered by Computer Science
(CS), Computer Engineering (CE), Electrical Engineering (EE}, or Computational Science programs. The
flowchart guides the students and instructors in reading this book.

The first four chapters should be taught to all disciplines. The three technology chapters are necessary
tor EE and CE snudents. The three architecture chapters. can be selectively taught to CE and CS students,
depending on the instructor's interest and the computing facilities available to teach the course. The three
soflware chapters are written for CS students and are optional to EE students.

Five course outlines are suggested below for different audiences. The first three outlines are for 45-hour,
one-semester courses. The last two outlines are for two-quarter courses in a sequence.

(1) For a Computer Science course on P'ar'r:rHeI Computers and Pmgmmmfng, the minimum coverage
should include Chapters 1-4, 7, and 9-12.

(2) For an exclusive Electrical Engineering course on Advent-ed Computer Arefrireerure. the minimtun
coverage should include Chapters l 9.

(3) For a joint CS and EE course on Parallel Pmee.ssr'ng Computer .5‘_1ts1terrrs, the minimum coverage should
include Chapters I-4 and ‘I-12.

(4) Chapters I through 6 can he taught to a senior or first-year graduate course under the title Comptrter
Archer-crnre in one quarter (10 weeltsf 30 hours).

_ War MIGIIILH H“ I'ml!I;|(1rlnr\

Jotvi i ' Pmpce to the First Editim

(5) Chapters ‘F through 12 can be taught to a graduate course on Parallel Computer .~trt-hit-eerur~e and
Pmgrnrnmirtg in a one-quarter course with course ('4) as the prerequisite.

Instructors may w'ish to include some advanced research topics treated in Sections l.-4, 2.3, 3.4, 5.4, 5.2, 6.5,
I2. 13. 8.3.10.4. I 1.1, 12.5, and selected sections from Chapter 9 in each of the above Course options. The
architecture chapters present four different families of commercially available computers. lnstructors may
choose to teach a subset ofthese machine families based on the accessibility ofcorresponding machines on
campus orvia a public network. Students are encouraged to learn through hands-on programming experience
on parallel computers.

A Sol'un'on.s .-l-tinnrmi is available to instn.|ctors only lrom the Computer Science Editor, College Division,
Metiraw-I-till Ine., 122] Avenue of the Americas, New York, NY 10020. Answers to a few selected exercise
problems are given at the end ofthe book.

The Prerequisites
Tl1is is an advanced text on computer architecture and parallel programming. The reader should have been
exposed to some basic computer organization and programming courses at the undergraduate level. Some
of the required background material can be found in Computer ztrehireentn-.' .4 Quantitative .-ipproneh by
John Hennessy and David Patterson (Morgan Kaufrnan, 1990) or in rldrrchine mm’ A.rst-ntblv Lcmgitilge’
Pmgramnting by Arthur Gill {Prentice-Hall, 1978].

Students should have some knowledge and experience in logic design, computer hardware, system
operations, assembly languages, and Fortran or C programming. Because of the emphasis on scalable
architectures and the exploitation of parallelism in practical applications, readers will find it useful to have
some background in probability, discrete mathematics, matrix algebra, and optimization theory.

Acknowledgments
I have tried to identify all sources of information in the bibliographic notes. .-“ts the subject area evoh-‘es
rapidly, omissions are almost unavoidable. l apologize to those whose valuable work has not been inc ludod in
this edition. lam responsible lbr all omissions and for any errors found in the book. Readers are encouraged
to contact me directly regarding error correction or suggestions for lilture editions.

The writing ofthis book was inspired, taught, or assisted by numerous scholars or specialists working in
the area. l would like to thank each ofthem for intellectual exchanges, valuable suggestions, critical reviews,
and technical assistance.

First ofall, l want to thank a number of my fomter and current Ph.D. students. Hwang-Cheng Wang has
assisted me in producing the entire manuscript in LATEX. Besides, he has coauthored the Solutions Manual
with Jung-Gen Wu, who visited USC during 1992. Weihua Mao has drawn almost all the figure illustrations
using Franielvlaker, based on my original sketches. l want to thankD.K. Panda, Joydeep Ghosh,Al1n1eri Louri,
Dongseung Kim, Zhi-Wei Xu_ Sugih Jamin, Chien-Ming Cheng. Santosh Rao. Shisheng Shang, Jih-Cheng
Liu, Scott Toborg, Stanley Wang, and Myungho Lee for their assistance in collecting material, proofreading,
and contributing some of the homework problems. The errata from Teerapon Iungwiwattanaporn were also
useful. The lndex was compiled by H.C. ‘Wang and .l.G. Wu jointly.

Prefi1cetotheFustEd\tnm- “ - '1' ma,“

I want to thank Gordon Bell for sharing his insights on supcreomputing with me and iiir writing the
Foreword to motivate my readers. John Hcnncssy and Anoop Gupta provided the Dash multiprocessor-
related results from Stanford University. Charles S-eitz has taught me through his work on Cosmic Cube,
Mosaic, and multicomputers. From MIT, l received valuable inputs fiom the works of Charles Leiserson,
William Dally, Anant AgarwaL and Rishiyur Nikhil. From University of Illinois, I received the Cedar and
Perfect benchmark information from Pen Yew.

Jack Dongarra of the University of Tennessee provided me the Linpack benchmark results. James Smith
of Cray Research provided up-to-date inlhnnation on the C90 clusters and on the L‘-ray IMPP. Ken Mirna
provided the information on Fujitsu VPPSOII. Lionel Ni of Michigan State University helped me in the areas
of pertbrmanee laws and adaptive worrnhole routing. Justin Ratter provided inlbrmation on the Intel Delta
and Paragon systerns. Burton Smith provided infomtation on the Tera computer development.

Hamid Stone and John Hayes suggested corrections and ways to improve the presentation. H.C. Torng of
Comell University, Andrew Chien of University oflllinois, and Daniel Tobak ofGeorgc-Mason University
madc useful suggestions. Among my colleagues at the University of Southem Califomia, lean-Luc Gaudiot,
Michel Dubois, Rafael Saavedra, Monte Ung, and ‘v'iktor Ptasanna have made concrete suggestions to
improve the manuscript. I appreciate the careful proofreading of an earlier version of the manuscript by D.K.
Panda of the Ohio State University. The inputs fi'om Vipin Kumar of the University of Minnesota, Xian-He
Sun ofNASA Langley Research Center, and Alok Choudhary of Syracuse University are also appreciated.

In addition to the above individuals, my understanding on computer architecture and parallel processing
has been influenced by the works ofDavid Kuclr, Ken Kennedy, Jack Dennis, Michael Flynn, Arvind, T.C.
Chen, Wolfgang Giloi, Harry Jordan, H.T. Kong, John Rice, H..I. Siegel, Allan Gottlieb, Philips Treleaven,
Faye Briggs, Peter Kogge, Steve Chen, Ben Wah, Edward Davidson, Alvin Despain, James Goodman, Robert
Keller, Duncan Lawrie. C-.V. Rttmamoorthy, Sartaj Sahni, Jean-Loup Beer, Milos Ercegovac, Doug DeCrroot,
Janak Patel, Dharma Agrawal, Lenart Johnsson, John Crustafson, Tse- You Feng, Herbert Sehevvetman, and
Ken Batcher. I want to thank all of them for sharing their vast knowledge with me.

Iwant to acknowledge the research support Ihave received from the National Science Foundation, the
Ofiiee of Naval Research. the Air Force Crffice of Scientific Research, International Business Machines, Intel
Corporation, Alliant Computer Systems, and American Telephone and Telegraph Laboratories.

Technical exchanges with the Electrotechnical Laboratory {ETLI in Japan, the German National Center
for Computer Research {GMDI in Germany, and the Industrial Technoktgy Research Institute (ITRII in
Taiwan are always rewarding experiences to the author.

I appreciate the staif and facility support provided by purdue University, the Univcrsity' of Southern
Califomia, the University of Minnesota, the University ofTokyo, National Taiwan University, and Academia
Sinica during the past twenty years. In particular, I appreciate the encouragcmem and professional advices
received from Henry Yang, Lotti Zadeh, Richard Karp, George Bekey. Authur Gill, Ben Coates Melvin
Brcuer, Jerry Mendel, Len Silverman, Solomon Golomb, and Irving Reed over the years.

Excellent work by the McGraw-Hill editorial and production staifhas greatly improved the readability of
tl1is book. In particular, I want to thank Eric Munson for his continuous sponsorship of my book projects. I
appreciate Joe Murphy and his coworkers for excellent copy editing and production jobs. Suggestions from
reviewers listed below have greatly helped improve the contents and presentation.

| Fr-1-M|:Gm'w HJ'lft'|--r.-;|.---m-~ _
survili ' i Pneficetethe HrstEditicm

The book was completed at the expense of cutting bark many aspects of my life, spending many long
hours, evenings, and weekends in soclusion during the last several years. I appreciate the patience and
understanding of my friends, my student and my family members during those tense periods. Finally, the
book has been completed and I hope you enjoy reading it.

Kai I-lwang
Reviewers:

Andrew A. Chien, Univer.s'iI__\-' afIHinm's,'
David Culler, Lrrliversitjv of Cn!g]|*iJrnr1I_ Berke!ey_,'
Ratan K. Guha, L-"niversr'{_v qf Central F!rJrr'.:i1_,'
John P. Hayes, Unr'1ersit}'0fe1wfichigan,'
John l-Icnnessy, .STarf'Jm' Un iw.'rsi1'__1-‘,'
Dhamir Mannai, N0r£heas!ar'n Universilfw
Michael Quinn, Oregon Stare Uni\-'ersr'ty_,'
H. J. Siegel, Purdue L-"ni1»'ersi{_v.'
Daniel Tabak, Ge0rge~.-Mason Universr'r}-'.

n» alccmv Hillfiompwim "

Part I
Theory of Parallelism

Chapter 1
Parallel Computer Models

Chapter 2
Program and Network Properties

Chapter 3

Principles of Scalable Performance

i
Summary

This theoreti-ml part presents computer models. program behavior. architectural choices. scalability.
programmability. and performance issues related to parallel processing. These topics form the
foundations for designing high-performance computers and for the development of supporting software
and applications.

Physical computers modeled include shared-memory multiprocessors. mssage-passing multicomput-
ers.vector supercomputers.synchronous processor arrays. and massively parallel processors.The theo-
retical parallel random-access madwine (PRAl"'l} model is also presented. Differences between the PRAM
model and physical architectural models are discussed. The VLSI complexity model is presented for
implementing parallel algorithms directly in integrated circuits.

Network design principles and parallel program characteristics are introduced. These include
dependence theory. computing granularity. communication latency: program flow mechanisms. network
properties. performance laws. and scalability studies.This evolving theory of parallelism consolidates our
understanding of parallel computers. from abstract models to hardware machines. software systems. and
performance evaluation.

PM 1'l|¢G-NH-‘ Hfllfidrflfleflflti

— I _

Parallel Computer Models
Dyer the last t.wo decades. computer and communication technologies have literally transformed the
world we live in. Parallel processing has emerged as the key enabling technology in modern computers.
driven by the ever-incrsing demand for higher performance. lower costs. and sustained productivity in
real-life applications.

Parallelism appears in various forms. such as lookahead. pipelining. vectorization. concurrency.
simultaneity. data parallelism. partitioning. interleaving. overlapping. multiplicity. replication. time sharing.
space sharing. multitasking. mulriprogramming. multithreading. and distributed computing at different
processing levels.

in this chapter. we model physical architectures of parallel computers. vector supercomputers.
multiprocessors. multicomputers. and massively parallel processors.Theoretical machine models are also
presented. including the parallel random-access 1THCl"tlHfl- (PRAl""b) and the complexity model of\"'LSl
(very large-scale integration) circulrs..flu-chitecuiral development tracks are identified with case scudies
in the book. Hardware and software subsystems are introduced to pave the way for detailed studies in
subsequent chapters.

THE STATE OF COMPUTING

1 Modem computers arc equipped with powerlill hardware facilities driven by extensive
software packages. To assess state-of-the-art computing, we first review historical milestones

in the development of computers. Then we take a grand tour of the crucial hartlwarc and software elements
built into modern computer systems. We then examine the evolutional relations in milestone architectural
development. Basic hardware and software factors are identified in analyzing the perfonnance of computers.

1.1.1 Computer Development Milestones
Prior to I945, computers were made with mechanical or electromechanical pans. The earliest mechanical
computer can be traced hack to 5110 BC in the ihrm of the abacus used in China. The abacus is manually
operated to perform decimal arithmetic with carry pmpagation digit by digit.

Blaise Pascal built a mechanical adder.~"suhtract'or in France in 1642. Charles Babbage desig ned a diffcrcnoe
engine in England for polynomial evaluation in 182?. Konrad Zusc built the first binary mechanical computer
in Germany in 1941. Howard Aiken proposed the very first electromechanical decimal computer, which was
built as the Harvard Mark I by IBM in 1944. Both Zu-;c's and Aikcn‘s machines were designed for general-
pu rpose computations.

The MIGIITLH HI" l'mrJI||r_.u|r¢\ :

4 i Advanced Colnpuoerfirehitecru-.re

Obviously, the fact that computing and communication were carried out with moving mechanical parts
greatly limited the computing speed and reliability' ofmechanical co mputers. Modern computers were marked
by the introduction of electronic components. The moving parts in mechanical computers were replaced by
high-mobility electrons in electronic computers. lnibrmation transmission by mechanical gears or levers was
replaced by electric signals traveling almost at the speed of light.

C/nmputer Generation: Over the past several doeades, electronic computers have gone through roughly
five generations of development. Table l.l provides s summary ofthe five generations ofelectronic computer
development. Each of the first three generations lasted about 10 years. The fourth generation covered a time
span of 15 years. The fifili generation today has processors and memory devices with more than l billion
transistors on a single silicon chip.

The division ofgcnerations is marked primarily by major changes in hardware and software technologies.
The entries in Table l.l indicate the new hardware and soflware features introduced with each generation.
Most i'-eatures introduced in earlier generations have been passed to later generations.

Table 1.1 Five Generations o]"Eloct.ronlc Cornputers

Gem.'rer.rir.-n Ter.'lrno.lr.-g;' anal
A .n'.'lri tor.‘mn-

Sr'i,f.l'u'ane' and
.-"lpp!ieerrirms

R€pm.~a'=' mi!J‘.l'

.§}'.~r.lerm
92

First
{I945 54}

Vacuum tubes and relay
memories, CPU driven by
PC and accumulator,
fined-point arithmetic.

Maehinefassembly languages,
single user, no subroutine
linkage,
programmed l.I'O using CPU.

EN IAC,
Princeton IAS,
IBM 71]].

Second
(I955 64}

Discrete transistors and
core fllflfflflfllfi,
floating-point arithmetic,
l-"G processors, muitipiexed
memory access.

IILL used with compilers,
subroutine libraries, batch
processing monitor.

IBM T090,
CDC I-I5-D4,

LARCUnivac

Third
(_ I965 T4}

Integrated circuits (SS1!-
MSI}, microprograrnrning,
pipelining, cache, and
iookahead processors.

Mutt iprogram ming and time-
sharing US, multiuser applications.

IBM 315-l1"3TD,
cue osco,
Tl-rise.
PDP-B.

Fourth
-[I975 90}

LSINLSI and semiconductor
memory, multiproccssors,
vector snpercompnw,
multicomputers.

Multiprocessor U S, languages-._
compilers, and environments
tor parallel processing.

VAX 9000,
Cray X-MP,
IBM 3090,
BEN TCZDIIHJ.

Filth
[I99] present)

Advanced‘VLSl processors,
memory, and switches,
high-density packaging,
scalable architectures.

Sup-ersealar systems
on a chip, tmnisively parallel
processing, grand challenge
applications, heterogeneous
processing.

See Tables I.
and Chapter

3..
I3.

Progr-as in Hardwun: As far as hardware technology is concerned, the first generation (I945 I954} used
vacu|.n"n tubes and relay memories interconnected by insulated wires. The second generation (1955-1964)

HM‘ If TILE I'm-I!I;|r1rIit\

Rrreilel Cnrnprrter Models _ M 5

was marked by the use of discrete transistors, diodes, and magnetic ferrite cores, interconnected by printed
circuits.

The third generation -[i 1965-1974) began to use irrregrritcri circuits {IC s) for both logic and memory in
.srmH-scale or mcdirrrn-scale irrregruzirion {SSI or MSI) and multilayered printed circuits. The fourth generation
(l 974-1991] usod l'rrr'ge-scale or 1-'cr'__\-‘large-sem"e irrrcgrariorr (LSI or ‘s-‘LS1). Semiconductor memory replaced
core memory as computers movcd from the third to the fourth generation.

The fifth generation (l99I-present) is highlighted by the use of high-density and high-speed processor
and memory chips based on advanced VLSI ncchoology. For example, 64-bit Crl-Iz range processors are now
available on a single chip with over one billion transistors.

The first Generation From the architectural and software points of view, first generation computers
were built with a single eerrrroi proeessirrg rm ir (CPU) which performed serial fixed-point arithmetic using a
program co1.mter,branch instructions, and an accumulator. The CPU must be involved in all memory access
and irrprrrr'r1rr.§rrrrr{:lr'Cl] operations. Machine or assembly languages were used.

Representative systems include the ENI.r*iC (Electronic Numerical Integrator and Calculator} built at the
Moore School of the University of Pennsylvania in 195'[l;the [AS [Institute ibrhdvaneed Studies) computer
ba_sed on a design proposed by John von Neumann, Arthur Burks, and Herman Goldstinc at Princeton in
1946; and the IBM Till, the first electronic stored-program commercial computer built by IBM in l953.
S-ubroutinc linkage was not implemented in early computers.

The Second Generation Index registers, floating-point arithmetic. multiplexed memory. and U0
processors were introduced with second-generation computers. High iei-‘oi lringrrriges {l~lLLs], such as Fortran,
Algol, and Cobol, were introduced along with compilers, subroutine libraries, and batch proccs sing monitors.
Register transfer language was developed by Irving Reed {I 957) for systematic design of digital computers.

Representative systems include the IBM 7030 (the Stretch computer) featining instruction lookahcad and
error-correcting memories built in 1962, the Univac LARC [Livennore Atomic Research Computer} built in
1959, and the CDC 1604 built in the 1960s.

The Third Genernti-on The third generation was represented by the lBMr‘3tii'i—3?O Series, the CDC
ofitllifitilltl Series, Texas lnstrurnents ASC {Advanced Scientific Computer), and Digital Equipmenfs PDP-8
Series from the mizl-I9-fifls to the mid l9'F'l]s.

Microprogrammed control became popular with this generation. Pipelining and cache memory were
introduced to close |.|p the specd gap between the CPU and main memory. The ideaofmultiprogramming was
implemented to interleave C PU and i-"O activities across multiple user programs. This lcd to the development
of time-sharing opcrrifing .s_y.n'cms {OS} using virtual memory with greater sharing or multiplexing of
resources.

The Fourth Generation Parallel computers in various architectures appeared in the fourth generation of
computers using shared or distributed memory or optional vector hardware. Multiprocessing OS, special
languages, and compilers were developed for parallelism. Sofhvare tools and environments were created for
parallel processing or distributed computing.

Representative systems include the VAX 9000, Cray X-MP, IBMr'3(l9D VF, BBN TC-2000, etc. During
these 15 years (l9'F5—l990), the technology ofparallel processing gradually became mature and entered the
production mainstream.

E i Advanced Cmnpimerfiichitecture

The Fifth Generation "These systems emphasise supersealar processors. cluster computers, and rnosrii-'e'I_1-'
por.oHer' processing ('M'PF). Scalable and latency tolerant architectures are being adopted in MPP systems
toting advanced VLSI tectmologics, high-density packaging, a11d optical technologies.

IIFifih-generation computers achieved Terafiops (I0 ' floating-point operations per second) performance
by the mid-19905, and have now crossed the Petaflop (IOU floating point operations per sooond] range.
Ueremgemous processing is emerging to solve lalgoseale problems using a network of heterogeneous
computers. Early fifth-generation MPP systems were represented by several projects at Fujitsu (VTP500),
Cray Research [MPP), Thinking Machines Corporation [the CM-5}, and Intel (the Paragon]. For present-day
examples ofadvanced processors and systems; Chapter 13.

1.1.1 Elements of Modem Computers
Hardware. software, and programming elements of a modem computer system are briefly introduced below
in the context of parallel processing.

Computing Problem: It has been long recognized that the concept of computer architecture is no longer
rest rictod to the st ructureofthe bare machine hardware. A modern computer is an integrated system consisting
of machine hardware, an instruction set, system software, application programs, and user interfaces. These
system elements are depicted in Fig. 1. 1. The use ofa computer isdriven by real-life problemsdemanding cost
effective solutions. Depending on the nature of the problems, the soh.|tions may require different computing
resources.

"W19
“ms Operatl ng

System
PS’

5H%
A‘ "ms Manning Hardwareand DataStrum Arelitoeture

Pro-gramrntng

Bmdlng Applications Software[com pits, toad]
High-level
Languages

Performance
Evsl uatlon

Fig. 1.1 Elements ofa modern oon1pu1:e1- system

For numerical problems in science and technology, the solutions demand complex mathematical
formulations and intensive integer or floating-point computations. For alphanumerieal problems in business

F?» if run! I'nrl'J|||;1rlM'\
lh|'o0lelCornpu'te|'.fl-llodels i 1

and government. the solutions demand efficient transaction processing, large database management, and
information retrieval operation s.

For artificial intelligence [Al] problems, the solutions demand logic inferences and symbolic manipulations.
These computing problems have been labeled rrurrrericof eompnrirrg. rrtrnsoerion pro:-tosing, and logical
reasoning. S-omc complex problems may demand a combination ofthesc processing modes.

Algorithm: and Dam Strueturm Special algorithms and data structures are needed to specify the
computations and communications involved in computing problems. Most numerical algorithms are
deterministic, using regularly structured data. Symbolic processing may use heuristics or nondctcnninistic
searches over large knowledge bases.

Problem formulation and the development ofparallcl algorithmsoficn require interdisciplinary interactions
among thcoreticians, esperimcntalists, and computer programmers. There arc many books dealing with the
design and map ping ofalgorithms or heuristics onto parallel computers. ln this book, we are more conccmed
about the resources mapping problem than about the design and analysis ofparallcl algorithms.

Hardware Resource: The system architecture ofa computer is represented by three nested circles on the
right in Fig. 1 .l ..-it modem computer system demonstrates its power through coordinated cfiorts by hardware
resotnccs, an operating system, and application software. Processors, memory, and peripheral devices form
the hardware core of a computer system. We will study instruction-set processors, memory organization,
muhiproccssors, supercomputers, multicomputers, and massively parallel computers.

Special hardware inte rfams are oflen built into l-“O devices such as display terminals, workstations, optical
page scanners, magnetic ink character recognizers, modems. network adaptors, voice data entry, printers,
and plotters. These peripherals are connected to main frame computers directly or through local or wide-area
networks.

In addition, sofiware interface programs are needed. These software interfaces include file transfer
systems, editors, word processors, device drivers, interrupt handlers, network communication programs, etc.
These programs greatly facilitate the portability of user programs on difierent machine architectures.

Operating System An effective operating system manages the allocation and deallocation of resources
during the execution ofuser programs. Beyond the OS, application software must be developed to benefit the
users. Standard bench mark programs are needed for performance evaluation.

Mapping is a bidirectional process matching algorithmic structure with hardware architecture, and vice
versa. Efficient mapping will benefit the programmer and produce belier source codes. The mapping of
algorithmic and data structures onto the machine architecture includes processor scheduling, memory maps,
interproccssorcommunications, etc. These activities are usually architecture-dependent.

Optimal mappings are sought for various computer architectures. The implementation of these mappings
relies on efficient compiler and operating system support. Parallelism can be exploited at algorithm design
time, at program time, at compile time, and at run time. Techniques for exploiting parallelism at these levels
fortn the core of parallel processing technology.

System S-ofhvure Support Software support is needed for the development of etficient programs in high-
lcvcl languages. The source code written in a I-[LL must be first translated into object code by an optimizing
compiler. The cornpifer assigns variables to registers or to memory words, and generates machine operations
corresponding to HLL operators. to produce machine code which can he recognized by the machine hardware.
A loader is used to initiate the program execution through the CIS kcmcl.

re» Meemw um r-...=-mm. '
B i _ Admrrcad Compunerfirchitectn-.re

Resource binding demands the use of the compiler, assembler, loader. and OS kernel to commit physical
machine resources to program execution. The effectiveness of this process determines the eflieieney
of hardware utilization and the programmability of the computer. Today, programming parallelism is
still difiicult for most programmers due to the fact that existing languages were originally developed for
sequential computers. Programmers arc sometimes forced to program hardware-dependent f-eatures instead of
programming parallelism in a generic and portable w'ay. Ideally, we need to develop a parallel programming
environment with architecturc-independent languages, compilers, and software tools.

To develop a parallel language, we aim for etfieiency in its implementation, portability across different
machines, compatibility with existing sequential languages, expressiveness of parallelism, and ease of
programming. One can attempt a new language approach or try to extend existing sequential languages
gradually. A new language approach has the advantage of using explicit high-level constructs for specifying
parallelism. However, new languages are often incompatible with existing languages and require new
compilers or new passes to existing compilers. Most systems choose the language extension approach; one
way to achieve this is by providing appropriate function libraries.

Compiler Support There are three compiler upgrade approaches: preproecssor, preer:|mpii'er, and
pnrnifctfrbing compiler. A prcprocessor uses a sequential compiler and a low-level library of the target
computer to implement high-level parallel constructs. The precompiler approach requires some program flow
analysis, dependence checking, and liniitod optimizations towanl parallelism detection. The third approach
demands a fully developed parallelizing or vectorizing compiler which can automatically detect parallelism
in source code and transform sequential codes into parallel constnrcts. These approaches will be studied in
Chapter ltl.

The etficieucy of the binding process depends on the effectiveness of the preprocessor, the precompiler,
the parallelizing compiler, the loader, and the OS support. Due to unpredictable program behavior, none ofthe
existing compilers can be considered fully automatic or lirlly intelligent in detecting all types of parallelism.
Very often eonrjriifer dircerit-'e.s' are inserted into the source code to help the compiler do a better job. Users
may interact with the compiler to restr|.|cture the programs. This has been proven uselirl in enhancing the
performance of parallel computers.

1.1.3 Evolution ofCompui:erAr'chitecturie
The study of computer architecture involves both hardware organization and programrrtingfsoftware
requirements. As se-en by an assembly language programmer, computer architecture is abstracted by its
instruction set, which includes opcode (operation codes], addressing modes, registers, virtual memory, etc.

From the hardware implementation point of view, the abstract machine is organized with CPUs, caches,
buses, microcode, pipelines, physical memory, etc. Therefore, the study ofarchitecture covers both instruction-
set architectttres and machine implementation organizations.

Over the past decades, computer architecture has gone through cvolutional rather than revolutional
changes. Sustaining fcaturcs arc those that were proven performance delivercrs. As depicted in Fig. 1.2, we
started with the von Neumann architecture built as a sequential machine executing scalar data . The sequential
computer was improved from hit-serial to word—parallel operations, and from fixed—point to floating point
operations. The von Neumann architccture is slow due to sequential execution of instructions in programs.

l'h1'Ml.'I;Ifl\lI' HI-l'l_lNf.l]l(1|llf\

BuJciielCm1-pu'ne|'Medeis '.I—I. 9

Legends:
|l'E: Instruction Fetch and Execute.
SIMD: Sings Instruction stream and
Multlplo Data strmms

“finial MIMD: Multiple Instruction straarls
snd Multiple Data streams

E
i-itQ

st

es"s
5

tr

E'%

Functional
Parall rn

Mu ltlpla
Func Units Pipeline

y-to oglstor-to
- rnory -Register

Associative PTO-09$ Muitleo Mulll
Processor Arte!l'

Massively parslte-l
processors {M PP)

QEE
Fig. 1.‘! Tree showing arehlneerural evolution from sequential scalar composers no veeror processors and

parallel computers

Loulalhaeld, Paruilelism, and Pijllelining Lookahead techniques were introduced to prefetch instructions
in order to overlap HE (instnlction fctchidecode and execution] operations and to enable functional
parallelism. Ftmctional parallelism was supported by two approaches: Cine is to use multiple ftmctional units
simultaneously, and the other is to practice pipelining at va.rious processing levels.

The latter includespipelined instruction execution, pipelinod arithmetic computation s, and memory-access
operations. Pipelining has proven especially attractive in performing identical operations repeatedly over
vector data strings. Vector operations were originally carried out implicitly by sofiwarc-controlled looping
using scalar pipeline processors.

Flynn's Clnuiflcntlon Michael Flynn ('1 9‘i2] introduced a classification of various computer architectures
based on notions of instruction and data stream s. As illustrated in Fig. 1.3a, conventional sequ-cntial machines
are called SISD -['.s'ingie inslrnerion stream over rt singie rinrn stream] computers. Vector computers are
equipped with scalar and vector hardware or appear as SIMD (singie insnruerion stream over nrrlirr}-Jie ainm
snvsnnrsl machines {_Fig. l.3b]. Parallel computers are reserved for MIMD -[hnuiripie insrrnerion .-rrmnms over
naiiripie dam snennts) machines.

An MISD {rnuiripie instruction sl‘renrn.s' nnrfn single dnrn .s'rrenrn) machine is modeled in Fig. l.3d. The
same data stream flows through a linear array of processors executing different instruction streams. This

l'h1'Ml.'I;Ifl\lI' HI" l'n¢r.q|r_.u||r\

IO i Admirrced Cempmerfirehitecurre

architecture is also ltnown as systolic arr.n_]-‘s (Kttng and Leiserson, I978] For pipelinod execution ofspeeifie
algorithms.

LMusesDP-13
IS I - 5°“ls |g I I loaded

1 Program loaded
from host

I I from
|5 133 D5 D5 hostH0

[an 5'50 unlpmcefim archnecmm [hj SIMD architecture [with dstributed mernory)

CU = Control Unit |

= |rQ CU PUPU Processing Unit is D5
MU = Memory Unit I I Sh;-Gd I

IS = Instruction Stream : : Memory :
D3 = Data Stream Ir‘-0 IS D5C PUPE = Processing Element
LM = Locai lI.|lfl'i10i']|'

[c] MIMD architecture [with shared memory]

IS ul IS cu, cu: ' ' -

Memory ls IS '5
[programmatn%aa~ H1

US H
U0

[ti] MISD architecture [the systolic array)

Fig. 1.3 Flynn‘; dassiilcadon of computer ardtinecmres [Derived from Hicha-ei Flynn, 19??!)

Ofthe fourmachine models, most parallel computers built in thepast assumed the MIMD model forgene1al-
purposecomputations. The SIMD and MISD models are more suitable for special-purpose computations. For
this reason, MIMD is the most popular model, SIMD next, and MISD the least popular model being applied
in commercial machines.

Parallel! Wet-or Computer: Intrinsic parallel computers are those that execute programs in MIMD mode.
There ate two major classes of parallel computers, namely, s.horeo‘~memorj-* m1rIIipr0ees.s0r.t and message-
prrssing nwlfieomprrrers. The major distinction between multiproccssors and multicomputers lies in memory
sharing and the mechanisms used for interprocessor communication.

War If J11!!!‘ r'mx-;|umn

Rrroitlel Cornpu'tae|'Med-els i i | |

The processors in a multiprocessor system communicate with each other through shared \-'.nri.trbl'es in a
common memory. Each computer node in a multicomputer system has a local memory, unshared with other
nodes. lnterprocessor communication is done through rrressngc prrssirrg among the nodes.

Explicit vector instructiorts were introduced with the appearance of veemr processors. A voctorprocessor
is equipped with multiple vector pipelines that can be concurrently used under hardware or firmware control.
There are two iamilies ofpipelincd vector processors:

Merrrorjt=-to-rrrerrrrrrjt-' architecture supports the pipelinod flow of vector operands directly from the memory
to pipelines and then back to the memory. Register-m-rtrgisrer architecture uses vector registers to interface
between the memory and functional pipelines. ‘tfcctor processor architectures will be studied in Chapter B.

Another important branch of the architecture tree consists of the STMTJ oomputers for symchronized
vector processing. An SIMD computer exploits spatial parallelism rather than rcrry'Jortr1;JarttlieIism as in a
pipelinod computer SIMD computing is achievod through the use of an array oi'proeessirrg eIerrrcm.~'r {PEs]
synchronired by the same controller. Associative memory can be used to build Silt-'l'D associative processors.
SIMD machines will be treated in Chapter 8 along with pipelined vector computers.

Development Layer: A layered development of parallel computers is illustrated in Fig. 1.4, based on a
classification by Lionel Ni [I990]. Hardware configurations differ from machine to machine, even those oi"
the same model. The address space ofa processor in a computer system varies among difiierent architectures.
it depends on the tnentory organization, which is mar:hine—dependent. These features are up to the designer-
and should match the target application domains.

Ap-plicatiorts T
7 Programming Eiwironment Machhe

T Languages Supported lfldflfififltlflfll
Machine _ Commm|eatio_n__hiode| l

Dfiflefldfll“ Adcireesin st-I P309
l Hardware Architecture

Fig. 1.4 Six layers for computer system development [Courtesy of Lionel Ni. 1990}

On the other hand, we want to develop application programs and programming environments which
are machine-independent. lndcpendcrrt of machine architecture, the user programs can be ported to many
computers with min imtrm conversion costs. High- level languages and communication models depend on the
architectural choices made in a computer system. From a programmer's viewpoint, these two layers should
be architecture-transparent.

Programming languages such as Fortran, C, C++, Pascal, Ada, Lisp and others can be supported by most
computers. However, the communication models, shared variables versus message passing, are mostly
mac hinc-dependent. The Linda approach using triple srxrcesoffers an arch itecture-tran sparcnt oommunication
model for parallel computers. These language features will be studied in Chapter 10.

Application programmers prefer more architecttrral transparency. However, kernel programmers have to
explore the opportunities supported by hardware. As a good computer architect, one has to approach the
problem from both ends. The compilers and CIS support should be designed to remove as many arehitecttrral
constrairlts as possible from the programmer.

F?» Mtfiruw Hfllrltmjtwrnw

II i Advanced Cnvnpunerfirchiteetu-.re

New Challenge: The technology of parallel processing is the outgrowth of several decades of research
and industrial advances in microelectronics, printed circuits, high density packaging, advanced processors,
memory systems, peripheral devices, communication channels, language evolution, compiler sophistication,
operating systems, programming environmcncs, and application challenges.

The rapid progress made in hardware technology has significantly increased the economical feasibility of
building a new generation ofoomputcrs adopting parallel processing. However, the major barrier preventing
parallel processing from entering the production mainstream is on the software and application side.

To dare. it is still fairly difficult to program parallel and vector computers. We need to strive for major
progress in the sofiware area in order to create a user-friendly environment for high-power computers.
A whole new generation of programmers need to be trained to program parallelism effectively. High-
performance computers provide fast and accurate solutions to scientific. engineering, business, social, and
defense problems.

Representative real-liii: problems include weather forecast modeling, modeling of physical, chemical and
biological processes, computer aided design, large-scale database management, artificial intelligence, crime
controL and strategic defense initiatives, just to name a few. The application domains ofparallcl processing
computers are expanding steadily. With a good understanding ofscalablc computer architectures and mastery
of parallel programming techniques, the reader will be better prepared to face future computing challenges.

1.1.4 Syscem Attributes to Performance
The ideal performance of a computer system demands a perfect match between machine capability and
program behavior. Machine capability can bc enhanced with better hardware tcctnrology, innovative
architectural features, and efficient resources management. However, program behavior is difficult to predict
due to its heavy dependence on application and run-time conditions.

There are also many other factors affecting program behavior, including algorithm design, data structures,
language eficiency, programmer skill, and compiler technology. It is impossible to achieve a perfect match
between hardware and sofiware by merely improving only a few factors without touching other factors.

Besides, machine performance may vary from program to program. This makes peril: ;Jerjorm¢im-¢= an
impossible target to achieve in real-lite applications. On the other hand, a machine cannot be said to have an
average performance either. All pcrtb rrnancc indices or benchmark ing results mu st be tied to a program mix.
For this reason, the performance should be described as a range or a distribution.

We introduce below lirndamental factors forprojecting the performance ofa computer. These performance
ind icators are by no means conclusive in all applications. However, they can be used to guide system architects
in designing better machines or to educate programmers or compiler writers in optimizing the codes for more
efficient execution by the hardware.

Consider the execution of a given program on a given computer. The simplest measure of program
performance is the rrrrrmrourm‘ time, which includes disk and memory accesses, input and output activities,
compilation time, OS overhead, and CPU time. ln order to shorten the tumaround time, one must reduce all
these time factors.

ln a multiprogrammcd computer, the l.-‘O and system ovcrhead.s ofa given program may overlap with the
CPU times required in other programs. Therefore, it is fair to compare just the total CPU time needed for
program execution. The CPU is used to execute both system programs and user programs, although oiten it
is the user CPU time that oonccms the user most.

War If J11!!!‘ r'mr:-;|(min

Rrueilel Cnmptmer Models i i | 3

Clock Rate and CPI‘ The CPU {or simply theproeesserj oftoday‘s digital computer is driven by a clock
with a constant cycle time t‘. The inverse ofthe cycle time is the eloeir rare -[f= Ht‘). The size ofa pregrarn is
determined by its irrsrruerion mum‘ {L}, in terms of the number of machine instructions to be executed in the
program. Different machine instructions may require dificrent numbers ofcloclt cycles to execute. Therefore,
the eydes per instruction {C PI '1 becomes an important parameter for measuring the time needed to execute
each instrucfjon.

Fora given instnretion set, we can calculate an merrrge CPI over all instruction types, provided we know
their frequencies of appearance in the program. An accurate estimate of the average CPI requires a large
amount of program eode to be traced over s long period of time. Unless specifically focusing on a single
instruction type, we simply use the term CPI to mean the average value with respect to a given instruction set
and a given program mix.

Perfbrmance Factors Let I, be the number of instructions in a given program, or the instruction count.
The CPU time (Tin secondsrprogram} needed to execute the program is estimated by finding the product of
three eontributing factors:

T=1,.><C'PI><t' {1.1}

The execution ofan instruction requires going through a cycle ofevents involving the instruction fetch,
decode, operand(s] fetch, execution, and store results. In this cycle, only the instruction decode and execution
phases are carried out in the CPU. The remaining three operations may require access to the memory. We
define a memorjt-‘ e_1-‘dc as the time needed to complete one memory reference. Usually, a memory cycle is it
times the processor cycle t. The value ofir depends on the speed of the cache and memory technology and
processor-memory interconnection scheme used.

The CPI of an instruction type can be divided into two component terms corresponding to the total
processor cycles and memory cycles needed to complete the execution of the instruction. Depending on the
instnrct ion type, the complete instruction cycle may involve one to as many as four memory references (one
for instruction fetch, two for operand fetch, and one for store results]. Therefore we can rewrite Eq. 1.1 as
follows:

T=I,.><{p+m><k)><r {L21

where p is the number ofprocessor cycles needed for the instruction decode and execution, m is the number
of memory references needed, It is the ratio between memory cycle and processor cycle, 1,. is the instnrction
eount, and r is the processor cycle time. Equation 1.2 can be further refined once the CPI components (p, m,
Ir) are weighted over the entire instnrction set.

System Attribute: The above five pczrformancc factors (1,, p, m, Ir, r) arc influenced by four system
attributes: instnretion-set architecture, compiler technology, CPU implementation and control, and cache and
memory hierarchy, as specified in Table 1.2.

The instn.|ction-set architecture afiects the program length (1,) and processor cycles needed (p). The
eompiler technology aifects the values ofr',.,p, and the memory reference count (m). The CPU implementation
and control determine the total processor time (p - I‘) needed. Finally, the memory technology and hierarchy
design affect the memory access latency (Ir - t‘). The above CPU time can be used as a basis in estimating the
execution rate ofa processor.

re» Mum-w not I'm'l!Il|(1rlM'\ '
I4 i _ Advorrced Compunerfirchitecto-.re

Table 1.2 Perfbnnenee Fuerors tersus System Attributes

Per_;l"urmnr|r.-.9 Frrr.'mrs-

Y)'n'.'rt'c rlvemge f.:vr.'r‘e.s per hr.s|'r'r.re!i0:r_ CPI PIr0c'e'.s.wr'
. ysrem - i - --

' _ C01!!!‘-I‘. P.roees."ror .Irf£'mr).|jt' .'l'Ili£'J'7‘l£.l'J’}'- Crete
.-"1.r.rrrbr.r.re.s _

IL. yerll.-'.sper Rre_',le.re'm.'e.s per .-"Ice-cs.s Time,

hr.'r.rruc'! iorr. p .i'n'.'t|‘nrc't‘lwr. m .[a!e'J'rqs'. It T

Instruction-set. J’ ifArchrrectu re
Compiler 1" \/ \/
Technology
Processor
Implementation vi’ \/
and Control
Cache and
Memory 1/ st’
Hierarchy

MIPS Rate Let C be the total number of clock cycles needed to execute a given program. Then the CPU
time in Eq. 1.2 can be estimated as T= C>< t= Cf)’. Ftn-thermore, CPI = C.-‘L. and T= 1,. ><CPI >< t= L. >< CPlrjf.
The processor speed is often measured in terms of miflion instructions per secornrf (MIPS). We simply call
it the MIPS rate of a given processor. It should be emphasized that the MIPS rate varies with respect to a
number of factors, including the clock rate (fl, the instruction count {L}, and the CPI ofa given machine, as
defined be-low:

MIPS ratc= I" 6 = "f 6 = ‘ii X ['6 (1.31
T><1{1 CPI><l0 C><1t"1

Based on Eq. 1.3, the CPU time in Eq. 1.2 can also be written as T=1,.>< 1O'6r'MIPS. Based on the system
attributes identified in Table 1.2 and the above derived expressions, we conclude by indicating the fact that
the MIPS rate ofa given computer is directly proportional to the clock rate and inversely proportional to the
CPI. All fo|.|r system attributes, instmction set, compiler, processor, and memory technologies, affect the
MIPS rate, which varies also from program to program because ofvariations in the instruction mix.

Floating Point Operations per Second Most compute-intensive applications in science and engineering
make heavy use of floating point operations. Compared to inshuctiorts per second, for such applications a
more relevant measure ofperforrrrsnce is floating point operations per second, which is abbreviated as flops.
With prefix mega. (1051, gigfl tlflglt him (113121 of new 1105'}, this is written as rnegaflops {mt1ops), gigaflops
(gflops), terafleps or petafleps.

‘Throughput Rots: Another important concept is related to how many programs a system can execute per
unit time, called the .s_'t-sterrr throughput ll-"___ {in programs?!->econdj. In a multiprogrammcd systcm,thc system
throughput is often lower than the C PU rhmugfipur ll"), defined by:

. f _“P: % ‘ti-‘“

War If J11!!!‘ r'mr:-;|umn

Rrrallel Cumputaer Models i P | 5

Note that Ht}, = {MIPS} >< 106.-1', irom Eq. 1.3. The unit for H1, is also programsfsecond. The CPU
throughput is a measure of how many programs can be executed per second, based only on the MIPS rate
and average program length (_I,.)_ Usually Hf, -=: Hr}, due to the additional system overheads caused by the l.-‘D,
oompilcr, and CIS when multiple programs are interleaved for CPU execution by multiprogramming ortime-
sharing operations. [ftheCPU is kept busy in a perfect prograrn-interleaving fashion, then Hf, = Hr}, This will
probably neverhappen, since the system overhead often causes an extra delay and the CPU may be left idle
ibr some cycles.

33"?
Consider the use of two systems SI and S; to csocute a hypothetical benchmark program. Machine
characteristics and claimed performance are given below:

Example 1.1 MIPS ratings and performance measurement

.41-frrehirre Cioelt Pe'r_fi:rn':r.rnee' CPU Time

S1 SOD MHZ IUD MIPS 12.: seeottds
53 2.5 GI-Iz IEJDU MIPS .1: seconds

These data indicate that the measured CPU time on S, is 12 times longer than that measured on The
object codes n.|nning on the two machines have dii-Terent lengths due to the differences in the machines and
oompilers used. All other overhead times are ignored.

Based on Eq. 1.3, we can soc that the instruction count ofthe object code nrnning on S; must be 1.5 times
longer than that ofthe code running on SI. Furthermore, the average CPI on S, is seen to be 5, while that on
S3 is 1.39 executing the same benchmark program.

S, has a typical CISC (enrrrpfex in.srrr.1erirJn set (."||'JI.|'!‘i_||'J.IU'i-fig] architecture, while S; has a typical RISC
(reduced r'nsIrucrr'on set computing} architecture to be characterized in Chapter 4. This example offers a
simple comparison between the two types ofoomputcrs based on a single program run. When a different
program is run, the conclusion may not be the same.

We cannot calculate the CPU throughput H1, unless we know the program length and the average CPI of
each code. The system throughput Ii-'f._. should be measured across a large number of programs over a long
observation period. The message being conveyed is that one should not draw a sweeping conclusion about
the performance ofa machine based on one ora few program runs.

Ftrogmmmilrg Environments The programmability of a computer depends on the programming
environment provided to the users. [n fact, the marketability ofany new computer system depends on the
creation ofa user-friendly environment in which programming becomes a productive undertaking ratherthan
a challenge. We briefly introduce below the environmental featmcs desired in modern computers.

Conventional uniproecs sor computers are programmed in a .s'equenrr'o! environment in which in stnrctions
are executed one after another in a sequential manner. In fact, the original UNIX-"OS kernel was designed to
respond to one system call from the user process at a tirnc. Successive system calls must be serialized through
the kemel.

rm‘ MIGIELH Hill l!'m'rIq|r_.\.I|n*\ ‘I _

I6 i Advanced Celnpmerfirehlteetu-.re

Wlren using a parallel computer, one desires a prrrrrllei ant-ircnmenr where parallelism is automatically
exploited. Language extensions or new constructs must be developed to specifi; parallelism or to facilitate
easy detection of parallelism at various granularity levels by more intelligent compilers.

Besides parallel languages and compilers, the operating systems must be also extended to support parallel
processing. The OS must be able to manage the resources behind parallelism. Important issues include
parallel scheduling of concurrent processes, inter-process communication and sync-lironizatin-n, shared
memory allocation, and shared peripheral and communication links.

Implicit Parallelism An implicit approach uses aconventional language, such asC, C-H-, Fortran, or Pascal,
to write the source program. The sequentially coded source program is translated into parallel object code
by a parallciizing compiler. As illustrated in Fig. 1.5a, this compiler must be able to detect parallelism and
assign target machine resources. This compiler approach has been applied in programming shared-memory
multiprocessors.

With parallelism being implicit, success relics heavily on the “intelligence” of a parallclizing compiler.
This approach requires less eifort on the part of the programmer.

Explicit Parallelism The second approach (Fig. l.5b) requires more efibrt by the programmer to develop
a source program using parallel dialects of C, C++, Fortran, or Pascal. Parallelism is explicitly specified in
tl1e user programs. This reduces the burden on the compiler to detect parallelism. In stead, the compiler needs
to preserve parallelism and, where possible, assigns target machine resources. New programming language
Chapel (see Chapter 13) is in this category.

Source co-clowritton
in scepcntlal languages
C, C++, Fortran, or
Pascal

Para llsl lzing
comp-ilor

Parallel
object cod

Execution by
rmtirna system

{at lrrpllcit parallelism

lb

Soiree code written
in concurrent dialects
of C, -C++, Fortran,
or Pascal

Concurrency
preserving cornp-tier

Concurrent
object code

Execution try
mntime system

{bi Explicit parallelism

Fig. 1.5 Two approaches to paraiicl prcgramrning {Courtesy cf Gtaries Seirz: adapted with pcrrnisslon from
“CcincurrenrArd1ireerl.rres". pt 51 an-dp.53. VLSI met‘ Parole! Cornpl.ltatlol1.edi1:cd by Strays and Blrrwiscic.
M-organ Kauflrarn Pubiifliers. 1990}

HM‘ If J11!!!‘ I'mi!I;|r1rHt\

Rrrellel Cunputaw Models _ T | -y

Special software tools are noeded to make an environment more iriendly to user groups. Some of the
tools are parallel extensions ofconventional high -level languages. Others are integrated environments which
include tools providing difierent levels ofpmgram abstraction, validation, testing, debugging, and tuning;
performance prediction and monitoring; and visttalization support to aid program development, perfomiance
measurement, and graphics display and animation ofcomputational results.

MULTIPRDCESSDRS AND MULTICDM PUTER5

1 Two categories of parallel computers are architecturally modeled below. These physical
models are distinguished by having a shared common memory or unshared distributed

memories. Only architectural organization models are described in Sections 1.2 and 1.3. Theoretical and
complexity models for parallel computers are presented in Section 1.4.

1.2.1 Shared-Memory Multipmcessnrs
We describe below three shared- memory multiprocessor models: the rrrrrjbrm rm'rrmr'__i-'-access (_U M.-‘ti model,
the nomm{finrrrr-rrierrrrirfir-net-e.es {NLTMAI model, and the eriehe-orify memorii-' nrehirtrrum {COMAI model.
These models differ in how the memory and peripheral resources are shared ordistributed.

The UMA Modal ln a LFMA multiprocessor model (Fig. 1.6), the physical memory is uniformly shared
by all the processors. All processors have equal access time to all memory words, which is why it is called
uniform memory access. Each processor may usea private cache. Peripherals are also shared in some fashion.

Procemors

System Interconnect
[Bus Crossbar, Multistage netwofit]

SM II I I

Shared Merrnry

F-lg. 1.6 The UMP. muiriprocessor model

Multiprocessors are called rightly £‘OIJ]J.f£'£'|l.S1FS!£'J'fl.§‘ due to the high degree ofrcsource sharing. The system
interconnect takes the form of a common bus, a crossbar switch, or a multistage network to be studied in
Chapter 7.

Some computer manufacturers have mrr}tipr0r*es.sor {MP} cstcnsions of their unipmcassor {UP) product
line. The UM.-"L model is suitable for general-purpose and times haring applicationsby multiple users. lt can be
used to speed up the execution ofa single large program in time-critical applications. To coordinate parallel
events, synchronization and communication among processors arc done through using shared variables in
the common memory.

Par MIGIITLH Hf" l'mrJI||r_.u|r¢\ :

ll] i Advanced Celnprioerfirehiteem-.re

Wlren all processors have equal access to all peripheral devices, the system is called a synsrnerrfe
multiprocessor. In this case, all the processors are equally capable ofrunning the executive programs, such as
the CIS kernel and l.-‘Cl service routines.

ln an mryrrrnrerrie multiprocessor, only one or a sub set o fprocessors are executive-capable. An executive
or a master processor can execute the operating system and handle IICI. The remaining processors have no
HO capability and thus are called mrnehedpmeessors {A Ps]. Attached processors execute user codes under
the supervision of the master processor. ln both MP and AP configurations, memory sharing among master
and attached processors is still in place.

I»)
lg Example 1.2 Approximated performance of

a multiprocessor
This example exposes the r-rsider to parallel program execution on a shared memory multiprocessor system.
Consider the following Fortran program written for sequential execution on a uniproccssor system. All the
arrays, Ail], Bfl), and Cfl], are assumed to have N elements.

L1: [In 10 [= 1,N
L2: .-'\{[)= B(l'j + C(l]
L3: IO Continue
L4: SUM = U
L5: [I-n I'D J = 1, bl
L6: SUM = SUM + A(_J_)
LT: Zfl Continue

Suppose each line ofcode L2, L4, and L6 takes 1 mach inc cycle to execute. Tilt? time required to execute the
program control statements; Ll , L3, L5, and L? is ignored to simplify the analysis. .-°..ssumethat It cycles are needed
for each intcrproocssor commun icat ion operation via the shared memory.

Initially, all arrays are assumed already loaded in the main memory and the short program fragment
already loaded in the instruction cache. In other words, instruction fetch and data loading overhead is ignored.
Also. we ignore bus oontention or memory access conflicts problems. in this way. we can concentrate on the
analysis ofCPU demand.

The above program can be executed on a sequential machine in 23"." cycles under the above assumptions.
Ncycles are needed to execute the N independent iterations in the 1 loop. Similarly, N cycles are needod for
theJ loop, which contains N recursive iterations.

To execute tl1e program on an M-processor system, we partition the looping operations into M sections
with L =Nr‘M elements per section. ln the following parallel code, Dnall declares that all M sections be
executed by M processors in parallel.

For M-way parallel execution, the sectioned I loop can be done in L cycles.
The sectioned J loop produces Mpartial sums in L cycles. Thus EL cycles are consumed to produce all M

partial sums. StilL we need to merge these M partial sums to produce the final sum of N elements.

rm‘ MIGIELH H“ l'm'rIq|r_.r.I|n*\ _

Rrrullel Ccrnpuur Models 1 |9

Doall K = l, M
Do 1t]l=(K—1]*L+1,l(*L

A{_l)= B(l'j +C=['l)
10 Continue

SUM(K) =0
Du 20 .l = l, L

SUM(K) = sumoq + AIIK — 11* L +11
20 Continue
Endall

The addition of each pair of partial sums requires It cycles through the shared memory. An I-level
binary adder tree can be constructed to merge all the partial sums, where I = log; M. The adder tree takes
Mr + 1] cycles to merge the M partial sums sequentially from the leaves to the root ofthe tree. Therefore, the
mu ltiprccessor rcqu ires EL + Kit + 1]= 2Ni‘.M + (Ir + 1)log2 M cycles to produce the final sum.

Suppose N = 23} elements in the array. Sequential execution of the original program takes EN = 23'
machine cycles. Assume that each IPC synchronization overhead has an average value of k = 204} cycles.
Parallel execution on M = 256 processors requires E '3 + 1608 = 9809 machine cycles.

Comparing the abovetiming results, the multiproccs sorshowsa speedup iactorofl 14 out ofthe maximum
value of 256. Therefore, an effi ciency ot'214f256 = 83.6% has been achieved. We will study the speedup and
cflicieney issues in Chapter 3.

The above result was obtained under favorable assumptions about overhead. [n reality, the resulting
speedup might be lower after considering all software overhead and potential resource conflicts. Nevertheless,
the example shows the promising side of parallel processing ifthe intcrprocessor communication overhead
can be maintairieid to a suflieiently low level, represented here in the value of r.

The NUMJN. Model A NUNIA multiprocessor is a shared-mernory system in which the access time varies
with the location of the memory word. Two N'Lll‘vI.-4|. machine models are depicted in Fig. 1.7. The shared
memory is physically distributed to all processors, called local memories. The collection ofall fora! nrenrorics
forms a global address space accessible by all processors.

[t is faster to access a local memory with a local processor. The access ofremote memory attached to other
processors taltes longer due to the added delay through the interconnection network. The BBN TC-2000
Butterfly multiprocessor had the configuration shown in Fig. Lia.

Besides distributed memories, globally shared memory can be added to a multiprocessor system. In this
case, there are three memory-access patterns: The fastest is local memory access. The next is global memory
access. The slowest is access of remote memory as illustrated in Fig. l.'l'b. As a matter offact, the models
shown in Figs. 1.6 and 1.? can he easily modified to allow a mixture of shared memory and private memory
with prespecified access rights.

Ahierarehically structured multiprocessor is modeled in Fig. l.Tb. The processors are divided into several
cl'us'rers'*. Each cluster is itself an UMA or a NUMA multiprocessor. The clusters are connected to global
s'hnrcra'-rrrtrmory modules. The entire system is considered a NUMA multiproccs sor. All processors belonging
to the same cluster are allowed to uniformly access the efrrsrer shared-rncmori-' modules.

‘The word ‘cluster’ is used in a ditlierent sense in cluster computing, as we shall see later.

rhr MIEIHW HI-l'l_lNf.l]l(1|llf\

Zfl i Admlrrced Cempiimerfirelritecm-re

All clusters have equal access to the global memory. However, the access time to the cluster memory is
shorter than that to the global memory. One can specify the access rights among intereluster memories in
va.rious ways. The Cedar multiprocessor, built at the University of Illinois, had such a structure in which each
clusterwas an Alliant FX.-‘SD multiprocessor.

I Global Irteroorinect Network i l
Legends:
P: Processor
CSM:Cli.ster

C5 Shared Memory
G5M:G|obaFl-Iii ShamdiimwEH! III Iii $ C3 III ? C5 rnN:emse»

' N iii! - N - lflllflffllflflflfltfllll
||-19;- ' ' Network

E cenneelion E
Netwoiii CS I-S-l'u'l

B Cli.is1et1 Cii.ls'tetN

{aj Sharedlo-cal memories [e.g. the [b] Ahierarehieal cluster model [e.g. the Cedar system at the Uni-
H Butterfly] versity of Illinois}

i“"_'_“_'_“"_“"_“]=:|-|rr|='|Il:I 1—'I5Il:I

'-l

:QQl§=l________________________ -__..-_-_..-_-_..-_-_..-_-_..|

I

-I

E'
I l I l I l I

II5

______________?:____§___i

Fig. 1.7 Two NLIMA models for rmiidproossor sy-s1:erns

The CONIA Model A multiprocessor using cache-only memory assumes the COl\-‘IA model. Early
examples ofCOMA machines include the Swedish Institute of Computer Science's Data Diffusion Machine
(DDM, Hagersten ct aI., 1990) and Kendall Square Research's KSR-1 rnaehine{Burli:l1ardt et al., I992]. The
COMA model is depicted in Fig. 1.8. Details ofKSR-1 are given in Chapter 9.

l lnteremnectbn Network |

III

C I in I C
II II II

Fig. 1.! The COMA model of a rriuiltlproeessor (P: Prc.\c-ess-rir.C: Cache. D: Directory; -2.3. the KER-1)

The COM.-"L model is a special ease ofa NLll\-‘IA machine, in which the distributed main memories are
oonverted to cliches. There is no memory hierarchy at each processor node. All the caches form a global

.Rriellel Cunputer Models 1 2|

address space. Remote cache access is assisted by the distributed cache directories [D in Fig, 1.8). Depending
on the interconnection network used. sometimes hierarchical directories may be used to help locate copies oi
eachcblocks. Initial dataplacemcnt is not critical because data will eventually migrate to where it will be usod.

Besides the UMA, NUMA, and COMA models specified above, other variations exist for multiprocessors.
For example, a einehe-eoherzrrir rion-unifiirni l'fl€’l';lI-tJl':'l-' flC'£"£’S.5' {CC-NUl'l-'lA]I model can be specified with
distributed shared memory and cache directories. Early examples of the CC-NUMA model include the
Stanford Dash (Lenoslci ct al., 1990) and the MIT Alewiie (Agarwal et al., 1990] to be studied in Chapter 9.
A cache-ooherent COM.-it machine is one in which all cache copies must be kept consistent.

Representative Multipmcessors Several early commercially available multiproccssors arc summarized
in Table 1.3. They represent four classes of multiprocessors. The Soquent Symmetry Sill belonged to a
class called minisupereomputers. The IBM S]‘BlCH'L"39[l models were high-end mainframes, sometimescalled
ncar- superoo mputcrs. The BEN TC -2000 represented the MPP class.

Table 1.3 Sol-no Early Commercial Multiprocessor System:

['0-rriperrr_i'
and Model

Hunlwure and
A rclilieciure

.5'q-ff it ‘are and
App]ii;"a1 ions

Remarltfr

Soqueut
Syininetry
S-Bl

Bus-connected with
30 i356 processors,
[PC via SLIC bus;
Weitck floating-point
aoce lerator.

D‘li'N|X.i‘()E-3,
l<.APi'Soquei1t
preproceasor,
transaction
irmltiprocessiiig.

Latter rno-tick designed
with taster processors of
the family.

IB M ES.i‘9ClIDD
Model
9D[l.""'\-" F

6 ES-'9t]IllID processors
with vector faciiit iiai,
crossbar conriected
to U0 chanitelis arid
shared memory.

os support: rvrvs,
V M K M S, i'IilX.-'3 TD,
parallel Fort ran.
VSF V2.5 compiler.

Fiber optic chiimieks,
integrated
cryptographic
architecture.

BEN TC-EDDD SIZ MSSICHJ
prmessors with local
memory contracted
by a Butterfly
switch, a NLTNIZA
machirie.

Ported l'v'Each"OS
with multiclusteriiig,
parallel Fortran,
time-critical
applications.

Latter rrii:i-dais designed
with taster processors of
the rzimiry.

The S-S1 was a transaction processing multiprocessor consisting of 3-U BB6-"i486 microprocessors tied
to a common badizplane bus. The IBM ESIQODO models were the latest IBM mainframes having up to 6
processors with attached vector facilities. The TC-2000 could be configured to have 512 M83100 processors
interconnected by a multistage Butterfly network, This was designed as a NUMA machine for real-time or
time-c ritical applications.

Par MIGIITLH HI" l'mrJI||r_.u|n¢s :

Z1 i Advanced Cmnprroerfirchriteeturc

Multiprocessor systems are suitable for general-purpose mu ltiuser applications where programmabilit'y is
the major concern. A major shortcoming ofrnultiproeessors is the lack of scalability. It is rather diflicult to
build MPP machines using centralized shared memory model. Latency tolerance for remote memory access
is also a major limitation.

Packaging and cooling impose additional constraints on scalability. We will study scalability and
programmability in subsequent chapters.

1.1.2 Distributed-Memory Multicomputers
A distributed-memory multicomputer system is modeled in Fig. 1.9. The system consists of multiple
computers, often called nodes, intercccnnected by a message-passing network. Each node is an autonomous
computer consisting of a processor, local memory, and sometimes attached disks or l.-‘O peripherals.

M
P II H

 > Message-passing P M
l['|lIBl'(X)l'tl1-B\C.1Ibfl network

: [Me-sh, ring, torus, :
hypercube, cube-

oc-nnected cycle, etc.) p- M
P
M H Ill

Fig. 1.9 Generic model ofa message-pasrlng multloorrrp-Lmer

The message-passing network provides point-to-point static connections among the nodes. All local
memories are private and are accessible only by local processors. Forth is reason, traditional multicomputers
have also been called no-nrnmrwmenmr_r=nec=.'ss (NORMA) machines. lnternode communication is carried
out by passing messages through the static connection network. With advances in interconnection and
network technologies, this model of computing has gained importance, because ofits suitability for certain
applications, scalability, and fault-tolerance.

Nlulticqrrlput-er Gal-emtion: Modern multicomputersuse hardware routers to pass messages. A computer
node is attached to each router. The botmdary router may be connected to l.-‘O and peripheral devices. Mes sage
pa_s.sing between any two nodes involves a sequence of routers and channels. Mixed types of nodes are
allowed in a heterogeneous multico mputer. The imemode conununication in a heterogeneous multicomputer
is achieved through compatible data representations and message-passing protocols.

Early message-passing multicomputers were based on processor board technology using hypercube
architecture and software-controlled message switching. The Caltech Cosmic and lntel iPSCr"l represented
this early development.

The second generation was implemented with mesh-connected architecture, hardware message routing,
and a software environment for medium-grain distributed computing, as represented by the lntel Paragon and
the Parsys SuperNode 1CI'l]'U.

F?» if run! r'nm;|wm1
RJrcMlelCunpote|'Mod-sis M 23

Subsequent systems of this lytte are fine-grain multicomputers, early examples being the MIT I-Machine
and Caltech Mosaic, implemented with both processor and communication gears on the same ‘s-‘LS-l chip. For
further discussion; sec Chapter l3.

In Section 2.4, we will study various static network topologies used to construct multicomputers.
Commonly used topologies include the rirrg, tree. rrrcsh. torus. in-‘perenbe. enbe-mrrrrer:rede\'eie, etc. Various
communication patterns are demanded among the nodes, such as one-to-one, broadcasting, permutations, and
multicast pattern s.

Important issues for multicomputers include message-routing schemes, network flow control strategies,
deadlock avoidance, virtual channels, message-pas.sing primitives, and program decomposition techniques.

Representative Mulricomput-er: Tbrcr: early message-passing multicomputers are surnnrarizod in
Table 1.4. With distributed processorfmemory nodes, such machines arc better in achieving a scalable
periormance. However, message passing imposes a requirement on programmers to distribute the
computations and data sets over the nodes or to establish cffieicnt communication among nodes.

Table 1.4 Some Early Comrnerclul Mulrlcomputcr Systems

.'i:5'.'t rem
Fe¢r.tr.rre.s

Int’er‘
Paragon XP-"S

n(.'L-‘BE.-“.2
sass

Pars)-'.t Ltd.
Srrpa'rr'v'urJl2J'HUG

Node Types
a.nd Memory

5U Ivfl-I: i860 XP
computing nodes with
16-128 Mbytes per
node, special U0
service nodes.

Each node contains a
CISC 54-bit CPU,
with FPU, 14 Dl'vl.-it

ports, with 1-6-4
Mbytes .-"node.

EC-fancied Esprit
sup-emodc built with
multiple T-800
Transputers per node.

Network and
H0

2-D mesh with SCSI,
HIPPI, VME,
Ethernet, and custom
IIO.

13-dimensional
hypercube of B193
nodes, S12-Gbyte
memory, 64 l.-‘CI
boards.

Reconfigurable
interconnect,
expandable to have
i024 processors.

OS and
Software Task
Parallelism
Support

DSF conformance
with 4.3 BSD,
visualization and
programming
support.

VertexfOS or UNIX
supporting message
passing using
worrnhole routing.

IDRISIUS
UNIX-compatib le.

Application
Drivers

General sparse rnatrix
methods, parallel
data manipulation,
strategic computing.

Scientific number
crunching with scalar
nodes, database
processing.

Scientific and
academic
applications.

Performance
Remarks

5--300 Gflnpet peak
64-hit results. 2.3»-' int)
GIPS peak integer
pcrforrnance.

2'-I‘ Gfiopa Peak. 36
Gbytesfs U0

200 NITPS to I3 GTPS
peak.

l'r\1'Ml.'I;Ifl\lI' HI" l' wrqt .u| rs T

Z4 ii Adrorrcad Compmerfirehltacm-re

The Paragon system had a mesh architecture, and the nCUBE.-'2 had a hypercube architecture. The lntel
iilfifls and some custom-designed VLSI processors were used as building blocks in these machines. All three
O5s were UNLX-compatible with extended lbnctions to support message passing.

Most multicomputers can be upgraded to yield a higher degree ofparallclism with enhanced processors.
We will study various massively parallel systems in Part lll where the tradooffs between scalability and
progranmtability are arraiymod.

1.1.3 ATaxonorny of MIMD Computers
Parallel computers appear as either SIMD or MIMD configurations. The SLMD-s appeal more to special-
purp-ose applications. it is clear that STMTJs are not sirescalahle. but unclear whether large Slhflls are
generation-scalable. The fact that CM-5 had an MIMD architecture, away from the SIMD architecture in
CM -Z, represents the architectural trend {see Chapter B]. Furthermore, the boundary between multiproccssors
and multicomputers has become blurred in recent years.

The architectural trend for general-purpose parallel computers is in favor of MTMD configurations with
various memory configurations (sec Chapter I3]. Gordon Bell (1992) has provided a taxonomy of MIMD
machines, reprinted in Fig. l.lCI. He considers shared-memory multiproccssors as having a single address
space. Scalable multiproccssors or multicomputers must use distributed memory. Multiprocessors using
ecrntrally shared memory have limited scalability.

Dtstntmect rnemory
rmltprooeaors
{amiable}

ll|ltfl:|'n-colon
Sirql&Acl'.trem Spare
Shared lderrroql
Cortrpuflllon

Denial memory
rruttprocewors
{I'D-1 scalable)

MIMI]

ores-in-me
mI.l1ioon'pu\e¢B
tsoatmte)

Ilultienmputaen
la'l.|l-lpte Atflrem Space
tllessag-F'a§ir1g
Oorrouhtlar

Dynanic bhoingot
attorewae to trooeesore
KER
flak: lmcltng,ri'ng rmlti
IEEE SCI atendaci trepeaer
Hale trifling, eacheing
Alma-art DASH
State program btndng
BEN. Cedar, GM‘

Cross-print ormult-stage
Cray, Fu,U.tau. HI.t.ar:.lrJ. IBM.
NEE, Tera-
Sirrple. mg m|.t1|,u.ta
mutt rephemtertt
Bus rmtie
DB3. Encore. N'C.F\'_.._
Sequatu. SE1 Eu.»

Me-sh oonne-cud
Iltliisl
B.rtter'ly.' Fat Tree
CH5
Fqpermhes
NCUBE
Fast LAMB ‘It! high
avatanility and tigh
camely duster:
DEC. Ta-nderrr
Lima sorotes-tmao
processing
waketa-.|'.leus , PCs

Central rmtioomyruhrs

Fig. 1.10 Bells tavronorrly efM|MD cornp-uters (Courtesy -ofGorelon Bel: rqarlnnecl with perrnlsdon from the
Commtmlcntlons ofAC.l'rl, August 1991}

PM‘ I Ifllli l'I>I'rIqIr_.I.III¢I _

Rrrollal CorrIpI.rI5er Models 1 25

Multicomputers use distributed memories with multiple address spaces. They are scalable with distributed
memory. The evolution of fast LAN (Inert! trretr nenvork]-cormeeted workstations has er-eated “commodity
supcreomputing”. Bell was the first to advocate high-speed workstation clusters interconnected by high-
speed switches in lieu of special-purpose multicomputers. The C M-5 development was an early move in that
direction.

The scalability of MIMD computers will be further studied in Section 3.4 and Chapter 9. In Part lll, we
will study distributedonemory multiproccssors (KER-1, SCI, etc.}; central-memory multiproccssors (Cray,
IBM, DEC, Fujitsu, Encore, ete.); multicomputers by lntel, TMC, and nCUBE; fast LAN-ba-red wor'kstation
clusters, and other exploratory research systems.

MULTIVECTOR AND SIMD COMPUTERS

1 ln this section, we introduce supercomputers and parallel proeossors for vector processing
and data parallelism. We classify supercomputers either as pipelirred voetor machines using a

few powerful processors equipped with vector hardware, or as SIMD computers emphasizing massive data
parallelism.

1.3.1 Vector Supercomputers
A vector computer is often built on top of a scalar processor. As shown in Fig. 1.11, the vector processor
is attached to the scalar processor as an optional feature. Program and data are first loaded into the main
memory through a host computer. All instructions are first decoded by the scalar control unit. If the decoded
i1'Istr1.IetiorI is a scalar operation or a program control operation, it will be directly executed by the scalar
processor using the scalar functional pipelines.

“'1

I I I I I I I I I I I II I I
-JScalar Pro-oeosor

Seals
FI.nc1I_on:I
Pp-olnea

Seals |nai'Ix:'non
i ‘labourM M» ZMm Wei Control

hag-“mam - "|\I=I~c:I.or Ftnc. .
l

l'l9"l"|9'"°'1'|' I-botar
3'53“ {PI'og'ar1HId 'l|l'gI(;i'3|'

“la Dara; Rggqrm

—|
Hoot

Mme “"93
Shaw

r"""""" 'TuTI5.5I'I5rIi>E55&""““'”'

F_____-__ I II I

IIO {Llaor)

Fig. 1.11 The ardultoertrro of a vector sup-ereornputor

Par MIGIITLH HI" l'I»rI'JI|Ir_.uII¢\ :

Ii i Advanced Cmnpireerfirchitocturc

[fthe instruction is decoded as a vector operation, it will be sent to the vector control unit. This control
unjt will supervise the flow of vector data between the main memory and vector functional pipelines. The
vector data flow is coordinated by the control unit. A number ofvector functional pipelines may be built into
a vectorprocessor. Two pipeline vector supercomputer models are described below.

Hector Processor Model: Figure l .l l shows a register-to-register architecture. Vector registers are used
to hold the vector operands, intermediate and final vector results. The vector functional pipelines retrieve
operands from and put results imo the vector registers. All vector registers are programmable irI user
instructions. Each vector register is equipped with a component countcrwhich keeps track ofthe component
registers used in successive pipeline cycles.

The length of each vector register is usually fixed, say, sixty-four 64-bit component registers in a vector
register in a Cray Series supercomputer. Other machines, like the Fujitsu VPZUDG Series, rise reconfigurable
vector registers to dynamically match the register length with that of the vector operands.

In general, there are fixed numbers of vector registers and functional pipelines in a vector processor.
Therefore. both resources must he reserved in advance to avoid resource conflicts between different vector
operations. Sorne early vector-reg;is,ter based supercomputers are summarized in Table 1.5.

Table 1.5 Some Eorly Commercial Nutter‘ Supercornpirtcrs

Sys.rem
.1-f0d'-er‘

Iri-cror Harzfwara‘ A mhirec-mm
and (_'r.rpafiI'ii.Iie.r

(.TunIpHer and
Sof.'rv.'rr.rc Support

Coirvex
C3300
family

Goats-loosed mutt iprooessor
with B processors and
500-lvihytefs access port.
4 Gt:-ytes rnain rnernory.
1 Ciilvrt Pr-=Il=
perforrrranee with
ooirer.|.rrent scalariveetor
operations.

ftdvmtoed (I, Fortran,
and Ada vecisoriiting
and parallclizing compilers.
Also supported interpro-cedurul
oprtimiration.
PUSIK IIIII]3.I.-‘()5
plus I.-‘(J iirterI'aees
and visualization system

Digital
WKX QUDIIJ
System

Integrated vector processing
in the VAX environrriertt,
I25—5lJ0 lvtflops
pink perfi:-rrnmree.
63 vector
I6 x 64 x 64 vector registers.
Pipeline cl1.ai1Ii1Ig possible.

MS or ULTRJJGCIS,
\-‘AK Fortran and
VAX Vector Instruction
Emulator {VVIEFI
for vcctorized
program debugging.

Cray Research
Y-MP and
C-90

Y~MP ran with 2, 4, or
8 processors, 2.67 Gflop
peak willr Y-MPS256. C-90
l1.IICl 2 vector pipes.-‘CPU
buiit w itlr IOK gate ECL
with I6 Gflops ptfilt performance.

CF77 compiler for
automatic vcctorizarion,
scalar optimirafion.
and parallel processing.
UNIt'_‘OS im proved
from UNIXN and
Berkeley BSDMS.

Par I J11!!!‘ l'mrJI||r_.u|n¢\

Rrrollel Cunpuow Models 1 21

A menmrj-'-to-naenmrjr-' architecture difiers from a register-to-register architecture in the use of a vector
stream unit to replace the vector registers. Vector operands and results are directly retrieved from and stored
into the main memory in superwords, say, S12 bits as i11thc Cyber 205.

Pipelined vector supercomputers started with uniproccssor models such as the Cray 1 in 1‘§'?6. Subsequent
supercomputer systems ofi'ered both uniprocessorand multiprocessor models such as the Cray Y-MP Series.

Representative Supercomputer: Over a dozen pipelinod vector computers have been manufactured,
ranging irom workstations to mini- and supercomputers. Notable early examples include the Stardmt 3000
multiprocessor equipped with vector pipelines, the Convex C3 Series, the DEC 'v'A}i 9000, the [BM 390:"
VF, the Cray Research Y-MP family, the NEC SX Series, the Fujitsu VP2000, and the Hitachi S-810120. For
fi.|rther discussion, soe Chapters 8 and 13.

The Convex C 1 and C2 Series were made with ECL-“CMOS technologies. The latter C3 Series was based
on Ga.-is technology.

The DEC VAX 9000 was Digital's largest mainframe system providing concurrent sealarfvector
and multiprocessing capabilities. The ‘s-‘AX 9000 processors used a hybrid architecture. The vector unit
was an optional feature attached to the K-‘AX 9000 CPU. The Cray Y-MP family ofi'ered both vector and
multiprocessing capabilities.

1.3.2 SIMD Supercomputers
In Fig. 1.3b, we have shown an abstract model ofSlMD oomputers having a single instruction stream over
multiple data streams. An operational model of SIMD computers is presented below (Fig. 1. 13) based on the
work ofH. J. Siegel (19791. Implementation models and ease studies of SIMD machines are given in Chapter E.

Cmtrol Unit

PEO PE1] PE2 PE N-1
]Pno]e.fl-I |Proe.1| |Pr<T.2| -H

|Mem.Dl |Mor'n.1| |Mom.2|

I lotoroonnoetion Netwoflc ‘

Fig. 1.12 C\|:|-creel-onal model of SIMD oompurers

SIMD Machine Model An operational model of an SIMD computer is specified by a 5-tuple:

M=(N, CJ, M, R) -[1.5_|

rs.- Mam-w rrrm-...¢-,......¢. '
Ill i Advanced Compmaerfiuehiteeture

where

-['1] N is the number ofpmrussing elements (PEs) in the machine. For example, the llliac [V had 64 PEs
and the Connection Machine CM-2 had 65,536 PEs.

{2} C is the set of instructions directly executed by the r-onrmf unit (CU), including scalar and program
flow control instructions.

{'3} I is the set of instructions broadcast by the CU to all PEs for parallel execution. These include
arithmetic, logic, data routing, masking, and other local operations esocuted by each active PE over
data within that PE.

{4} M is the set ofmasking schemes, where each mask partitions the set of PEs into enabled and disabled
subsets.

('5) R is the set ofdata-routing functions, specifying various patterns to be set up in the interconnection
network ibr inter-PE communications.

One can describe a particular SIMD machine architecture by spociiying the S-tuple. An example SIMD
machine is partially specified below.

I»)
lg Example 1.3 Operational specification of the MasPar

MP-1 computer
We will study the detailed arcbitecttlre of the MasPar MP-l in Chapter T. Listed below is a partial specification
ofthe 5-tuple for this machine:

{lj The MP-1 was an SIMD m.achine with N = 1024 to 16,38-'-l PEs, depending on which configuration is
oonsidered.

{2_j The CU executed scalar instructions, broadcast decoded vector instructions to the PE array, and
oontrolled intcr- PE communications.

{'3} Each PE was a register-based load.-"store RISC processor capable of executing integer operations over
various data sizes and standard floating-point operations. The PEs rcoeived instructions from the CU.

{lll The masking scheme was built within each PE and continuously monitored by the CU which could set
and reset the status ofeach PE dynamically at run time.

{Sj The MP-i had an X-Net mesh network plus a global multistage crossbar router for inter-CU-PE,
X-Net nearest B-neighbor, and global router communications.

Repmsontotive SIMD Computer: 'I'hree early commercial STMT) supercomputers are summarized in
Table 1.6. The number of PEs in these systems ranges from 4096 in the DAP6l0 to 16,354 irl the Ma.sPar
MP—1 and 65,536 in the CM—2. Both the CM—2 and DAP610 were fine-grain, bit-slice SLMD eornputers with
attached floating-point accelerators for blocks of PEs’.

Each PE of the MP-i was equipped with a 1-bit logic unit, 4-bit integer.-KLU, 64-bit mantissa unit, and
16-bit exponent unit. Multiple PEs could be built on a single chip due to the simplicity ofeach PE. The MP-l

" Witlt rapid advarroes in ‘t-“L5! teelutology, use ofbit-slice processors in systems has dtsapp-eured.

HM‘ If J11!!!‘ I'ml!I;|r1rHt\

Rrrellel Cunputaw Models _ T 29

irnplementod 32 PEs perchip with forty 32-bit registers per PE. The 32 PEs were interconnected by an X-Ne!
mesh, which was a 4-neighbor mesh augmented with diagonal dual-stage links.

The CM-2 implemented 16 PEs as a mesh on a single chip. Each 16-PE mesh chip was placed at one
vertex ofa 12-dimensional hypercube. Thus 16 >< 2 '3 = 2 '6 = 65,536 PEs fomted the entire SIMD array.

The D.-\PfilO implement-ed 64 PEs as a mesh on a chip. Globally, a large mesh (64 X 6-'-ll was lbrmed
by interconnecting these small meshes on chips. Fortran 90 and modified versions of C, Lisp, and other
sequential programming languages have been developed to program SIMD machines.

Table 1.6 Some Early Contmerdd SIMD 5Lll.'.NH'COl11]l>lJ‘ll!J'S

SW1‘-em SIMD)l1fuv_'§rl.Ir€ A rehlleelure
Moe|"e1 and C'ap¢:.r£I'Hl.rle.t

Lerngr.r¢r‘|.;e.'r, C-:1-rr:pHcr.t
and .':7q-,|l.i'H.'ure Suppon

Mae Par
Computer
Corporation
MP-l Family

Dcaig;ned for configurations from
I024 to l6,3 E4 pro-ee-ssors with
26.000 MIPS or 1.3 Gflops. Each
PE was a RISC pruc1e5aor.Witl1 16
Kbytes local memory. An X-Net
mesh plus a mult ietage crossbar
interconnect.

Fortran T7. MasP'ar Fortran
{MIPF), and M:e;Par Parallel
Application Language;
UNIX.-'03 with X-windurv.
symbolic debugger, visualizers
and animators.

Thinking
Machines
('Iorp-oration,
CM-2

A bit~sliee array of up to 65,536
PEs arranged rat a ll]-dimers ional
hy]:|-ercube with 4 :-< 4 mesh on each
vertex, up to 1M bits of memory
per PE, with optional FPU shared
betvneen blocks ol'32 PEs. 23
Gflops peak and 5.6 Gfiops
sustained.

Driven by a host of VAX,
Sun, or Symbolies 36410, Lisp
emnpiler, Fo1tran9'D, C‘, and
“Lisp supported by PARIS

Active
Memory
Technology
D.¢'iP6i]fl
Family

A fine-grain, bit-slice SIM!) array
of up to 40945 PEs interconnected
by a square mesh with I K bitsper
PE, orthogonal and 4-rie ighb-or
links, 20 GLPS and 560 Mflops
peak pertbcrrnauoe.

Provided by host VAXfVl‘vl5
or UNIX Fortran-plus or
.-'iPi'tL on D.-'iP, Fortran T? or
C on host.

\ PRAM AND vLs| MODELS
Theoretrcal models of parallel computers are abstracted from the physical morlels studied in
previous sections. These models are often used by algorithm designers and ‘v'LSl device.-‘chip

developers. The ideal models provide a convenient framework for developing parallel algorithms without
worry about the implementation details or physical constraints.

The models can be applied to obtain theoretical performance bounds on parallel computers or to estimate
‘v'LSl complexity on chip area and execution time before the chip is fabricated. The abstract models are

F?» Mtfiruw Hlllrlimpwtnw

Ill i Advotriced Cmnpiunerfiuehtitectere

also useful in scalability and programmability analysis. when real machines are compared with an idealized
parallel machine without worrying about communication overhead among processing nodes.

1.4.1 Parallel Random-Access Machines
Theoretical models ofparallel computers are presented below. We define first the time and space complexities.
Computational tractabilny is reviewed for solving difiicult Problems on computers. Then we introduce the
rnrirfom-net-ess ntnchine {RAM}, ,rJar.tiHcf rttrirforri-access rratehim’ {_PRAlt-ll]-, and variants of PRAl'VIs. These
complexity models facilitate the study of asymptotic behavior of algorithms implementable on parallel
computers.

Tilrre and Space Cornplexities The complexity of an algorithm for solving a problem of size s on a
computer is determined by the execution time and the storage space required. The time complexity is a
function of the problem sire. The time eorrr,rJiexi1['jt-' function in order notation is the ns_t-vrrprorie time eonzp!e.\'ity
of the algorithm. Usually, the worst -ease time comp lexity is considered. For example, a time complex ity gs]
is said to be U‘ [Haj], read ‘“orderf{s)“, if there exist positive constants cl, cg and st, such that 1-, f{sj 5 ,g1'_s']
5 c;_,t'(sj__ for all nonnegativc values of s > so.

The space com,rJierir_v can be similarly defined as a function of the problem size s. The tts_}vqrJ!orit- spite-e
conyrltrxity refers to the data storage oflarge problems. Notcthat the program {_ code] storage requirement and
the storage fbr input data are not considered in this.

The time complexity ofa serial algorithm is simply called s'eriti1co:rr,r)i'e.rir_\-: The time complexity of a
parallel algorithm is called ;mr.nl'fcr' eom;JIe.\ir_1-'. lmuitively, the parallel complexity should be lower than
the serial complexity, at least asymptotically. We consider only alercrminisrie nl'g0ri.thm.s, in which every
operational step is uniquely defined in agreement with the way programs are executed on real computers.

Anonderermin isrie algorithm: contains operations resulting in one outcome from a set ofpossible outcomes.
There exist no real computers that can execute nondcterministic algorithms. Thereibre, all algorithms (or
machines] considered in this book are deterministic, tmless otherwise noted.

NP‘-Completeness An algorithm has apol\-'nomit1l eomrrferin-' if there exists apolynomial p{s'] such that the
time complexity is O(p {sl} for problem size s. The setofprob lems having polyno mial-complex ity algorithms
is called P-elms (for polynomial class]. The set of problems solvable by nondcterministic algorithms in
polynomial time is called NP-class‘ { for nondcterministic polynomial class).

Since deterministic algorithms are special cases ofthe nondcterministic ones, we know that P -1: NP. The
P -class problems are computationally n'ttc-ttrble, while the NP — P-class problems are inrrnetttbie. But we do
not know whether P = NP or P as NP. This is still an open problem in oomputcr science.

To simulate a nondcterministic algorithm with a deterministic algorithm may require exponential time.
Therefore, intractable NP-class problems are also said to have exponential-time complexity.

L»-l
égl Example 1.4 Polynomial- and exponential-complexity

algorithms
Polynomial-complexity algorithms are known for sorting n numbers in Ofn log rt] time and for multiplication
of two rt X rt matrices in O'{n3j time. Therefore, both problems belong to the P-class.

PM‘ I Ifllli l'm'rIq|r_.\.I|n*\ _

Rrrdlel Cunpuoer Models 1 3 |

Nonpolynomial algorithms have been developed for tl1e traveling salesperson problem with complexity
Qfrlzl") and for the knapsack problem with complexity O\[E"Pj. These complexities are eJq'Jom:nIr'oi, greater
than the polynomial complexities. So far, deterministic polynomial algorithms have not been found for these
problems. Therefore, these exponential-complexity problems belong to the NP-class.

Most oomputcr scientists believe that P sfi NP. This leads to the conjecture that there exists a subclass,
called NP-c-0nipLcIe(:l\lPC] problems, such that NPC C NPbut NPCFN P = l,'.'1{'Fig. 1.13]. ln fact, it has been
proved that ifany NP-complete problem is polynomial-time solvable, then one can conclude P = NP. Thus
NP-complete problems are oonsidered the hardest ones to solve. Only approximation algorithms can be
derived for solving the NP-complete problems in polynomial time.

NP NP: Nmdotormlnistlc poly nonial
time class

® P: Polynomial-time class.
MPG: NP-oompiete elass

Hg. 1.1! The relationships conjectured among the NP. E and NFC eimses of eompumrlonal pmhaloms

FRAM Models Conventional uniproccssor computers have been modeled as random |:Ic‘£'e’.i‘.S‘ nmehines
(RAM) by Shepcrdson and Sturgis (1963). A ,rJ.omHe1 r.ondom-access nmchirie [PRAMIII model has been
developed by Fortune and Wyllie ([973] for modeling idealized parallel computers with zcno synchronization
or memory aeeess overhead. This PRAM model will be used for parallel algorithm development and for
scalability and complexity analysis.

An n-processor PRAM (Fig. 1.14} has a globally addressable memory. The shared memory can be
distributed among the prroeessors or centralized in one plaoe. The n process-ors—also called proe:.'s.-ring
demenr.-r {PEs}—opcrate on a synchronized read-memory, compute, and write-memoty cycle. With shared
memory, the model must speciiy how concurrent read and concurrent write of memory are handled. Four
memory-update options are po ssiblc:

Tlghtty 9
synchronized Shaved

lvlemory

Fig. 1.14 PRAM model of a m:.|-ltlproceseor system width shamed mernc.r_y. on which all n processors operate
in loekstep in morn-ory access and pmgrarn ea-teoutl-on operations. Each processor can access any
memory location in unit time

F?» Mtfiruw Hlllr'».-rqtwrnw

31 i Advanced Covnpultertllrcirttteettrre

t Erc1'tt.sr'te read (ER}—This allows at most one processor to read fi'om any memory location in each
cycle, a rather restrictive policy.

~ Erulttsrte it-'rr're [EWl—This allows at most one processor to write into a memory location at a time.
' Concurrent read‘ (CR)—This allows multiple processors to read the same information from the same

memory cell in the same cycle.
' C'orrt'rtr'rt'rtr ‘l1-Tile’ {'CW_l—This allows simultaneous writes to the same memory location. In order to

avoid confusion_ some policy must be set up to resolve the write conflicts.

Various combinations of the above options lead to several variants of the PRAM model as specified below.
Since CR does not create a conflict problem, variants differ mainly in how they handle the CW conflicts.

FRAM ibriant: Described below arc four variants of the PRAtvI model, depending on how the memory
reads and writes are handled.

{'1} EREW~PR.*fM rrmdel—This m-odcl forbids more than one processor from reading or writing the same
memory cell simultaneously (Snir, 1982; Karp and Ramachandran, 1935]. This is the most restrictive
PRAM model proposed.

{2} CIli'Ellr'-PR.'l.1-f rrr-rtnlci'—Thc write conflicts are avoided by mutttal exclusion. Concurrent reads to thc
same memory location are allowed.

{'3} ERCll~"-PR.-IM rrrm;l'cl—This allows exclusive read or concurrent writes to the same memory location.
{'-fl] CREW-PR.-1M rrtod'e!—This model allows either concurrent reads or concurrent writes to the same

memory location.

3?) Example 1.5 Multiplication of two n >< n matrices in O(log
n) time on a PRAM with nil log n processors
(Viktor Prasanna,1992)

Let A and B be the input matrices. Assume rt3 PEs are available initially. We later rcduce the number of PEs
to rtj.-‘log rt. To visualize thc algorithm, assume the memory is organized as a three-dimensional array with
inputs A and B stored in two planes. Also, for the sake ofexplanation, assume a three-dimensional indexing
ofthe PEs. PE{t',j, Ir], D S It E rt — l are used for computing the[i,_,r‘]th entry ofthe output matrix, Cl E r',_,t' S
rt — l, and rt is apowerofl

ln step l, rt product terms corresponding to each output are computed using rt PEs in Cl-['1 j time. In step E,
these are added to produce an output in Oflog rt) time.

Thc total number of PEs used is rti. The result is available in C-'(i,j, fl), ll E i,_,r'£ rt -1. Listed below are
programs for each PE{i,j, Ir] to execute. All rtl PEs operate in parallel for rtj multiplications. But at most rt‘l.-"2
Pet are busy for or‘ - rt’) additions. Also, the PRAM is assumed to be crtsw.

Step 1
l. Rea-tl.-l{r',kj
.2. Read B{k,jj

War If J11!!!‘ I'mt!I;|(1rtnr\

Rrrdlel Cornptrtaer Models i i 3 3

3. Compute .*t{'t', kl X B{.i',_jj
4. Store in C{i,j, Ir)

Step I
l. E‘ <— tr
Z. Repeat

E<— H2
if-[Ir s: E] then

begin
Read C{'i,j, Ir]
Read C'{1',j, i'r+ E)
Compute C(r',j, Ir) + C.'{r',_,r', k+ E‘)
Store in C(i,j, Ir]

end
until (E = 1)

To reduce the numbcrof PEs to n3.~"log rt, use a PE array of size n >< n >< n.-‘log rt. Each PE is responsible tor
computing log n product terms and su.t|:u‘ning them up. Step l can be easily modified to produce n.-‘log rt partial
sums, each consisting of log n multiplications and {logn — 1] additions. Now we have art array C-[:r',_,r',kj,'U S
i,_,r' Sn - l, G S it S n.-‘log n — l, which can be summed up in log(n.-‘log rt] time. Combining the time spent in
step l and step 2, we haw: a total execution time 2 log n — l + log{n.-‘log nj = Oflog rt] for large n.

Discrepancy with Physical Model: PRAM models idealize parallel computers, in which all memory
references and pmgram executions by multiple processors are synchronized without extra cost. In reality,
such parallel machines do not exist. An SIMD machine with shared memory is the closest architecture
modeled by PRAM. However, PRAL-I allows different instructions to be executed on different processors
simultaneously. Therefore, PRAM really operates in synchronized MIMD mode with a shared memory.

Among the four PRFM variants, the BREW and CREW are the most popular models used. In fact,
every CREW algorithm can be simulated by an EREW algorithm. The CREW algorithm runs faster than an
equivalent EREW algorithm. It has been proved that the best n-processor EREW algorithm can be no more
than Oflog rt] times slower than any n-processor CRCW algorithm.

The CREW model has received more attention in the literature than the ERCW model. For our purposes,
we will use the CRCW-PRAM model unless otherwise stated. This particular model will be used in defining
scalability in Chapter 3.

For oomplexity analysis orperfoflnflltce comparison, various PRAM variants offeran ideal model ofparallel
computers. Therefore, computer scientists use the PRAM model more often than computer engineers. ln this
book, we design parallel-“vector computers using physical architectural models rather than PRAM models.

The PRAIM model will be used for scalability and performance studies in Chapter 3 as a theoretical reference
machine. PRAM models can indicate upper and lower bounds on the performance of real parallel comp-uters.

1.4.2 VLSI Complexity Model
Parallel computers rely on the use of VLSI chips to iahricate the major components such as processor
arrays, memory arrays, and large-scale switching rietworks. An A T‘ model ior two-dimensional VLSI chips

Par MIGIITLH HI" l'mrJI||r_.u|i¢\ :

34 i Advanced Colnpiieerfiiclritaeru-.ra

is presented below, based on the work of Clark Thompson (1950). Three lower bounds on \-‘LS-l circuits
are imerpreted by Jeffrey Ullman {I984}. The bounds are obtained by setting limits on memory, l.-‘CI, and
communication for implementing parallel algorithms with VLF‘.-l chips.

The AT‘, Nlodel Let A be the chip area and The the latency for completing a given computation using a
VLSI circuit chip. Let s by the problem size involved in the computation. Thornpson stated in his doctoral
thesis that for certain computations, there exists a lower boundfls] such that

If >< Tie oifou (1.6)
The chip area A is a meas ure of the chip's complexity. The latency Tis the time required irom when inputs

are applied until all outputs are produced for a single problem instance. Figure l.l 5 shows how to interpret
the AT: complexity results in VLSI chip development. The chip is represented by the base area in the two
horizontal dimensions. The vertical dimension corresponds to time. Therefore, the three-dimensional solid
represents the history ofthe computation performed by the chip.

Memory Bound on Chip Arno There are many computations which are memory-bound, due to the need
to process large data sets. To implement this type of computation in silicon, one is limited by how densely
information {bit cells) can be placed on the chip. As depicted in Fig. l.l5a, the memory requirement oi" a
computation scts a lower bound on the chip area .»l.

The amount of information processed by the chip can be visualized as information flow upward across the
chip area. Each bit can flow through a unit area of the horizontal chip slice. Thus, the chip area bounds the
amount of memory bits stored on the chip.

HO Bound on Volume AT The volume of the rectangular cube is represented by the product AT. As
information flows through the chip for a period oftime T, thc number of irlput bits cannot etcccd the volume
AT, as demonstrated in Fig. l. 15a.

Time Time

, Gmparoa

{at Memory-iim ited no und on chip area {ht Communicntim-limited bound on the
A and ID-limited hound on chip hiatoiy bl$BCllOfl HT
repress riled by the volume AT

.....L9'1 Kin5-§
Fig. 1.15 The At’ oornpletdry model of ruvo-dimensional v|_5| chips

The If J11!!!‘ I'ml!I;|(1rHt\

Riteflel Cunputaw Med-ets _ i 35

The area A corresponds to data imo and out ofthe entire surface ofthe silicon chip. This areal measure sets
the maximum l.-‘O limit rather than u.sing the peripheral l.~"O pads as seen in conventional chips. The height T
ofthe volume can be visualized as a number of snapshots on the chip, as computing time elapses. The volume
represents the amount of infomtation flowing through the chip during the entire course of the computation.

Bixaction Communication Bound, <-JET Figure l.l5b depicts a communication limitod lower bound
on the bisection area The bisection is represented by the vertical slice cutting across the shorter
dimension ofthe chip area. The distance ofthis dimension is for a square chip. The height ofthe cross
section is T.

The bisection area represents the maximum amount of intbrmalion exchange between the two halves of
the chip cireuit during thc time period T. The cross-section area JET limits tl1c communication bandwidth
of a computation. VLSI complexity theoreticians have used the square ofthis measure, 1-{T1, to which the
lower bound applies, as seen in Eq. 1.6.

I»)
lg Example 1.6 VLSI chip implementation of a matrix multi-

plication algorithm (Viktor Prasanna,1992)

This example shows how to estimate the chip area A a.nd compute time T for rt >< n matrix multiplication
C = A >< B on a mesh ofproeessing elements -[PEs] with a broadcast bus on each row and each oolumn. The
2-D mesh architecture is shown in Fig. 1.16. Inter-PE commmtication is done through the broadcast buses.
We want to prove the bound AT! = Ofiflj by developing a parallel matrix multiplication algorithm with time
T= O[_n_] in using the mesh with broadcast buses. Therefore, we need to prove that the chip area is bounded
by .-1 = O{_n2].

Each PE occupies a unit area, and the broadcast buses require Ofnzj wire area. Thus the total chip area
needed is O{n3] for an n >< n mesh with broadcast buses. We show next that then >< n matrix multiplication can
be performed on this mesh chip in T= Olin) time. Denote the PEs as PE(i',j],'[l E r',_,r' E rt — 1.

[nitially the input matrix elements .»t(i,j} and B-[:r', j] are stored in PE{i,j_) with no duplicated data. The
memory is distributed among all the PEs. Each PE can access only its own local memory. The tbllowing
parallel algorithm shows how to perform the dot-product operations in generating all the output elements
C|['r',j)= 12;}, .»t(i, k]>< B{_k,j] tbrtl S r',j£n -1.

36 i Admnced Ciimpimerfiiehitectu-.re

I I I

O0 01 O2 _ 03

If I I ‘l

10 11 12 13.

in I 1 I

20 21 22 23

‘l 1‘ ‘l

3-Ct 31 32 33

Fig. 1.16 A 4 x 4 mesh of processing -elements {PB} wlth broa-clcast buses -on each row and on each ootumn
{Courtesy of Prasarma Ken-iar and Raghav4sndi~a;reprtn1:ed from journd offiirdbt and Dtsrrlbuted
Computing, A.pr~ll 193?}

Dnall1'[]for0Ei,jEn—1
10 PE(i,j] sets C{t,j}to{}fIni1ializaiionf

Do 5'11 fort'l£kSn—l
Dual] 20 for'[l E r'£n—l

20 PE{i, Ir] broadcasts zt{_r', Ir] along its row bus
Doall3(l for'[l £jEn—l

30 PE{k,j] broadcasts B-[ir,f] along its column bus
v‘PE(i',_,i'] now has AU‘, kjand B-[:fr,j'j, (1 S r',j 5 rt — 11"

Dllflll-I‘-10 fortls a',j5n—1
40 PE{r',j) oomputes C{i',j] <— C{i,_,r'j + .4(i, Ir) >< B{.1r,jj
50 Continue

The above algorithm has a sequential loop along the dimension indexed by Ir. lt takes H time units
.. 7 ‘.\ . . 1 .[iterations] in this It-loop. Thus, we have T= t']'{_n]. Therefore, AT‘ = Om‘). {_O'{n)]' = O{nil].

ARCHITECTURAL DEVELOFMENTTRACK5

1 The architectures ofmost existing computers tbllow certain development tracks. Understanding
features of various tracks provides insights tor new architectural development. We look imo

six tracks to be studied in later chapters. These tracks are distinguished by similarity in computational models
and technological bases. We also review a few early representative systems in each track.

1.5.1 Multiple-Fr~ot:essorTraeks
Generally speaking, a multiple-prooessor system can be either a shared-memory multiprocessor or a
distributed-memory multicomputer as modeled in Section 1.2. Bell listed these machines at the leafnodes of

Par I J11!!!‘ l'mrJI|ir_.uii¢\

Rrieflel Cunpuoer Models 1 31

rhe taxonomy tree (Fig. 1.11)). Instead of a horizontal listing, we show a historical development along each
important track of the taxonomy.

Shared-Jlflemory Truck Figure l.1'?a shows a track of multiprocessor development employing a single
address space in the entire system. The track started with the C.mrnp system developed at Carnegie-Mellon
University (Wulf and Bell, 1972]. The C.mmp was an LIMA multiprocessor Sixteen PDP ll.-"1-l'lIl processors
were interconnected to lo shared-memory modules via acrossbar switch. A special iriterprocessor interrupt
bus was provided for first interproccss communication, besides the shared memory. The C .mmp project
pioneered shared-memory multiprocessor development, not only in the crossbar architecture but also in the
multiprocessor operating system {_l-lydra] development.

Stan1iorr:h'Dash
(Lenoski. Henneesy et al, 1992}

Fujitsu VPP5-D0llllnols Cedar (Fujmul |m_ 1992)
Kurzltetal
1sar}

KSR1
CMwc_mmp [Kendall Square Raseareh,1Q9D]
lfwulf and Bell, 19??)

IBM RP3
“Yul, [Pfister at al. 1935]
Ullraeornputer <
tGottIieb et ol. 1982!}

BEN Butterfly
{BBN.19<flQ)

ta} Sharedmemory track
nGUBE-H6400
nCUB/E Corp. 1990)

. lntel 'tPSC’s lntel ParagonGee C be . .tsdglgeelh {lntel Sctentifir: -ii» (lntel Supercomputer
Computers. 1983) Systarna. 1992}

Mosaic MITIJ Machine
t-‘Bait: 1992} {Dally at at. 1992)

(ti) Message-pas-sing track

Fig. 1.1 7 Two mutrtple-processor cracks with and without st1.a.md mo-nory

Both the NYU Ultracomputer project (Gottlieb ct al., 1983] and the Illinois Cedar project {Kuck ct al.,
198'?) were developed with a single address space. Both systems used multistage networks as a system
interconnect. The major achievements in the Cedar project were in parallel compilers arid performance
bcnehrnarleing experiments. The Ultracomputer developed the combining network for fast syneliroirization
among multiple processors, to be studied in Chapter 7.

PM‘ MIGIELH HI" r'mr:qn_.r-um ‘I _

3|] i Advanced Celnpmerfirclritectu-.rc

The Stanford Dash lbcnoslci, Hennessy ct al., 1992) was a HIJMA multiprocessor with distributed
memories formi1'|g a global address space. Cache coherence was enforced with distributed directories. The
KSR-I was a typical CDMA model. The Fujitsu WP 501] was a 222-processor system with a crossbar
interconnect. The shared memories were distributed to all processor nodes. We will study the Dash and the
KSR-] in Chapter 9 and the VPPSGU in Chapter 8.

Following the Ultracomputer are two large-scale multiproccssors, both using multistage networks but
with diiferent interstage connections to he studied in Chapters 2 and 7. Among the systems listed in Fig.
1.17s, only flie KSR-I. VPPSDO, and BBN Butterfly (BBN ftdvaricerl Computers, 1989} were commercial
products. The rest were research systems; only prototypes were built in laboratories, with a view to validate
specific architectural concepts.
Menage-Fbning Track The Cosrnic Cube {Seitz et a1., I981} pioneered the development of message-
passing multicomputers (Fig. 1.17b]. Since then, lntel produced a series of medium-grain hypercube
computers (the iPSC-s}. The nCUBE 2 also assumed a hypercube configuration. A subsequent lntel system
was the Paragon {I 9'92] to be studied in Chapter T. On the research track, the Mosaic C [Seiu-., 1992] and the
MIT J-Machine (Dally at a1., 1992} were two fine-grain multicomputers, to be studied in Chapter 9.

1.5.1 Multivector and 5lMDTracks
The multivector track is shown in Fig. l. 18a, and the SIMD track in Fig. 1.1811, with corresponding early
representative systems of each type.

coc: Cybaf2Ct5 ETA 10
(Lavina, rsszp " rem. Inc. rsasp

CDC TGIDCI
{CDC-197°? Cray Y-MP CrayIMPF'

C 1 {Cray Research, 1989) {Cray Research. 1993)
our{Russel rsrsi

Fri llflrl, NEG. Hitachi Models

r-.1) Mulliu'er1orir'aclt
one are
{AMI inc. rssrr

Goodyear MPF
{Eiatehen 195]:

CH2 CM5
Iliacw |[TMC, 193)) ('l'MC,1Q91:|

{Barnes alaL 1968)
l'rIasF'ar MP1
{Nicltds, 1990)

BSP
{Kuek and Shires. 1982)

IBMGFI11
{Baelem at al, 1'BB5)

(tr) SIMD track

Fig.1.1ll Mtfldveetor and SIMD tracks

Par MI J11!!!‘ l'mrJI||r_.u|r¢\

Model Cornprmzr Models 1 39

Both tracks arc useli.|l for conctrrrcnt scalar-"vectorprocessing. Detailed studies can be found in Chapter 8,
with further discussion in Chapter 13.

Multivector Track These are traditional vector supercomputers. The CDC T600 was the first vector dual-
proccssor system. Two subtraclcs were derived from the CDC 7600. The Cray and Japanese supercomputers
all followed the register-to-register architecture. Cray 1 pioneered the multivoctor development in 19']"8.
The C rayr"MPP was a massively parallel system with distributed shared memory, to work as a back-end
accelerator engine compatible with the C ray ‘fr’-MP Series.

The other subtrack used memory-to-memory architecture in building vector supercomputers. We have
identified only the CDC Cyber 205 and its successor the ETAICI here, for completeness in tracking different
supercomputer architectures.

The SIMD Truck The llliac [V pionecrcd thc construction of SIMD computers, although thc array
processorconccpt can be traced back iar earl icr to the 19605. The subtrack, consisting ofthe Goodyear MPP,
the AMT.-‘DAP6 ll], and the TMC.-‘CM-2, were all SIMD machines built with bit-slice PEs. The CM-5 was a
synchronized l'v'[1'MD machine executing in a multiple-SIMD mode.

The other subtrack corresponds to medium-grain S-[MD computers using word-wide PEs. The BSP
(Kuck and Stokes, 1982] was a shared-memory SIMD machine built with 16 processors updating a group
of 17 memory modules synchronously. The GFII (El-octcm ct al., 1985) was developed at the [BM Watson
Laboratory for scientific simulation research use. The MasPar MP1 was the only medium-grain SIMD
computer to achieve production use in that time period. We will describe the CM-E, MasPar MP1, and CM-5
in Chapter B.

1.5.3 Multlthreaded and DataflowTracks
These two architectural tracks (Fig. 1.19) will be studied in Chapter 9. The following introduction covers
only basic definitions and milestone systems built in the early years.

Tera
[Alverson Sm lth, at al, 1990]

one as-no HEP
[c cc, ta64Ji"{sm1rh tars] MITIAIQM.-lfo

[Agarwal at at, 1939]

[a] Muttlthroacled track

utrr Tagged Token “°"*°°" +1
tA~ln<1 at HI. 19841) " gflfidfgfiim 3‘ " [Nlkhll oral, 1991 J

Static Dataflow
[Dennis 1914;

Manchester S 1 EM5
lJ$“t':D3‘ 1932 'i"[SigHniiifadaeta| tssrt l53l“““*“- 19593

a ll, I

[bl Dataflowtrack

Fig. 1.1! Hrlthhnsadad and dataflow tracks

Ff» Mtfirnii H'["I'nrl!q|glrlII'\' _

Ill i Advanced Cuvnptuneriluchtitaeture

The cont-entional von Neumann machines are built with processors that execute a single context by each
processor at a time. ln other words, each processor maintains a single thread ofeontrnl with its hardware
resources. ln a multithrcaded architecture, each processor can execute multiple contexts at the same time.
The term mufrirlireotfing implies that there are multiple threads ofcontrol in each processor. Multithreading
oifers an efiicctive mechanism ibr hiding long latency in building large-scale multiproccssors and is today a
mature technology.

As shown in Fig. l.19a, the multithrcading idea was pioneered by Burton Smith [1978] in the HEP system
which extended the concept of scoreboarding of multiple functional units in the CDC 6460. Subsequent
multithreadod multiprocessor projects were the Tera computer {Alverson, Smith ct al., 199(1) and the MIT
.-hlewife {Agarwal ct al., 1989) to be studied in Section 9.4. ln Chapters 12 and I3, we shall discuss the
present technological factors which have led to the design of multi-threaded processors.

The Demrfllmrr Track We will introduce the basic concepts of dataflow computers in Section 2.3. Some
experimental datatlow systems are described in Section 9.5. The key idea is to use a datallow mechanism,
instead of a control-flow mechanism as in von Neumann machines, to direct the program flow. Fine~g1'ain,
instruction-level parallelism is exploited in dataflow computers.

As listed in Fig. 1.l9b, the dataflow concept was pioneered by Jae-it Dennis (1974) with a “static”
architecture. 'I'he concept later inspired the development of “dynamic” dataflow computers. A series of
tagged-token architectures was developed at MIT by Arvind and coworkers. We will describe the tagged-
token architecture in Section 2.3.] and then the *T prototype (Nikhil ct al., 199]) in Section 9.5.3.

Another suhtrack of dynamic datafiow computer was represented by the Manchester machine [Gurd and
Watson, 1982). The ETL Sigma 1 {Shimada et al., 198?] and EMS evolved from the MIT and Manchester
machines. We will study the EMS (Sakai ct al., I989] in Section 9.5.2. These datafiow machines represent
research concepts which have not had a major impact in terms ofwidcsprcad use.

1.

~1$\\ Summary

In science and in engineering, theory and practice go hand-in-hand, and any significant achievement
irrvariahly relies on a judicious blend of the two. In this chapter, as the first step towards a conceptual
understanding ofparallelism in computer arcltritecturc, we have looked at thc models ofparallcl computer
systems which have emerged over the years. We started our study with a brief look at the development
of modern computers and computer architecture, including the means of classification of computer
architecture, and in particular Flynn’s scheme of classification.

'I'he performance of any engineering system must he quantifiable. In the case of computer systems.
we have performance measures such as processor clock rate, cycles per instruction (CPI), word size, and
throughput in !t»'l£Ps andfor MFLtJPs, These measures have been defined, and basic relationships between
them have been examined. Thus the ground has been prepared for our study in subsequent chapters ofhow
processor architecture, system architecture, and software determine performance.

Next we looked at the architecture of shared memory multiproccssors and distributed memory
multicomputers, laying the fotmdation for a taxonomy of MIMD computers. A key system characteristic
is whethcrdifierent processors in the system have accesn; to a common shared memory and—ifthey do—

FM MiG-l'i1I-i-' Hfiiformlunm :_
Fbrolkrl Ccmputer Models 4|

whether the access is uniform or non-uniform. Vector computers and SIMD computers were examined,
which address the needs of highly compute-intensive scientific and engineering applications.

Over the last two or three decades, advances in K-"LSl technology have resulted in huge advances in
oomputer system performarrcc; however, the basic architectural concepts which were developed prior to
thc ‘VLSI revolution‘ corrtinue to remain valid.

Parallel random access machine {PRAM] is e theoretical model ofa parallel computer. No real computer
system can behave exactly like the PRAM. but at the same time the PRAM model provides us with a
basis for the study ofparallcl algorithms and their performance in terms of time andfor space complexity.
Difierent sub-types of the PRAM model emerge-, depending on whether or not multiple processors can
perform concurrent read or write operations to the shared memory.

Towartls the end ofthe chapter, we could discern the separate architectural development tracks which
leave emerged over thc years in computer systems. We looked at multiple-processor systems, vector
processing, SIMD systems, and multi—thrcaded and dataflow systems. We shall see in Chapters 12 and 1'3
that, due to various technological factors, multi-threaded processors have gained in importance over the
last decade or so.

&............
Problem 1.1 A 400-l"'lHz processor was used to
execute a benchmark program with the following
instruction mix and dock cycle counts:

Instruction type Instruction count Clo-ck cycle count

Integer aritl'n1e1:ic 45»OiXl0
D-ate transfer IIZOIXIO
Floating point 15C[lJ0
Control transfer SIIOD |'-IIKJIM-l-I

Determine the eifcetlvc CPI. MIPS rate. and execution
time for this program.

Problem 1.2 Explain how instruction set, compil-
er technology CPU implementation and control. and
cache and memory hierarchy affect the CPU per-
formance and justify the effects in terms of program
length. clock rate. and effective CPI.

Problem 1.3 Aworlrstation usesa 1.5 GHZ pro-
cessor with a claimed 1030-HIPS rating to execute
a given program mi:n:.Assurne a one-cycle delay for

each memory access.
{a} What is the effectixe CPI of this computer?
{b} Suppose the processor is being upgraded

with a 3.0 Gl-lz clod-t. However. even with
faster cache, two clock cycles are needed per
memory access. lf 30% of the instructions
require one memory access and another 5%
require two memory accesses per instruction.
what is the performance of the upgraded
processor with a compatible instruction set
and equal instruction counts in the given
program mix?

Problem 1.4 Consider the execution of an
object code with 2 '>< 106 instructions on a 4(1)-l"'lHz
processor.The program consists of four major types
of instructions.The instruction mix and the number
of qrclfi [CPI] needed for each instruction type are
given below based on the result of a program trace
experiment:

TM Hnffirnil-' Hllllfmminnm
42 —

lnstr|.|ccion type CPI Instruction mix

60%

13%

Arithmetic and lcgic 1
Loadistore with I
cache hit
Branch 4
Memory reference B
with cache miss

11%

10%

{a} Calculate the average CPl when the program
is executed on a uniprocessor with the above
trace results.

(b) Calculate the corresponding MIPS rate based
on the CPI obtained in part (a).

Problem 1.5 Indicate whether each of the fol-
lowing statements is true or fialse and justify your
answer with rsoning and supportive or counter
examples:

(a} The CPU computations and IIO operations
cannot be overlapped in a multiprogrammed
computer.

(b) Synchronintion of all PEs in an SIMD
computer is clone by l"ardware rather than
by software m is often done in most MIMD
computers.

(c} As far as programmrability is concerned.
shared-memory multiproccssors offer
simpler interprocessor communication
support than that offered by a message-
passing multicom pute r.

{d} in an MIMD computer". all processors must
execute the same instruction at the same
time synchronously.

(e} As far as scalability is concerned. multicom-
puters with distributed memory are more
scalable than shared-memory multiproces-
sors.

Problem 1.6 The execution times [in seconds} of
four programs on three computers are giyen below:

Assume that 109 instructions were executed in
d'1of the four programs. Calculate the MIPS rating

of each program on each of die dwree machines.
Based on thse ratings. can you draw a clr
conclusion regarding die relative performance of the

Adswrced Cuvnpiuteriliiclnitecture

three computers! Give reasons If you find a way to
rank them statistically.

Execu1:ionT'me [in seconds)

Con1puterA Computer B Computer C
‘I ‘IO 10

Progrln I ‘IUJCI 100 ICI

Progrin 3 5C0 ‘I500 50

‘ICU EBB ‘HID

Progran
Progran 1

Progran 4

Problem 1.7 Characterize the ardwitectural op-
erations of SIMD and MIMD computers. Distinguish
between multiprocessors and multicomputers based
on their structures. resource sharing. and interpro-
cessor communications. Also. esqalain the differenc-
es among UMA. NUMA. and COMA. and NORMA
computers.

Problem 1.8 The following code segment.
consisting of six instructions. needs to be executed
64 times for the evaluation of vector arithmetic
expression: D[l]- =A(l) + B(l]- X C{l) for U E l S 63.

Load Ri . B(l)
Load R2. C(|}
Multiply R]. R2
Load R3. A{|}
Add R3. Ri
Store D(l). R3

IR] 1- Memory (rr + I)!
1R2 <— Memory QB + I)!
JR] <— (R1) '>< {R2}!
1R3 1- Memory (y+ I]-1'
JR3 1- (R3) + {R1}!
{Memory {B + I} <— (R3)!

where R1. R2. and R3 are CPU registers. {R1} is
the content of R1. 11'. [3, y. and B‘ are the starting
memory addressa of arrays B(l). C(l}. A(l}. and D|[l}.
respectively. Assume four clock cycles for each Load
or Store. two cycles for the Add. and eight cycles for
dwe Multiply on either a uniprocessor or a single PE
in an SIMD machine.

(a) Calculate the total number of CPU cycles
needed to execute the above code segment
repeatedly 64 times on an SlSD uniprocessor
computer sequentially. ignoring all od'1er time
delays.

(b) Consider the use of an SIMD computer with
64 PEs to execute the above vector operations

Fbmlkl Canputer Models

in six synchronized vector instructions over
54-component sector data and both driven
by the same-speed clock. Calculate the total
execution time on the SIMD machine. ignoring
instruction broadcast and other delays.

(c) W'hat is the speedup gain of the SIMD
computer over the SISD computer?

Problem 1.9 Prove that the best parallel algo-
rithm written for an n-processor ERE\N PRAM
model can be no more than O[log n} times slower
than any algorithm for a CRCW model of PRAM
having the same number of processors.

Problem 1 .10 Consider the multiplication oftwo
n-bit binary integers using a 1.2-pm CMOS multi-
plier chip. Prove the lower bound AT: > k.n1.where A
is the chip area. T is dae execution time. n is the word
length. and k is a technology-dependent constant

Problem 1.11 Compare the PRAM models with
physical models of real parallel computers in inch of
the following categories:

(a) W'hich PRAM variant can best model SIMD
madaines and how?

(b} Repeat the question in part {a} for shared-
memory Ml MD machines.

Problem 1.11 Answer the following questions
related to the architectural development tracks pre-
sented in Section 1.5:

(a} For the shared-memory track (Fig. 1.17‘). ex-
plain the trend in physical memory organi-
zations from the earlier system (Cmmp) to
more recent systems [such as Dash.etc.).

(b) Distinguish between medium-grain and fine-
grain multicomputers in dweir architectures
and programming requirements.

(c} Distinguish between register-to-register
and memory-to-memory architectures
for building conventional multivector
supercomputers.

(d} Distinguish between single-thrded and
multithrded processor architecturfi.

TM Illnffirlhir Hfllfiurnpennri .

Problem 1.13 Design an algorithm to find the
maximum of n numbers in O[log n) time on an
EREW-PRAM model.Assume that initially chloca-
tion holds one input value. Explain how you would
make the algorithm processor time optimal.

Problem 1.14 Develop two algorithms for fast
multiplication of two n >< n matrices with a system
of p processors. where 1 £ p E naflog n. Choose
an appropriate PRAM machine model to prove that
dwe matrix multiplication can be done in T = Clfnafp)
time.

(a) Prove d"|atT = Ofni} ifp = n.The corresponding
algorithm must be shown. similar to that in
Example 1.5.

(b) Sholw the parallel algorithm with T = O(n]- if p
= n .

Problem 1.15 Match each of the following eight
computer systems: KSR-1 . RP3. Paragon. Dash. C l"’l-2.
VPP500. EM-5. and Tera. with one of the best de-
scriptions listed below.The mapping is a one-to-one
correspondence.

(a) A massively parallel system built with
multiple-context processors and a 3-D torus
architecture.

(b) A data-parallel computer built with bit-slice
PEs interconnected by a hypercubelmesh
network

(c) A ring-connected multiprocessor using a
cache-only memory architecture.

(d) An experimental multiprocessor built with a
dynamic clataflow architecture.

(e) A crossbar-connected multiprocessor built
with distributed processorlmemory nodes
forming a single address space.

ff) A multicomputer built with commercial
microprocessors widw multiple address
spaces.

(g) A scalable multiprocessor built with
distributed shared memory and coherent
caches.

(h) An MIMD computer built with a large
multistage switdaing network.

FM Mnffirirli-' Hflllmminnm

Program and Network
Properties

This daapter covers fundamental properties of program behavior and introduces major classes of
interconnection networlts.V5e begin with a study of computational granularity. conditions for program
partitioning. matching software with hardware. program flow mechanisms. and compilation support for
parallelism. interconnection architectures introduced include static and dynamic networks. Network
complexity communication bandwidth. and data-routing capabilities are discussed.

CONDITIONS OF FARALLELISM
i Thc cxploitation ofparrllclism has crcatcd a ncw dimension in computcr scicncc. ln ortlcrto

move parallel processing into the mainstream of computing, ll.'I'. Kung H991) has identified
the need to make significant progress in three lrey areas: c-mnpumrrmr l'i'NJtl'c’ll1‘ ibr parallcl computing,
inrcrprrx-::s.s'0r c-ommurrinnrion in parallcl architoclurcs, and sjrsrorrr irrregrariori lbr incorporating parallel
systems into general computing cnvirorunents.

A thcorctical trcatmcnt ofparallclism is thus ncc-dc-tl to build a basis for thc above challcngcs. ln practice,
parallelism appears in various ibrms in a computing cnvironmcnt. All forms can bc attributcd to lcvcls oi
parallelism, computational granularity. time and space complexities, communication latencies, scheduling
policies. and load balancing. Very often. tradcoffs exist among time, space. performance. and cost factors.

2.1.1 Data and Resource Dependence:
The ability to execute several program segments in parallel requires each segrnent to be independent of the
other segments. Thc independence comes in various forms as defined below separately. For simplicity. to
illustratc thc idca, we corttidcr thc clcpcndcncc relations among instructions in a program. In gcncral, each
code segment may contain one or more statements.

We use a deyieneferrc-r.' graph to dcscribc thc relation s. Thc nodcs ofa clcpcndcncc graph correspond to thc
program statcmcnts [instructions], and thc dircctcd ctlgcs with dificrcnt labels show tl1c ordcrcd rclations
among the statements. The analysis of dependence graphs shows where opportunity exists for parallellzation
and vectorizalion.

Data Dependence Thc ordering rclalionship bctwecn stalcrncnls is indicated by thc data dependence.
Five types of data dependence are defined below:

,.,W,mm,,,,k,.,,,,,,,. 45
['1] Ffon-' dependence: A statement S2 is_fiot1-'-d't*pendt*nr on statement S1 if an execution path exists from

S1 to S2 and if at least one output {variables as-signedj of S1 feeds in as input {operands to be used] to
S2. Flow dependence is denoted as S1 -3» S2.

(21 .-intidepertdertce: Statement S2 is anridependenr on statement S1 if S2 follows S1 in program order and
ifthc output ofS2 overlaps the input to S]. A direct arrow crossed with a bar as in S1 -l—ZI> S2 dicates
antidependence from 5-1 to S2.

(31 Output dependertce: Two statements are oropur-depenrienr if they produce [write] the same output
variable. S1 0-Eb S2 indicates output dependence from Si to S2.

(41 HO d-epertdeneer. Read and write are [IO statements. l.~"O dependence occurs not because the same
variable is involved but because the same file is referenced by both l.-‘O statements.

(5) Unknon-"n dependent-¢'. The dependence relation between two statements cannot be determined in the
following situations:

' The subscript of a variable is itself subscribed.
' The subscript does not contain the loop index variable.
v A variable appears more than once with subscripts having difierent coeflicients of the loop

variable.
' The subscript is nonlinear in the loop index variable.

When one or more ofthesc condition s ex ist, a conservative assumption is to c laim tmknown dependence
among the statements involved.

I»)
g Example 2.1 Data dependence in programs
Consider the following code fiagment of four instructions:

SI: Load R1, A IRI 1- Men1ory(A).-'
S2: Add R2. RI IRS! <— (RI) + (R2)!
S3: Move Rl,R3 IR] <—[R3]-I
S4: Store B. R1 fMemorv(B) 1- (R1)!

As illustrated in Fig. 2,la, S2 is flow—dep-endent on SI because the variable A is passed via the register
R1. S3 is antidcpcndent on S1 because of potential conflicts in register content in R1. S3 is output-dependent
on S1 because they both modify the same register R1. Other data dependence relationships can be similarly
revealed on a pairwise basis. Note that dependence is a partial ordering relation; that is, the members ofnot
every pair of statements are related. For example, the statements S2 and S4 in the above program are totally
t'rte2'e']Je’rte2'e'Hf.

Nest, we consider a code fiagrnent involving HO operations:
SI: Read (4), A(T) fllead array A from file 4?
S2: Process fProcess data.’
S3: Write [4]. BU) fwrite array B into file 41‘
S4: Close (4) K.‘-lose file 4.-'

: _ PM‘ I Ifllli t'm'rIq|r_.\.I|n*\ _

4% i Adwmced Corr|pu'tae|'Architecbtiv12

As shown in Fig. 2.11:-, the rcadiwrite statements, S1 and S3, are UCI-dependent on each other because
they both access the same file. The above data dependence relations should not be arbitrarily violated during
program execution. Otherwise, erroneous results may be produced with changed program order. The order in
which staternents are executed in a sequential program is well defined and repetitive runs produce identical
results. On a multiprocessor system, the program order may or may not be preserved, depending on the
memory model used. Dctcrrninisrn yielding predictable results can be controlled by a programmer as well as
by constrained modification of writable data in a shared memory.

@—~@
(3) Dgpgndanog graph my |!Ct dependence caused try

accessing tho same filo by
the road and wrtto state-
merits

Flg.2.1 Dara and IID dependence: in the ping:-an ofE>-temple 11

Control Dependence This refers to the situation where the order of execution of statements cannot be
determined before run time. For example, conditional statements will not be resolved until run time. Different
paths taken afier a conditional branch may introduce or eliminate data dependence among instructions.
Dependence may also exist between operations performed in successive iterations of a looping procedure.
[n the following, we show one loop example with and another without control-dependent iterations. The
successive iterations ofthe following loop are control-ino'ependt'nr:

[lo 201 = 1, N
Ail) = Ctll
IF tau) .LT. oi Ail) = 1

2'0 Continue

The following loop has eonnnf-dqrendenr iterations:

[I-It llll = l, N

IF [Ail — 1) 1'11. D) Ail) = 0
I0 Continue

Control dependence often prohibits parallelism from being exploited. Compiler techniques or hardware
branch prediction techniques are needed to get around the control dependence in order to exploit more
parallelism.

R-an urce Dependence This isdiifetent from data orcontrol dependence, which demands the independence
of the work to be done. Resource dependence is concerned with the conflicts in using shared resources,

,.,,,,,,,,,,,,,,,,,,,,,,,,,,, 4,
such as integer units, l]oating—poinl units, registers, and memory areas, among parallel events. When the
conflicting resource is anALU. We call it ALL’ a’epenrir-nee.

Ifthe conflicts involve workplace storage, we call it srorngerfepertderiee. [n the case of storage dependence,
each task must work on independem storage locations or use protected access (such as locks or monitors to
be described in Chapter ll] to shared writable data.

The detection of parallelism in programs requires a check of the various dependence relations.
Bernstein’: Condition: In 1966, Bernstein revealed a set of conditions based on which two processes can
execute in parallel. A pr0ce.ss' is a software entity corresponding to the abstraction of a program fragment
defined at various processing levels. We define the input set I, of a process P, as the set ofall input variables
needed to execute the process.

Similarly, the onninr sor O‘; consists of all output variables generated ailer execution oi" the process P,-.
[nput variables are essentially operands which can be fetched from memory or registers, and output variables
are the results to be stored in working registers or memory locations.

Now, consider two processes P, and P; with theirinput sets 1| and I; and output sets O I and O3, respectively.
These two processes can execute in parallel and are denoted P| P; if they are independent and therefore
create deterministic results.

Formally, these conditions are stated as follows:
1, rs 0: = pl
12rwO,=::i} (2.1)
O, rw 03 = p t

These three conditions are known as Bernstein is eonriirrimis. The input set If is also call-od the mod set‘ or
the .n’om.nin of P; by other authors. Similarly, the output set O; has been called the \\1--l"t'l!'r.’.i‘-r.’I or the range of a
process P,-. in terms of data dependences, Bernstein's conditions simply imply that two processes can execute
in parallel if they are flow-independent, antiindcpendent, and output-independent.

The parallel execution of sueh two processes produces the same results regardless of whether they are
executed sequentially in any order or in parallel. This is because the output of one process will not be used
as input to the other process. Furthermore, die two processes do not modify (write) the same set of variables,
either in memory or in the registers.

In general, a set ofprocesscs, P I, P3, , Pg can execute in parallel if Bomstein's conditions are satisfied
on apairwise basis; that is,P| | Pg |P_q | |P;,_ ifand only il"P, |P_,- for all iafij. This is citeirlpliliotl by the
following program illustrated in Fig. 2.2.

P)
g Example 2.2 Detection of parallelism in a program

using Bernstein's conditions
Consider the simple casein which each process is a single HLL statement. We want to detect the parallelism
embedded in the following five statements labeled P I, Pg, P3, P4, and P, in program order

W _ H‘-r Mclinrw HJ'lI|:'im-.-;n_.-.-|-rs _
43 Ii mama Cnu'npu1JerArchitecuue

.F‘|:C=D><E]
l=5;.w=c;+c
@;,1=s+c} (2.2)
1=:,;c=r.+.w-
.F_',:F=G'+E j

Assume that each statement requires one step to execute. No pipelining is considered here. The depenclenee
graph shown in Fig. 2.2a dernenstrates flow dependence as well as resouree dependence. In sequential
execution. five steps are needed (Flg. 2.2b).

0 P~
0 Pi'*®

P3

{aj A dependenee graph showing both data dependence [solid arrows)
and resource deperdence[dasl1ed snows)

D
E Time

P1

G C
+B

Pg as
1'. A s P15 asG Pdlfll

I

E 3 LP2 Paps
P5 M

P4
F 1 C A F

[bi Sequential execution in five sens, [c] Parallel execution in three steps,
assuming one step perstatement assuming two adders are available
{no pipelining) per step

Fig.1.1 Denecnbn of parallelism in the prugrarn of Example 11

If two adders are available simultaneously, the parallel execution requires only three steps as shmvn in
Fig. 22¢. Pairwise, there are ll] pairs of statements to check against Bernstein's eoitditicms. Only 5 pairs, P,

| P5, P; | P3, P; | P5, P5 | P3, and P, '_| P5, can execute in parallel as revealed in Fig. 2.2a if there are no

,.,,,,,,,,,,,,_,,,,,.,,,,,,,, 4,
resource conflicts. Collectively, only P; I P3 I P, is possible (Fig. 2.20] because P; I P3, P3 I P5, and P, I
P; arc all possible.

In gcncral, thc parallelism relation I is commutative; i.c., P, I implies Pf; I P,-. Bill the relation is not
transitive; i.c., P, I 111,- and 11,- I Pk do not necessarily guarantee P, I Pg For example, we have P, I P, and F,

I P3, but P, II P3, whcrc II mcans P, and P3 cannot cxccutc in parallcl. ln other words, thc ordcr in which P,
and P; arc crtccutcd will make a diifcrcncc in thc computational results.

Thcrciorc, I is not an equivalence relation. l-Iowcver,.P,- I Ff, I Pk implies assoclativity; i.c. (P, I Pi] I P, =
P, I t P,- I P1], since the order in which the parallel executable processes are executed should not make any
diffcrcncc in thc output scts. lt should bc notcd that thc condition 1, {"1 I,-as cl docs not prcvcnt parallelism
bctwccn P, and i

Violations ofany one or moreofthe three conditions in 2.1 prohibits parallelism between two processes.
In general. violation of any one or more ofthe 3n('n W2 Bernstein's conditions among n processes prohibits
parallelism collectively or partially.

ln gcncral, data dcpcndcncc, control dcpcndcncc, and rcsourcc depctrdcn-cc all prcvcnt parallelism from
bcirrg cxplo itab lc.

The statement-level dependence can be generalized to higher levels, such as code segment, subroutine,
process, task, and program lcvcls. Thc dcpcndcncc of two highcr lcvcl objects can bc inicrrcd from thc
dcpcnidcnoc of statements in the corresponding objects. Thc goals of analyzing thc data dcp-cndcncc,
control dependence, and resource dependence in a code an": to identify opportunities for parallelization or
vectorization. Hardware techniques for detecting instruction-level parallelism in a running program are
dcscribod in Chapter 12.

Very often program restructuring or code transformations need to be performed before such opportunities
can bc rcvcalcd. Thc dcpcndcncc tclations arc also used in instruction issuc and pipclinc scheduling operations
dcscribod in Chapter 6 and 12.

2.1.2 Hardware and Sofinuare Parallelism
For implementation ofparallclism, we need spccia] hardware and software support. In this section, we address
these support issues. We first distinguish between hardware and soflware parallelism. The mismatch problem
bctwccn hardware and sofiwarc is discusscd. Thcn wc dcscribc thc fundamental conocpt of compilation
support nccdod to closc thc gap bctwccn hardware and software.

Details of special hardware functions and software support for parallelism will be treated in the remaining
chapters. The key idea being conveyed is that parallelism cannot be achieved flee. Besides theoretical
conditioning, joint cfibrts bctwccn hardware dcsigncrs and swoihvarc programmers arc nccdcd to cxploit
parallelism in upgrading computer pcrformancc.

Hardware Parallelism This refers to the type of parallelism defined by the machine architecture and
hardware multiplicity. Hardware parallelism is ottcn a firnction of cost and performance tradeoffs. It displays
thc resource utilization patterns of simultaneously cxccutablc operations. It can also indicate the pcalr
performance of thc proocs sor rcsourccs.

One way to characterize the parallelism in a processor is by the number of instruction issues per machine
cycle. If a processor issues It instructions pcr machine cycle, then it is called a It-i.ssrrc process-o r.

_ F|'>r'MfGJ'|Ili' H“ I'mt!I;|(1rHt\ _

50 i Aohioinccd Computer architecture

A conventional pipelinod processor takes one machine cycle to issue a single instruction. These types of
processors an: called one-issue machines, with a single instruction pipeline in the processor. ln a modem
processor, two or more instructions can be issued per machine cycle.

For example, the lntel i96OCA was a three-issue processor with one arithmetic, one memory access, and
one branch instruction issued per cycle. The LBM FJSC!System 6000 is a four-issue processor capable of
issuing one arithmetic, one memory access, one floating-point. and one branch operation per cycle.
Sofhtnnre Hnra.llcl.i:m This type of parallelism is revealed in the program profile or in the program flow
graph. Software parallelism is it function of slgoritlun, programming style, and program design. The program
flow graph displays the partems of simultaneously executable operations.

.39
Consider the example program graph in Fig. 2.3a. There are eight instructions {four loans and fourririrhrrierie
operations) to be executed in three consecutive machine cycles. Four load operations are peribrrned in the
first cycle, followed by two nmlri;J{i- operations in the second cycle and two addrlsubrrric-I operations in the
third cycle. Therefore. the parallelism varies fi'om 4 to 2 in three cycles. The average software parallelism is
equal to SE3 = 2.6? instructions per cycle in this example prograrn.

New consider execution of the same program by a two-issue processor which can execute one memory
access (load or write) and one arithmetic {aid subrraer. mrrlriflrilt-1 etc.) operation simultaneously. Willi this
hardware restriction, the program must execute in seven machine cycles as shown in Fig. 2.3b. Therefore.
the hernia-‘are par'oHel'r'.sm displays an average value of Sf? = 1.14 instmctions executed per cycle. This
demonstrates a mismatch between the software parallelism and the hardware parallelism.

Example 2.3 Mismatch between software parallelism and
hardware parallelism (Wen-Mel Hwu,1991)

Q Cyda1

{Q Cycla2

--"G ‘1Y='='3
Q, Cydo4es-1 e e e “

Cyda 2 Q Q G

Cydo 2. Q. ‘Q 9 Cycle s

A El

Cyde 5

Q Cycle 7
Ly: Load opsation
Xy: Multiply operation 5

{ai snfiwaa pad“-Em {bl Hadwae paalslism

Fig. 2.3 E:-reetrclng an in-rarrtp-lc program by a 1:we~lssue swperscalar processor

yaw,mMm,yyy _ 5|
Let us try to match the software parallelism shown i11 Fig. 2.3a in a hardware platform oi‘ a dual-processor

wstem, where single-issue processors are used. The achievable hardware parallelism is shown in Fig. 2.4.
where US stands for lonrfflsrore operations. Note that six processor cycles are needed to execute the I2
instructions by two processors. .S'| and .5‘; are two inserted stone operations, and I5 and lg, are two inserted
form‘ operations. These added instructions are needed for interproccssor communication through the shared
memory.

99

Q Cydoi

Q Clyde-2
US: Loaoilfi-‘ore op-orainn
JIC Mtlqaly operation

Gilda 3 +.l—: Aodfiubioet operation

Cyde 4}
Added
I‘tEtlI't.|Glol'E
or iPe

I’ Cycle s

0 Cycle 6

A s

1.-fies

so

Fig.1.4 Dual-processor omcutloo niche program in Fig. 13:.

Of the many types of sottware parallelism, two are most frequently cited as important to parallel
programming: The first is mnrrol parol'!ch's.-rt, which allows two or more operations to be performed
simultaneously. The second type has been called darn porrillclisrri, in which almost the same operation is
perfomied over many data elements by many processors simultaneously.

Control parallelism, appearing in the form of pipelining or multiple functional units, is limited by the
pipeline length and by the lmlltiplicity of functional units. Both pipelining and functional parallelism are
handled by thc hardware; programmers need take no special actions to invoke thorn.

Data parallelism offers thc highest potential for concurrency. It is practiced inboth SIMD and MIM.D modes
on MPP systems. Data parallel code is easier to write and to debug than control parallel code. Synchronization
in SIMD data parallelism is handled by the hardware. Data parallelism exploits parallelism in proportion to the
quantity ofdata involved. Thus data parallel computations appeal to scaled problems, in which the pcrforniancc
of an MPP system does not drop sharply with the possibly small sequential fraction in the program.

To solve the mismatch problem bctwccn software parallelism and hardware parallelism, one approach is
to develop compilation support, and the other is through hardware redesign for more efficient exploitation of
parallelism. These two approaches must cooperate with each othcrto produce the best result.

FM Mtfiruw titmpwtns _
51 i Aahtcvtced Con'tpu'terAt'chtitectut'e

Hardware processors can be better designed to exploit parallelism by an optimizing compiler. Pioneer work
in processor technology with this objective was seen in the IBM 801, Stanford MIPS, and Berkeley IUSC.
Such processors use a large register filc and sustained instruction pipelining to cxceutc nearly one instruction
per cycle. The large register file supports fast access to temporary values generated by an optimizing compiler.
The registers are exploited by the code optimizer and global register allo-cater in such a compiler.

The instruction scheduler exploits the pipeline hardware by filling brunch and Juan’ delay slots. [rt
superscalar processors, hardware and sofiware branch prediction, multiple instruction issue, speculative
execution, high bandwidth instruction cache, and support for dynamic scheduling are needed to facilitate the
detection of parallelism opportunities. Further discussion on these topics can be found in Chapters 6 and 12.

1.1.3 The Role of Compilers
Compiler techniques are used to exploit hardware featttres to improve pcrfortnartee. The pioneer work on the
IBM PL.8 and Stanford sttss compilers aimed for this goal. Other early optimizing compilers for exploiting
parallelism included the CDC STACK.LlB, Cray CFT, Illinois Parafrase, Rice PFC. Yale Bulldog, and Illinois
IMPACT.

In Chapter ll], we will study loop transformation, software pipelining, and features developed in existing
optimizing compilers for supporting parallelism. Interaction between compiler and arcllitecttue design is a
necessity in modern computer development. Conventional scalar processors issue at most one instruction
per cycle and provide a few registers. This may causc excessive spilling of temporary results from the
available registers. Therefore, more software parallelism may not improve performance in conventional
scalarprocessors.

There exists a vicious cycle of limited hardware support and the use of a naive compiler. To break the
cycle, ideally one must design the compiler and the hardware jointly at the same time. Interaction between
the two can lcad to a better solution to the mismatch problem between software and hardware parallelism.

The general guideline is to increase the flexibility in hardware parallelism and to exploit software
parallelism in control-intensive programs. Hardware and softtvaie design tradcoffs also exist in terms of cost.
complexity, expandability, compatibility, and perfort-nancc_ Compiling for multiproccssors is much more
challenging than for uniprocessors. Both granularity and communication latency play important roles in the
code optimization and scheduling process.

PROGRAM PARTITIOHI NG AND SCHEDULING

_ This section introduces the basic definitions of computational granularity or level of
parallelism in programs. Communication latency and scheduling issues are illustrated

with programming examples.

2.1.1 Grain Sizes and Latency
Grrtirt size or grrmtdririrtr is a measure of the amount ofcomputation involved in a software process. The
simplest measure is to count the number of instructions in a grain [program segment). Grain size determines
thc basic program segment chosen for parallel processing. Grain sizes are commonly dcscribcd as fine.
me:-fiuni or course, depending on thc processing levels involvod.

,,,,W, ,,,,_,,_,,,,,.,,,,,,, 5,
Latency is a time measure of the communication overhead incurred between machine subsystems. For

example, the mcrrrcry infers-_r-' is the time required by a processor to access the memory. The time required for
two processes to synehroniioe with each other is called l.l'lB s'r=nc.irronr':orri'Jn l'are'nc_t-'. Computational granularity
and communication latency are closely related, as we shall see below.

Parallelism has been exploited at various processing levels. As illustrated in Fig. 2.5, five levels of
program execution represent different computational grain sizes and changing communication and control
requirements. The lower thc level, the finer the granularity of the software processes.

[n general, thc execution ofa program may involve a combination ofthesc levels. The actual combination
depends on the application, formulation, algorithm, language, program, compilation support, and hardware
characteristics. We characterize below the parallelism levels and review their implementation issues from the
viewpoints ofa programmer and of a compiler writcr.

Instruction Level At the lowest level, a typical grain contains less than 20 instructions, calledfine grain
in Fig. 2.5. Depending on individual programs, fine-grain parallelism at this level may range from two to
thousands. Butler et al. (1991) has shown that single-inst1'uetion-stream parallelism is greater than two. Wall
{I991} finds that the average parallelism at instruction level is around five, rarely exceeding seven. in an
ordinary program. For scientific applications. Kumar (1988) has measured the average parallelism in the
range of 500 to 3000 Forl:ra.n statements executing concurrently in an idealized environment.

,

|_m,-9| 5 Jobs or programs

-Coarse grain
Suop-rograms, job T

stops or rotated
parts of a progam

Level 4

>~ lvlacllum grain
Increasing
conrnunleatlon
demand and
schaclullng
overhead

Y

Laval 3

Lovol 2

Level 1

Procodires,
suh-routlrrn-s, taslas,

or no-routinesL)

ilNonrneurslvo to-ops or
unfolded ltaratlons

Instructions or
statements

t» Flna gra In

Higher dagoa
of parallelism

i}
Fig. 2.5 Levels of parallelism in program execution on modem cornprueers {Reprinted from l-twang. Prue. JEEE,

October 1937}

The exploitation of fine-grain parallelism can he assisted by an optimizing compiler which should be able
to automatically detect parallelism and translate the source code to a parallel form which can be recognized
by the run-time system. Instruction-level parallelism can be detected and exploited within the processors, as
we shall sec in Chapter 12.

ma if run! |:'nm;u;um1
54 i AoManccdCon'|po'tcr.luchritectusc

Loop Level This corresponds to the iterative loop operations. A typical loop contains less than SUD
instructions. Some loop operations, if independent in successive iterations, can be vectorlzed for pipelined
execution or for lock-step ertocution on SIMD machines. Some loop operations can be self-scheduled for
parallel execution on MIMD machines.

Loop-level parallelism is often the most optimized program construct to execute on a parallel or vector
-computer. However, recursive loops are rather diflieult to parallclizc. Vector processing is mostly exploited
at the loop level {level 2 in Fig. 2.5) by a vectorizing compiler. The loop level may also he considered a line
grain of computation.

Procedure Level This level corresponds to medium-grain parallelism at the task, procedural, subroutine,
and coroutine levels. A typical grain at this level contains less than 2000 instructions. Detection ofparallelism
at this level is much more diflicult than at the finer-grain levels. lnterprocedural dependence analysis is much
more involved and history-sensitive.

{Iommunication requirement is often less compared with that required in MIMD execution mode. SPlv'I.D
execution mode is a special case at this level. Multitasking also belongs in this category. Significant efforts
by programmers may be nccdod to restructure a program at this level, and some compiler assistance is also
needed.

Subprogram Level This corresponds to the level ofjob steps and related subprograms. The grain size may
typically contain tens or hundreds of thousands of instructions. Job steps can overlap across different jobs.
Subprograms can be scheduled for dii1"erent processors in SPMD or MPMD mode, often on message-passing
multico mp uters.

Multiprogramrning on a uniprocessor or on a multiprocessor is conducted at this level. Traditionally,
parallelism at this level has been exploited by algorithm designers or progranuners, rather than by compilers.
Good compilers for exploiting medium- or coarse-grain parallelism require suitably designed parallel
programming languages.

job |‘Pnogrnmj Level This corresponds to the parallel execution oi‘ essentially independent jobs (programs)
on a parallel computer. The grain size can be as bigh as millions of instructions in a single program. For
supercomputers with a small number of very powerful processors, sueh coarse-grain parallelism is practical.
Job—level parallelism is handled by the program loader and by the operating system in general. Time-sharing
or space-sharing multiproccssors explore this level of parallelism. In fact, both time and space sharing are
extensions of multipmgramm ing.

To surnmarizc, line-grain parallelism is often exploited at instruction or loop levels, preferably assisted by
a parallelizing or vectorizing compiler. Medium-grain parallelism at the task or job step demands significant
roles for the programrner as well as compilers. Coarse-grain parallelism at thc program level relics heavily
on an eilective OS and on the efficiency ofthe algorithm used. Shared-variable communication is often used
to support fine-grain and medium-grain computations.

Message-passing multicomputers have been used for medium- and coarse—grain computations. Massive
parallelism is ofien explored at the fine-grain level, such as data parallelism on SIMD or Milt-ID computers.

Communiontion Lntency By balancing granularity and latency, one can achieve better performance of
a computer system. Various latencies are attributed to machine architecture, implementing technology, and
communication pottcms involved. The architecture and tcclmology afiiect the design choices for latency
tolerance between subsystems. 1n fact, latency imposes a limiting factor on the scalability of the machine

Pro-gum and NetworkProps ' i 55

sine. For example, over the years memory latency has increased with respect to processor cycle time. ‘Various
latency hiding or tolerating techniques will be studied in Chapters 9' and I2.

The latency incurred with interproeessor communication is another important parameter for a system
designer to minimize. Besides signal delays in the data path, LPC latency is also affected by the communication
pattems involved. In gcnctal, n tasks communicating with each other may require ntn - l)f2 communication
links among them. Thus the complexity grows quadratically. This leads to a communication bound which
limits the number of processors allowed in a large computer system.

Communication patterns are determined by the algorithms used as well as by the architectural support
provided. Frequently encountered patterns include permurruions and br0on‘c¢r.sr. rrtrrfricttsr, and c-oryierenc-e
{many-to-many) eommunications. The communication demand may limit the granularity or parallelism. Very
oilen tradoo fi's do exist between the two.

The communication issue thus involves the reduction of latency or complexity, the prevention ofdeadlock,
tninintizing blocking in communication patterns, and the tradeoff between parallelism and communication
overhead. We will study techniques that minimize communication latency, prevent deadlock, and optimize
grain size in latter chapters of the book.

2.1.2 Grain Packing and Scheduling
Two fitndamental questions to ask in parallel programming are: (i) How can we partition a program into
parallel branehes, program modules, mierotasks, or grains to yield the shortest possible execution time? and
(ii) What is the optimal size ot" concurrent grains in a computation‘?

This grain-size problem demands determination of both the number and the size of grains {or microtasks)
in a parallel program. Of course, the solution is both problem-dependent and machinedependent. The goal is
to produce a short schedule for fast execution of subdivided program modules.

There exists a trradeoffbetwcen parallelism and scheduling." synchronization overhead. The time oomplexity
involves both computation and eommtmication overheads. The program partitioning invoh-es the algorithm
designer, programmer, compiler, operating system support, etc. We describe below a grain ;mt-It-ing approach
introduced by Kruatraehue and Lewis (I938) for parallel programming applications.

I»)
8] Example 2.4 Program graph before and after grain packing

(Kruatrachue and Lewis, 1988)

The basic concept of program partitioning is introduced below. In Fig. 2.6, we show an example program
graph in two different grain sizes. A program graph shows the strucnirc of a program. It is very similar
to the dependence graph introduced in Section 2.1.1. Each node in the program graph corresponds to a
computational unit in the program. The grain .st':e is measured by the number of basic machine cycle-5
-[including both pro-eessor and memory cycles) needed to execute all the operations within the node.

We denote each node in Fig. 2.6 by a pair (rt. st, where rt is the node mime {id} and s is the grain size of the
node. Thus grain size reflects the number of computations involved in a program segment. Fine-grain nodes
have a smaller grain size. and coarse-grain nodes have a larger grain size.

1 _ . 1 I.‘ IBM‘ ln¢r.q|r_.u|»rs

Sfi i Aahvmced Compuoernrchitecuue

The edge label (rt, cl) between two end nodes specifies the output variable rt from the souroe node or the
input variable to the destination node. and the communication delay d between them. This delay includes all
the path delays and memory latency involved.

There are 1? nodes in the fine-grain program graph (Fig. 2.6a) and 5 in the coarse-grain program graph
(Fig. lob]. The coarse-grain node is obtained by combining {grouping} multiple line-grain nodes. The line
grain corresponds to the following program:

Q 6""tsflsd. , was
"'4 at Yd

[x,t'_| {lnp-it, delay]
mg. [u.k) - (output, delay) ‘M W,‘ mg

[bl Coarse-grain program graph
{at Fine-grain program graph before packing afigf pagkjng,

C‘! 11"_o.-t _o.F."'5‘or
"en "*o

Fig. 2.! A program graph before and alter grain paddrt; in Example 1.4 {Modified from Kmatradwe and Lewis.
lEE.E Seflvm.ns,]an. 1933]

Var rt, b,c-, d,e,_,i", g, Fr, i,_,r', k, I, m, n,o,p, q
Begin

. rr:= :=e><f
_. {J := :=d><_f

:= =j><k
= :=4>< l

_ = :=3>-Cm

.‘°P°.“'~'?"*.*'.~‘=*!-"-"“ -:.~.—Home
P:ovu-.p.t-.:t~.1-— >4 E. iiliiiin-mi :~1:'="'t*:'=-E-"F‘~":-"P ~e"t:o:5-->v-"--

= :=n><r'
g:=.n><h :=o><ft

'= :=p><q
r:=n‘><e

End

,,_,W,,mMN,k,¢ 5,
Nodes l, 2, 3, 4, 5, and 6 are memory reference (data fetch} operations. Each takes one cycle to address

and six cycles to fetch from memory. All remaining nodes (7 to 1?) are CPU operations. each requiring two
cycles to complete. After packing, thc coarse-grain nodes have larger grain sizes ranging from 4 to R as
shown.

The node (A, 8) in Fig. 2.61) is obtained by combining the nodes (1, 1), (2, 1), (3, 1}, [4, I), (5, 1], (6, 1),
and (ll. 2) in Fig. 2.6a. The grain size, 8. of nodeAis the summation of all grain sizes (1 + l + l + 1 * 1 +
1 + 2 = 8) being combined.

The idea of grain packing is to apply fine grain 1"n'st in order to achieve a higher degree of parallelism.
Then one combines (packs) multiple fine~g1'ain nodes into a coarsegrain node if it can eliminate unnecessary
communications delays or reduce thc overall scheduling overhead.

Usually, all fine-grain operations within a single cc-arse-grain node arc assigned to the same processor for
execution. Fine-grain partition of a program often demands more interprocessor communication than that
required in a coarse-grain partition. Thus grain packing offers a tradeofi‘between parallelism and scheduling!
communication overhead.

Internal delays among fine-grain operations within thc same coarse-gtain node are negligible because thc
communication delay is contributed mainly by interprocessor delays rather than by delays within the same
processor. The choice of the optimal grain size is meant to achieve the shortest schedule for the nodes on a
parallel computer system.

"'

F3 .._-3I _._=-=.

9.

11}
11
12

7 14 t 14*
T|m _ 15a 13: .

2°'— 2122-—
24 24
2a 2!'f__§ I

:.=.2=
E

_-mi

#33 _. -4es
‘I

Iii

[3] Flno grain [Fig. 2.63] [h-) Coarse grain [Flg. 2.61:]

Fig. 2.‘! Scheduling of the fins-grain and coarse-grain programs (arrows: idle dme; shaded area: communication
fiche!

_ War MIGIIILH H“ I'mr!I;|(1rtnr\ _

5-B i Aoktolnced Colrnputer Architecture

With respect to the line-grain versus coarse-grain program graphs in Fig. 2.6, two multiprocessor schedules
are shown in Fig. 2.7. The fine—grain schedule is longer (42 time units) because more communication delays
were included as shown by the shaded area. The coarse-grain schedule is shorter (38 time units) because
communication delays among nodes 12, 13, and 14 within the same node D (and also the delays among 15,
115, and 17 within the node E) are eliminated after grain packing.

2.1.3 Static Multiprocessor Scheduling
Grain packing may not always produce a shorter schedule. In general, dynarnic multiprocessor scheduling
is an NP-hard problem. Very olien heuristics are used to yield suboptimal solutions. We introduce below the
basic concepts behind multiprocessor scheduling using static schemes.

Node Duplication In order to eliminate the idle time and to further reduce the communication delays
among processors, one can duplicate some ofthe nodes in more than one processor.

Figure 2.3a shows a schedule without duplicating any of the five nodes. This schedule contains idle time
as well as long interproccssor delays {S units) between Pl and P2. In Fig. 2.3b, node A is duplicated into A’
and assigned to P2 besides retaining the original copy A in P1. Similarly, a duplicated node C’ is copied into
Pl besides the original node C in P2. The new schedule shown in Fig. 2.Sb is almost 50% shorter than that
in Fig. 2.3a. Thc reduction in schedule time is causcd by elimination ofthe (a, 8] and (c, B] delays between
the two processors.

P, P2 P, P2 P2 P1 P2

e4 4
5 a,1 a.1 5 4

3,1 III Bo o re H 9l D

Q u,1 e,1 'i‘ 13

2“ a
[a] Schedule without node dupd lcaion [bl Schooua with node clu plleatlon {A-1 A and A’; C -1» C and -C’)

‘UP’

1*o‘o~5- _@4» _n-

l\Jto-n '-IInIt-I ca::- if
.4?B5II5"‘ 86-"=

P
ah.-5

Fig. 2.8 Node-duplication scheduling to eliminate cmtamutlcarlon delays between processors (I: idle rims;
shaded areas: communication delays}

Grain packing and node duplication are often usedjointly to determine the best grain size and corresponding
schedule. Four mqor steps are involved in the grain determination and the process ofscheduling optimization:

Step l . Construct a fine-grain program graph.
Step 2. Schedule the fine-grain computation.
Step 3. Perform grain packing to produce the coarse grains.
Step 4. Generate a parallel schedule based on the packed graph.

Pm,mMm,k,¢ 5,
The purpose ofmultiproeessor scheduling i5 to obtain a minimal time schedule for the eompulations

involved. The following example clarifies this concept.

5*)
Figure 2.9 shows an example ofhow to calculate the grain size and communication latency. ln this example,
two 2 >< 2 manic-es A and B are multiplied to compute the sum ofthe four elements in the n:.a"|.|lting product
matrbt C = .-I >< B. There are eight multiplications and sea-'-en additions to be perfonned in this pmgrzmi, as
written below:

[A11/412] X[51131:] =[c11C12]
1411142 321322 C2152

5“ -“+1 *1 B11 A12 *1 33

Example 2.5 Program decomposition for static multipro-
cessor scheduling (Kruatrachue and Lewis, 1 988)

lc=1er2 G-rmiazeifli Gyg-15;-93

‘t1t><5'-g G1g‘*11><511"-‘\:2><32;
CPU CYCLE CPU CYCLE

Mme w An. D1 15 Move L PARLD1 213
Move W B1101, D2 15 Move L PARZU2 20
MPTYD1, D2 T1 ADDL DI, D2 B
MOVE L D2. PAR 219 MOVE L D2. P5-UM 20

{a)GII"1 alze cdulaim I‘| M6-B000 aasemlily code e120-MHz eyele-

E {S I-in E d=T'l+T2+T3l'T4+T5+TG

=ZO+2D+32+2‘D+2CI+10fl
T1 T2T3_m T5 =212cydea

T3 = 32-on ianarllssen tine at 20 Mops
 nom1aizedtoM68fiDC|cydea120 MI-lz.

T6 = oehy one ta eoilware proboeh {aaeune 5
Mow Iemiotlene, 1130;

{h}1Calc1ulauen oi oemmuueaton delay d

A 4:» C D E F -1-1,1d d *

N G 5 u '5'P
Sun

(<>1FIw~;:I-I1 WWW each
Fig. 2.! Caicu-laeion of graln size and comrmmdcadon delay for the pang:-nan graph in Example 15 {Cotnecsy of

Kruatnehue and Lewis: reprinted witli permission irmn IEEE Sofhmie. 19$}

H _ l'h1'Ml.'I;IflH1I' HI" l'nrr.q|r_.u||rs 5

HI i Aohlolnced Corrtpu'ae|'At'chitecbt11re

C11:-’l|1><3|1'l'/l|2><32|
C12 =fl|1><3|2‘l'fl|;'><B22
C21:-"i21><311+-"i2:><B:1
C22 = 11:1 >< 5'12 + -"122 >< 322

5Hm =C11+C1:+C:1+C-'2:
As shown in Fig. 2.9*a., the eight multiplications are performed in eight 431 nodes, each ofwh ich has a grain

size of 101 CPU cycles. The remaining seven additions are performed in a 3-level binary tree consisting of
seven $ nodes. Each additional node requires S CPU cycles.

The interprocessor cornrnunication latency along all edges in the program graph is eliminated as rt = 212
cycles by adding all path delays between two communicating processors (Fig. 2.9b).

A fine-grain program graph is thus obtained in Fig. 2.9c. Note that the grain size and communication delay
may vary with the difierent processors and communication links used in the system.

Figure 2.10 shows scheduling of the fine—grain program first on a sequential uniprocessor (Pl) and then
on an eigltt-processor [Pl to P8) system (Step 2}. Based on the fine-grain graph (Fig. 2.9c), the sequential
execution requires 364 cycles to complete without incurring any communication delay.

Figure 2.lDb shows the reduced schedule of T41 cycles needed to execute the I5 nodes on E processors
with incurred communication delays (shaded areas}. Note that the communication delays have slowed clown
the parallel execution significantly, resulting in many processors idling {indicated by 1), except for Pl which
produces the final sum. A speedup factor ol‘li64l"1‘4l = 1.16 is observed.

P1 P2 P3 P4 P5 Pa P? Pa
o E F o 1-1 C

"11 1 101 . 1 'B . .
2o2—

P__ Q il _A Cl

F"*—%/-{ft117,:

303-i‘D 313
45¢i 321 me

" E
“M sosT 522.. 1

G

T41filfi
B24
"2 Ill]M Ir]8-48-M Isl

r 554 Iil
[a] Asoquontlal schedule [b] A parallel schedule

&\\W%/

Fig. 2.10 Seqoertrlal versus parallel sehed1.tI1-tgin Exarnple 15

Next we show how to use grain packing (Step 3] to reduce the communication overhead. As shown in
Fig. 2.11, we group the nodes in the top two levels into four coarse-grain nodes labeled V, W, X, and Y. The

,.,,E,,,,,,,,,._,,,,,,,,,,,,,, ‘I
remaining three nodes (N, O, P) then form the fifth node Z. Note that there is only one level of interprocessor
communication required as marked by rt in Fig. 2.lla.

P P P‘ F’O 1 2 3 4

co ° E Go e_ o _ 202 J
210 -

,1 . ' <1 Time If

, Z

@210 ' v=w=x=~r=1o1+1o1+s=21o {M5z=a+a+a=24 '

<-:. ca E
'l'l

><
I

-<

[oi Grain packing of 15 small nodes |nto5 bigger no-dos [bi Parallel s1::i'1eciutoforti'1o packed program

Hg. 2.11 Parallel seheduiing for Exarrnpie ‘1.5 atrer grain pedcirtg to reduce eornnnmieariort delays

Since the maximum degree of parallelism is now reduced to 4 in the program graph, we use only four
processors to cxccutc this ooarsc-grain program. Aparallcl schedule is worked out (Fig. 2. 1 1] for this program
in 4415 cycles, resulting in an improved speedup of8t'1-H446 — 1.94.

PROGRAM FLOW MECHANISMS
2 Conventional computers arc based on il control flow mechanism by which thc order ofprogram

execution is explicitly stated in the user programs. Datailow computers are based on a data-
driven mechanism which allows the execution of any instruction to be driven by data (operand) availability.
[Jatatiow computers emphasize a high dcgrcc of parallelism at the fine-grain instructional lcvcl. Reduction
computers are based on a demand-driven mechanism which initiates an operation based on the demand for
its results by other computations.

2.3.1 C-orrtml Flow\i"ersus Data Flow
Conventional yon Ncu mann computers use a progmrrr -:-onmer (PC) to sequence the execution of insir|.tctio1:1s
in a program. The PC is sequenced by instruction flow in a program. This sequential execution style has been
called cm1rroi-dr1'w_v1, as program flow is explicitly controlled by programmers.

A uniprocessor computer is inherently sequential, due to use of the cone-oi driven mechanism. However,
control flow can he made parallel by using parallel language constructs or parallel compilers. In this book,
we study primarily parallel control—ilow computers and their programming techniques. Until the data-driven
or demand-driven mechanism is proven to be cost-effective, the control-flow approach will continue to
dominate thc computer industry.

I _ Par I J11!!!‘ l'mrJI||r_.u|n¢\

BI i Aahmtced Corr|pn'te|'Ar'chritecbtrn2

ln a daraflow computer, the execution of an instruction is driven by data availability instead of being
guided by a program counter, ln theory, any instruction should be ready for execution whenever operands
become available. The instructions in a data-driven program are not ordered in any way. instead of being
stored separately in a main memory, data are directly held inside instructions.

Computational results. {rrnra mirens} are passed directly between instructions. The data generated by an
instruction will be duplicated into many copies and forwarded directly to all needy instructions. Data tokens,
once consumed by an instruction, will no longer he available for reuse by other instructions.

This data-driven scheme requires no program counter, and no eonlrol sequencer. However, it requires
special mechanisms to detect data availability, to match data tokens with needy instructions, and to enable
the chain reaction of asynchronous instruction executions. No memory sharing between instructions results
in no side effects.

Asynchrony implies the need for handshaking or token-matching operations. A pure dataflow computer
exploits fine—grain parallelism at the instruction level. Massive parallelism would be possible if the data-
driven mechanism could be cost-effectively implemented with low instruction execution overhead.
A Dataflow Architecture There have been quite a few experimental datafiow computer projects. Anrind
and his associates at MIT developed a tagged-token architeetme for building dataflow computers. As shown
in Fig. 2.12, the global architecture consists ofn processing elements {PEs} interconnected by an n >< n routing
network. The entire system supports pipclined dataflow operations in all n PEs. Inter-PE eontnntnieations are
done through the pipelinod muting network.

From routing network

gal
D§

O’
Local path "5

I P

Global pan
Compute

Tao
I n i< n Rotting Hatwortr 1

-H
-s

81¢ 3Processing Etamo

To Routing Network

[3] Tho global architecture [bi lntorla design of a pro-coaxing olomont

Flg.I.1‘Z The l*'lIT uggnd-'|tolten clamflow oornputier {aehptted from Arvind and lannuoel. 1936 with permission)

Within each PE, the machine provides a low-level Iokm-nmfr-hing mechanism which dispatches only
those instructions whose input data [tokens] are already available. Each datum is tagged with the address of

.,W,mmN,kkg _._ H
thc instruction to which it belongs and the context in which thc instntction is being executed. Instructions
are stored in the program memory. Tagged tokens enter the PE through a local path. The tokens can also
be passed to other PEs through the routing network. All internal token circulation operations are pipclincd
without blocking.

{Jae can think oi‘ the instruction address in a datafiow computer as replacing the program counter, and
the context identifier replacing the frame base register in a control flow computer. It is the machine’s job to
match up data with the same tag to needy instructions. In so doing, new data will be produced with a new tag
indicating the successor instructiontsl. Thus, each instruction represents a synchronization operation. New
tokens are formed and circulated along the PE pipeline for reuse or to other PEs through the global path,
which is also pip-clined.

Another synchronization mechanism, called the 1-so-in-runs, is provided within each PE. Tl1e 1'-structure is
a tagged memory urtit for overlapped usage ofa data structure by both the producer and consumer processes.
Each word Of I-stt't.tCtt.tDE uses a I-bit tag indicating whether the word is £'.|'flpI_'1-‘, isjirli, or has pending react‘
requests. The use ofI-structure is a retreat fi'om the pure dataflow approach. The purpose is to reduce excessive
copying of large data structures in datallow operations.

Ir)
g Example 2.6 Comparison of dataflow and control-flow

computers (Gajski,Padua, Kuel-r,and K|.|hn,1982)

The dataflow graph in Fig. 2.l3a shows that 24 instructions are to be executed (8 niw'des, 8 mulriplres, and
8 adds). A dataflow graph is similar to a dependence graph or program graph. The only difference is that data
tokens are passed around the edges in a dataflow graph. Assume that each rrriri rmri'rr}Jl_t-', and dit-'r'rr’c requires
1, 2, and 3 cycles to complete, respectively. Sequential execution oi‘ the 24 instructions on a control [low
uniprocessor takes 48 cycles to complete, as shown in Fig. 2.l3b.

On the other hand, a dataflow multiprocessor completes the execution in 14 cycles in Fig. 2.13c. Assume
that all the cxtcmal inputs (d,-, cl-,_f; ihri = l, 2, . ..,8 and q-,'j are available bcibrc entering the loop. With i'ot.n'
processors, instructions. 0|, Hg, 113, and or are all ready for execution in the l‘n'st three cycles. The results
prod uccd then triggcr the -execution of115, in | , rig, and .n-_|- starting finm cycle 4, The data-driven chain reactions
arc shown in Fig. 2. l 3e. The output ca is the last one to produce, due to itsdcpcndcncc on all thcprcvious cl-‘s.

Figure 2. l 3d shows the execution of the same sct of computations on a conventional multiprocessor using
shared memory to hold the intermediate results [s,- and r,- for i = 1, 2, 3, 4). Note that no shared memory is
used in the dataflow implementation. The example does not show any time advantage of datafiow execution
over control flow execution.

The theoretical minimum time is I3 cycles along the critical path rt | h |c|r-3 . “C8. The chain reaction control
in datallow is more ditlicult to implement and may result in longer overhead, as compared with the uniform
operations performed by all the processors in Fig. llid.

H _ rhr I.‘ IBM!‘ I l'nrr.q|r_.u||r\ 5

'54 i Aohtotnced Cornptmer Architecture

1"P"1d~ 9-f ‘*1 "152 9243 93d-ti ‘*4 do "5 dc “ed? “Wis °s
cD=0

iorlfromltofldo
h I232.; 312 33 34 35 36 3? 36
bl; .-. f1 f f f4 f fa f? f

"cg: '1-|'*2"-Baht: be babtbee
Otllfll-.l'l3, U, C ' f1 1:3 Cd 13-5 gs‘ QB’

[ajfitsampieptogramandttsdataflowgraph

.l?_~_p-+ —-Inf-_¢-

1 4 6 7? 1|} 12 #3 46 4-B
I *1 I b1l*=1l as I be Isl

[bi Sequential execution on a unlpro-oeesor In #8 cycles

4 (7 1491011121314
*1 I *5 l°1|°2|°al°#l°5l°sl°t|e°B|

£1ti’ Kf.
.%.J

E‘Zr
.%.ha‘

gr_ atmg‘E.._.

[c] Data-driven exotatflon on a 4-1:-1'0-oemor dataflow computer In 14 cyctes

T 9 11 121314
31 as '11 I *5 |$1|l1|'=1|°5| $1=t’2*t*1-*1='*3"$1-‘=1=b1*“o-°5=*’s*°4

‘*6 l [_$2[l2|_°;|°t-§~| @'2=b4*b3-*2==-1"52-¢2=51*'=o-¢c=$s*°=1
‘*3 3? D3] ll? l"_3[_‘a|°3]°?| 53:56‘be-la=t'?"5a~°3=‘1*°o-°?=‘a*°4
‘*4 “B |s4ll4|°4|°B| *4=be*t'?-*4=s=1*$3'°=1=l2"°o-‘=e=l4"°4

tjd] Parallel execution on a shared-memory 4-pro-oossor system in H cycles
-‘viviji1

no

.;N

‘iilk- ?if mu’

Fig. 2.13 Comparison between datiflerw and control-flow computers [adapted from Grajsltl. Pacl1.n,K.u|:lt. and
Kuhn, ‘E952; reprinted with permission from IEEE Computer. Feb. 1931}

Cine advantage of tagging each datum is that data from different contexts can be mixed freely in the
instruction execution pipeline. Thus, instruction-level parallelism of datafiow graphs can absorb the
communication latency and minimize the losses due to synchronization waits. Besides token matching
and l-strllctttre, compiler technology is also needed to generate datafiow graphs for tagged-token dataflow
computers. The dataflow architecture ol‘l'e1s in theory a promising model For massively parallel computations
because all for-reaching side effects are removed. However. implementation ofthese concepts onacommercial
scale has proved to be very diflicult.

PmmmN,kkg _._ is
2.3.2 Demand-Driven Mechanisms
In a reduction rnnt-hinc, the computation is triggered by the demand for an operation's result. Consider the
evaluation ofa nested arithmetic expression tr = {U1 + 1} '>< c — {rt + cl]. The data-driven computation Seen
above chooses a bottom-up approach, starting from the innermost operations b + I and tr’ + c, then proceeding
to the >< operation, and finally to the outermost operation —_ Such a computation has been called eager
ct-mtinrion because operations are carried out immediately after all their operands become available.

A dcmmiri’o‘rit-on computation chooses a top-down approach by first demanding the value ofn, which
triggers the demand for evaluating the next-level expressions [in + l}>< c and n‘ + c, which in tum triggers tl1c
demand tor evaluating b + 1 at the innermost level. The resttlts are then returned to the nested dectnandcr in
the reverse order before tr is evaluated.

Adetnand-driven computation corresponds to hrzy e-t-nlmrinn. because operations are executed only when
their results are required by another instruction. "The demand driven approach matches naturally with the
functional programming concept. The removal of side efiircts in functional programming makes programs
easier to parallelize. There are two types of reduction machine models, both having a recursive control
mechanism as characterized below.
Reduction Machine Model: In a string reduction model, each demander gets a separate copy of the
expression for its o\vt| evaluation. A long string expression is reduced to a single value in a recursive fashion.
Each reduction step has an operator followed by an embedded reference to demand the corresponding input
operands. The operator is suspended while its input arguments are being evaluated. An expression is said to
be fully reduced when all the arguments have been replaced by literal values.

In a graph rcducrimi model, the expression is represented as a directed graph. The graph is reduced by
evaluation of branches or subgraphs. Diiilicreot parts of a graph or subgraphs can be reduced or evaluated
in parallel upon demand. Each demander is given a pointer to the result of the reduction. The demander
manipulates all rciercnccs to that graph.

Graph manipulation is based on sharing the atgtrtncnts using pointers. This traversal of the graph and
reversal ofthe rcilercnccs are continued tmtil constant arguments are encountered. This proceeds until the
value of ti is determined and a copy is rettuned to the original demanding insuuction.

2.3.3 Comparison of Flow Mechanisms
Control-flow. dataflow, and reduction computer architectures are compared in Table 2.1. The degree of
explicit control decreases fi'om control-driven to demand-driven to data-driven. Highlighted in the table are
the dillcrences between eager ct-'.trlu.trIi7r;tn and ltrzy ct-‘nitration in data-driven and demand-driven computers.
respectively.

Furthermore. control tokens are used in control-flow computers and reduction machines, respectively. The
listed advantages and disadvantages of the dataflow and reduction machine models are based on research
findings rather than on extensive operational experience.

liven though conventional von Neutnann model has many disadvantages, the industry is still building
computers following the control-flow model. The choice was based on cost—efl'ectiveness, marketability, and
the narrow windows of competition used by the industry. Program flow mechanisms dictate architectural
choices. Both dataflow and reduction models, despite a higher potential for parallelism, are still concepts in
the research stage. Control-flow machines still dominate the market.

.'55 N Aohioinced Computer Ai'chitecture

Table 2.1 Corrtrol-Flow, Datoflow, and Reduction Computers

."t-fuclrin-t.' .'H0dt'f I.’_'o.rr.|'m-1' Firm‘ fconrmf-dri ten) Dalaflan' |"da.t.r.t-drr'ven) Re'dr.rc.rion {J£'rru.rnuLd'ri\=e'n}

Coiiveiitioual computation; token
Basic of control indicate: when a
Definition statement should he executed

Eager evaluation; statements
are esecuted when all ot'tl1ei|'
operands are available

Leary evaltiatio-J1; statements
are executed only when
their result is required for
another computation

Full control

The most sueoensliil model
for commercial products

Very high potential for
parallelism

Only required instructions
are executed

fidvaiitage-i —

Complex data and control
l [iph throughput lligli degree of para llelisrn

structures are easily implemented Free from side effects Easy manipulation of data
structures

lri theory, less cflicieirit than the
other two

Time lost waiting for
unneeded arguments

Docs not support shining ct‘
objects with cluutgiug local
state

Disadvamagcs Difficult in preventing run-time
t".‘.'l'l'O‘l’S

lligh control overhead

Difiicult in manipulating
data structures

Time needed to propagate
demand tokens.

(Courtesy olwali, Lowrie, and Li; reprinI.e=d with p-eimission from Computersfor A‘rnfficiol intelligence Pmcersing edited
by Wah and Ra.maJ:noorthy, Wiley and Sons. l.uc., 1990]

In this book, we study mostly control-flow parallel computers. But dataflow and rnultithreadcd architectures
will be further studied in Chapter 9. Dataflow or hybrid von Neumann and dataflow machines otter design
alternatives; .i‘fl"-EH1’?! proccs.-rr'ng { see C hapter 13) can be considered an example.

As far as innovative computer architecture is conccmed thc dataflow or hybrid models cannot he ignored.
Both thc Electroteclmical Laboratory (ETL) in Japan and the Massachusetts institute of Technology have
paid attention to these approaches. The book edited by Gaudiot and Bic (1991) provides details of some
development on dataflow computers in that period.

SYSTEM INTERCONNECT ARCHITECTURES

_ Static and dynamic networks for interconnecting computer subsystems or for constructing
multiproccssors or multicomputers are introduced below. We study first the distinctions

between direct networks for static connections and indirect networks for dynamic connections. These
networks can be used for internal connections among processors, memory modules, and HO adaptors in a
centralized system, or for distributed networking of rnulticoniputcr nodes.

Various topologies for building networks are specified below. Theo we focus on thc communication
properties of interconnection networks. These include latency analysis, bisection bandwidth, and data-routing
functions. Finally, we analyze the scalability ofparallcl architecture in solving scaled problems.

,,,,,,, ,,,,,,,,,,,,,,,,,,,, _,_ ,,
The communication efliciency of the underlying network is critical to the performance of a parallel

computer. What we hope to achieve is a low-latency network with a high data transfer rate and thus a wide
communication bandwidth. These network properties hclp make design choices for machine architecture.

2.4.1 Network Properties and Routing
The topology of an interconnection network can be either static or dynamic. Static nem'orks are formed
of point-to-point direct connections which will not change during program execution. D_.\-Wflmfl‘ m'fWm'ir-s
are implemented with switched channels, which are dynamically configured to match the communication
demand in user programs. Packet switching and routing is playing an important role in modern multi-
processor architecture, which is discussed in Chapter 13; the basic concepts are discussed in Chapter T.

Static networks are used for fined connections among subsystems of e centralized system or multiple
computing nodes of a distributed system. Dynamic networks include buses, crossbar switches, multistage
networks, and routers which are often used in shared-memory multiprocessors. Both types of networks have
also been implemented for inter-PE data routing in SIMD computers.

Before we discuss various network topologies, let us define several parameters often used to estimate the
complexity, communication efficiency, and cost of a network. In general, a network is represented by thc
graph of a finite number of nodes linked by directed or undirected edges. The number of nodes in the graph
is called the nervvorir sire.

Node Degree and Network Diameter The number of edges {links or channels) incident on a node is
called the node degree d. In the case oftmidircetional channels, thc number ofchanncls into a node is the in
degree, and that out ofa node is thc our degree. Then thc node degree is thc sum ofthe two. Thc node degree
reflects the number of IIO ports required per node, and thus the cost of a node. Therefore, the node degree
should be kept a (small) constant, in order to reduce oost. Aeonslant node degree helps to achieve modularity
in building blocks for scalable systems.

The rfirrmerer D of a network is the maximum shortest path between any two nodes. The path length is
measured by the number of links traversed. The network diameter indicates the maximum number of distinct
hops between any two nodes, thus providing a figure of communication merit for the network. Therefore, t:he
network diameter should be as small as possible from a communication point ofvicw.

Bfseetlon Width When a given network is cut into two equal halves, the minimum number of edges
{channels} along thc cut is called thc ehrmmsl bisection it-'idrh b. In the cascofa communication network, each
edge may correspond to a channel‘ with w bit wires. Then thc nits’ hr'.serrion u-'r'nl‘h is B = bu‘. This parameter
B reflects the wiring density of a network. When B is fixed, the channel‘ it-'in'rh (in bits} w = Bib. Thus the
bisection width provides a good indicator ofthe maximum commtmication bandwidth along thc bisection of
a network.

Another quantitative parameter is the wire length (or channel length] between nodes. This may affect
the signal latency, clock skewing, or power requirements. We label a network s__tmmen-r‘-:- ifthe topology is
the same looking from any node. Symmetric networks are easier to implement or to program. Whetlter the
nodes arc homogeneous, the channels are buffered, or some ofthe nodes arc switches, arc some oth-cr useftil
properties for characterizing the structure of a network.
Data-Routing Fmention: A data-routing network is used for inter-PE data exchange. This routing network
can be static, such as the hypercube routing network used in the TMCICM-2, or dynarnic such as the multistage

Ft‘:-r Mtfiruw Hliir '_ ml!I;|(1rtnr\

BB i i Aahtotnced Computer Architecture

network used in the IBM GFI 1. ln the case of a multicomputer network, the data routing is achieved through
message passing. Hardware routers are used to route messages among multiple computer nodes.

We specify below some primitive data-routing functions implementable on an inter-PE routing network.
The versatility of a routing network will reduce the time needed for data exchange and thus can significantly
improve the system performance.

Commonly seen data-routing fimctions among the PEs include Sflffiing. mmri.-m. perm1.1mIr'mI {one»to-
one), hronrierrsr (one-to-all], mnfrieosr [one-to-many}, shuflie, arehrrnge, etc. These routing ftmctions can be
implemented on ring, mesh, hypercube, or multistage networks.
Permutation: For n objects, then: are n! permutations by which the n objects can he reordered. The set of
all perm utations form a permutation group with respect to composition operation. One can use cycle notation
to specify a permutation function.

For example, the permutation rr = fa, b. e] (rt. 2] stands for the bijection mapping; £1 —a b, in —> r-, e -> rt,
rt’ -3- e, and e —> din a eireiilar fashion. The cycle (rt. F). c) has a period of3, and the cycle (d, e) a period ofl
Combining the two cycles, the permutation rr has a period of2 >< 3 = 6. lfone applies thc permutation rrsix
times, the identity mapping I = ii-rt), U1), {ej, frfj, {cl is obtained.

One can use a crossbar switch to implement the permutation in connecting rt PEs among thernselves.
Multistage networks can implement some ofthe permutations in one or multiple passes through the network.
Permutations can also be implemented with shifting or broadcast operations. The permutation capability of
a network is often used to indicate the data routing capability. When n is large, tl1e permutation speed often
dorm inates the perfo rmance ofa data routing network.

Perfect Sltuflle and Exchange Perfect shuffle is a special permutation function suggested by Harold
Stone (l9Tl) for parallel processing applications. The mapping corresponding to a perfect shuflie is shown
in Fig. 2.1-Ila. Its inverse is shown on the right-hand side (Fig. 2.14b).

000?;-000 000?.-000 =0

001 001 001 001 =1

010 010 010 010 =2

011 011 011 011 =3

100 100

101

110

101

110

1 1 1
[a] Perfoctshuffto

—-111

100

101

110

111—-

100

101

110

111

=4
=5
=s
=1

[bl Inverse pert-act shuffle

Fig. 2.14 Perfect siufifie and its inverse mapping over eight. oblects [Courtesy of H. Stone; reprlrmed whit
permission from JEEE Tn:|ns.Cornpi.rters, 19?1)

.iIn general, to shuffle n = 2 objects evenly, one can express each object in the domain by a k- bit binary
numbcrx = {xx |,. . . ,1‘, , .1",-_,), The perfect shuffle maps x to __\-', wl1ere__t-' = {.11 1,. . . ,x| , .1r{,, xk 1] is obtained from

.1‘ by shifting 1 bit to the lefi and wrapping around the most significant to the least significant position.

,,_,g,,,,,,,,,,,,,,,,,,,,,,,., . H
Hypercube Routing Function: A three-dimensional binary cube network is shown in Fig. 2.15. Three
routing functions are defined by th.ree bits in the node address. For example, one can exchange the data
betwoeri adjacent nodes which differ in the least signifieartt bit C9,, as shown in Fig. 2.] Sb.

Similarly, two other routing patterns can be obtained by checking the middle hit C, (Fig. 2.l5c} and
the most significant bit C; (Fig. 2.l5d), respectively. In general, an n-dimensional hypercube has n routing
fimctions, defined by each bit of thc rt-bit address. These data exchange functions can be used in routing
messages in a hypercube multicomputer.

110 1'11

I
F

ooo 001

[3] A 3-cube with nod-as donated as C2016‘; in binary

|r:oo]-+1001]]o1o|-1-I-[o11|]1oo|-1-a-[1o1|<-vi 11o|<+[111|

[b] Routing by toast significant bit, CO

|no-0|]oo1|]o1o| |o11|]1oo] |1o1|]11o| |111|
iii lit

[c] Routing by middle bit, C1

l i i +
|noo| |oo1[|o1o[[011] |1oo[[1o1| |11o[[111]

T l l l
[dji Rotting by most signiflcmt bit, C2

Fig. 1.1 5 Three routing functions defined by a binary 3-cube

Broadcast and Multiooat Bmaol:'os! is a one-to-all mapping. This can be easily achieved in an SIMD
computer using a broadcast bus extending from the array controller to all PEs. A. message-passing
multicomputer also has mechanisms to broadcast messages. ilr'f1ifi"iCflSf corresponds to a mapping from one
PE to other PEs [one to many].

Broadcast is often treated as a global operation in a multicomputer. Multioast has to he implemented with
matching ofdestination codes in tl'|e network.

Network Performance To summarize the above discussions, the performance of an interconnection
network is affected by the following factors:

If IIIIH tncl'q||;1r|I¢-\

TU i Aohiaviced Con'|po'terArchtitectose

(lj Frrneri0nnIir_1-'—Tl1is reiers to how the network supports data routing, interrupt handling,
synchronization, request-"message combining, and coherence.

[2] ."'t"ernnrk Iorem:'_1-'-—This refers to the worst-ease time delay ibra unit message to betran-sferretl through
the network.

(31 Bflltflltt-'i£|l!it—Thi5 refers to the maximum data transfer rate, in terms of Mliytesfs or Gliytesfs,
transmitted through the network.

(41 Hurdnure compfexirt-'—This refers to implementation costs such as those for wires, switches,
connectors, arbitration, and interface logic.

['5] .S'coIcr!Jf£ir_1-'—This refers to the ability ofa network to be modularly expandable with a scalable
performance with increasing machine resources.

2.4.2 Static Connection Networks
Static networks use direct links which are fixed once built. This type ofuetwork is more suitable for building
computers where tl'|e communication patterns are predictable or implementable with static connections. We
describe their topologies below in terms of network parameters and comment on their relative merits in
relation to comrnunication and scalability.

Linear Array This is a one-dimensional network in which N no-des are connected by N~ 1 links in a line
{Fig. 2.16:1). Internal nodes have degree 2, and the terminal nodes have degree 1. The diameter is N I , which
is rather long for large N. The bisection width in = l . Linear a;rra_ts are the simplest connection topology. The
structure is not symmetric and poses a communication inefiiciency when N becomes very large.

For N= 2, it is clearly simple and economic to implement a linear array. As the diameter increases linearly
with respect to N, it should not be used for large N. It should be noted that a linear array is very difibrent from
a bus which is time—shared through switching among the many nodes attached to it. A linear array allows
concurrent use of different sections (channels) of the structure by different source and destination pairs.

Ring and Chordol Ring A ring is obtained by connecting the two terminal nodes of a linear array with
one extra link (Fig. 2.1 6b]. A ring can be unidirectional or bidirectional. It is symmetric with a constant node
degree ofl The diameter is for a bidirectional ring, and N for tmidireetional ring.

The IBM token ring had this topology, in which messages circulate along the ring until they reach
the destination with a matching ID. Pip-elined or packet-switched rings have been implemented in the
CDC Cyberplus multiprocessor (I935) and in the KSR-1 computer system (1992) for interprocessor
communications.

By increasing thc node degree from 2 to 3 or 4, we obtain two ehoniai rings as shown in Figs. 2. ltie and
2.16:1, respectively. One and two extra links are added to produce the two chordal rings, respectively. In
general, the more links added, the higher the node degree and the shorterthe network diameter.

Comparing the 16-node ring (Fig. 2.16b} with the two chordal rings (Figs. 2.16:: and 2. I 5d}. the network
diameter drops from B to 5 and to 3., respectively. In the extreme, the eonrp!emi_1-' r-onner-rerf network in
Fig. 2.] sr has a node degree of I 5 with the shortest possible diameter of 1.
Barrel Shifter As shown in Fig. 2.l6e for a network ofN = 16 nodes, the bar'n:I shirt-r is obtained from
the ring by adding cittra links from each node to those nodes having a distance equal to an integer power of
2. This implies that node i is connected to nodej if|_,r'— fl = 2" for some r ='[1,l,Z,..., n —l and the network
size is N = 2". Such a barrel shifter has a node degree of r!= In I and a diameter D = n.-‘Z.

PWmmN,kR¢ _

0 1 2 3

il‘ 6 5 4

B 9 10 11

15 14 13 12

[a] Linear away

0 1
15 2

1t 3

13 1
12 5

11 6
11] 19 s

{e]Cho-reel ring of elegraeii

D 1
3

14 7.1’--' "-"l-.-_:;..- 4;..2: \l/
11 \r ~41!

"1?!’-1!1'ii
B

[oi Barrelshifter

c 1
1s 2

14 3
13 4
12

11 s
10 9 8 1

[bi Ring

-:1 1
,.ir1'£\|-._,|"fn="‘3~Ti

I "-$1
12 HQ‘

‘Q2-,,__-
109

{di Chorcial ring of degree 4
[same as llliac mash]

1'4 '°":li-.1’!
I\,.__I ""'i".;-tag.-;-:4’-'"’

‘II1-1'

4*-

D 1
_,__-.'_-.-'.."'.-.s.._

,.-/52-,."-13:-=;=',=-:-,'-,1,:.~T"-. 3,,~ : 1'-';:f-"--‘EH1: T:-.1 .- .*"=- .-'. .* .-3.!-,= .7;--'-'.-. r.\.
13 '1 “fl; 2-'.l:Lq"f‘.-':l'.'l-'-!| 13;‘ ‘ 4'$1-'1-.¢:4.'=.'-1‘, .; -|-' - .- -----__.:12 v: -1 *»~;*aI-.‘.*.‘3'.=i‘iT.='-‘.- 51;1-:11 \;,-',=_,-7.1-:.§;:gtr';:-. ",v a

Q _';"i"_-_.- '-325;‘
1|} 0 —- I T

9 B

[fl Completely oonnectad

Fig. 2.16 Linear array: ring.el'iorchi rings of degrees 3 and 4. barrel shifrenand completely connected networit

Obviously, the oonnectivity in the barrel shifiecr is increased over that of any ehordal ring of lower node
degree. For N= I6, the barrel shifter has a node degree oi‘ 7 with a diameter of 2. But. the barrel shifter
complexity is still much lower than that of the completely connected network {Fig 2. 16f).
Tree and Star A biririrj: rme of 31 nodes in five levels is shown in Fig. 2.l7a. In general, a Ir-level,
completely balanced binary tree should have N= 2* - 1 nodes. The maximum node degree is 3 and the
diameter is EU: - 1). With a constant node degree, the binary tree is a scalable architecture. However, the
diameter is rather long.

Thc srnr is 11 two-level tree with a high node degree at the central node ol‘.r.1'= ."i~'— I (Fig. 2. i‘?h] and a small
constant diameter of 2. A DADO multiprocessor was built at Columbia University (1987) with a 10-level
binary tree of I023 nodes. The star architecture has been used in systems with a centralized supenrisor node.

I _ Par I J11!!!‘ l'mrJI||r_.u|r¢\

TI i -5riNtJl'iCrl!£l'l:iJrITlPlr'r'.B'.5rI'Crl1>rlt£r'Jllttl'B

For Tree The corrventional tree structure used in computer science can be modified to become thefar tree,
as introduced by Lciscrson in 1935. A binary fat tree is shown in Fig. 2.17c. The channel width of a fat tree
increases as we ascend from leaves to thc mot. Thc tat trcc is more like a teal trcc in that branches get thicker
toward the mot.

I" " 'rit; Ti

. -I1 -'7. Q
.Ji' Gib .-1'_ ._, I1‘! ._1 _. ._. CI -_r ~_ . .- . C1

(alfiirurytree fbifitar {ciflluryfattroo

Flg.1.1‘l' Tree. star.arrd far tree

.;-.___
''-tlr.__
O‘-._t4 "-1‘-__-"I-.'\ '____=tr~ _'I-____._. c.~—"'“--.)"1 .,-3-1-,, __:j::cr’-.r _-_':1L_

"-- r_.-’.-*-‘_‘\.

_____,,. ‘____.-Tr1-“-_ ‘___-I:t____

_/-2

'_‘;u" r. /,,.
{

Q‘-‘IU’ii;Q},-3--— D--. fr-"""l'_‘' 1.1-__‘i’ :1-‘'' 1!'+___ 3}:- R3-__. .')-"fitt-.>___j_r___ 0-—-.. ._.

One ofthe major problems in using the conventional binary tree is the bottleneck problem toward the root,
since the traffic toward die root becomes heavier. The fat tree has been proposed to alleviate the problem. The
idea ofa fat tree was applied in the Connection Machine CM-5, to be studied in Chapter E. The idea ofbinary
fat trees can also be extended to mtrltiway fat trees.
Mull and Torus A 3 >< 3 example mesh network is shown in Fig. 2.18s. The mesh is a frequently used
architecture which has been implemented in the Illiac IV, MPP, DAP, and Intel Paragon with variations.

lo general, a Jr-dimensional mesh with N = nk nodes has an interior node dcgtcc of Eli‘ and thc network
diameter is .ir'(n I]. Note that the pure mesh as shown in Fig. 2. lSa is not symmetric. The node degrees at
the boundary and comer nodes are 3 or 2.

Figure 2.181: shows a variation of the mesh by allowing wraparormd connections. The llliac IV assumed an
8 >< 3 mesh with a constant node degree of 4 and a diameter of 7. The llliac mesh is topologically equivalent
to a chordai ring ofdegree 4 as shown in Fig. 2. 16d for an N = 9 = 3 >< 3 configuration.

in general, an :1 >< n llliac mesh should have a diameter ofd= n l, which is only haifofthe diameter for
a pure mesh. Thc rorrrs shown in Fig. 2.180 can be viewed as another variant ofthe mesh with an even shorter
diameter. This topology combines the ring and mesh and extends to higher dimensions.

The torus has ring connections along each row and along each column of the array. In general, an n >< n
binary torus has a no-tic degree of 4 and a diameterofThe torus is a symmetric topology. All added
wraparoimd connections help reduce the diameter by one-hall‘ from that of the mesh.
Systolic Array: This is a class ofmultidimensional pipelinod anay architectures designed for implementing
fixed algorithms. What is shown in Fig. 2.lBd is a systolic array specially designed for perforrning matrix
multiplication. The interior node degree is ti in this example.

in general, static systolic arrays are pipelinod with multidirectional flow of data streams. The comnzrcrcial
machine lntel iwarp system lfiuiatalone ct al., 1936) was designed with a systolic architecture. The systolic
array has become a popular research area ever since its introduction by Kong and Leiserson in l9'?8.

,,,,,,, ,,,,,,_,,,,,,,,,,, ,_,_

C'=I':I'=l.t="::‘:."JlQ|§'.l
I'.iI.iI.:l

{a) Mosh {bi liac mesh {c{|Tcma {di Systcie aray

Fig. 2.18 Mesh. llliac mesh, torus, and systolic array

With fixed interconnection and synchronous operation, a systolic array matches the communication
structure of the algorithm. For special applications like signalliniagc processing, systolic arrays may offer
a better perfo-mtanceilcost ratio. However, the structure has limited applicability and can be very difiieult to
program. Since this book emphasizes general-purpose computing, we will not study systolic arrays further.
interested readers may refer to the hook by S.Y. Kung (1938) for using systolic and wavefront architectures
in building VLSI array processors.

Hypercube: This is a binary n-cube architecture which has been implemented in the iPSC, nCUBE, and
-CM-2 systems, In general, an n-cube consists ofN= 2" nodes spanning along n dimensions, with two nodes
per dimension. A 3-cube with 8 nodes is shown in Fig. 2. I 9a.

A 4-cube can be formed by interconnecting the corresponding nodes of two 3 cubes, as illustrated in
Fig, 2,19b_ The node degree ofan n-cube equals n and so does the network diameter. In fact, the node degree
increases linearly with respect to the dimension, making it difficult to consider the hypercube a scalable
architecture.

Binary hypercube has been a very popular architecture for research and development in the 19805. Both
Intel iPSC_.~' 1. iPSCl‘2, and nCUBE machines were built with the hypercube architecture. The architecture
has dense connections. Many other architectures. such as binary trees, meshes, etc., can be embedded in the
hypercube.

With pour scalability and ditliculty in packaging higher-dimensional hypcrcubes, the hypercube
architecture was gradually being replaced by other architectures. For example, the CM-5 employed the fat
tree over the hypercube implemented in the CM-2. The lntel Paragon employed a t"wo-dimensional mesh
over its hypercube predecessors. Topological equivalence has been established among a munber of network
architectures. The bottom line for an architecture to survive in future systems is packaging efficiency and
scalability to allow modular grrrwth.

Cube-Connected Cycle: This architecture is modified from the hypercube. As illustrated in Fig. 2.19c, a
3-cube is modified to form 3-eztbeeonntrerirrf tjt-‘dos {CCC]. The idea is to cut offthe corner nodes (vert ieesj
ofthe 3-cube a.nd replace each by a ring {cycle} of'3 nodes.

ln general, one can eon sttuet .lr-e1tbc~conneetco' ct-‘cits from a k-eubewith n = 2?‘ cycles nodes as illustrated
in Fig. 2. 19d. The idea is to replace each vertex of the it dimensional hypercube by a ring ofIt nodes. A It-cube
ean be thus transformed to a It-CCC with Ir >< 2" nodes.

The 3-CCC shown in Fig. 2.l9b has a diameter of 6, twice that of the original 3-cube. ln general, the
nettvorlt diameter ofa Jr-CCC equals 21:. The major improvement ofa CCC lies in its constant node degree of
3, which is independent of the dimension of the underlying hypercube.

T4 i Adumtcedfornpucerkdniteeuim

lll!ta!
[a] 3-cube {b~j|A 4-cube formed by lntoroon nocting two 3-ctbee

1 it
ii lit (B

1 1
e _

(ii

{-::] 3-cttto-connected cycles [d] Replacing each node of a teeuho by a ring [cycle]
of it no-do-s to form the k-cube-connected cycles

%
Fig. 2.19 Hytpereitbes and ctibe-ccrmeccecl cycles

Consider a hypercube with N = 2" nodes. A {ICC with an equal number ofN nodes must be built from a
lower-dimension Ir-cube such that 2" = Jr - Z‘ for some It <1 rt.

For example, a 64-node CCC can be forrned by replacing the corner nodes of a 4-cube with cycles of four
nodes, corresponding to the case n = 6 and It = -4. The CCC has a diameter ofllr = S, longer than 6 in a 6-cube.
But the CCC has a node degree of 3, smaller than the node degree of 6 in a 6-cube. In this sense, the OCC is
a better architecture for building scalable systems if latency can be tolerated in some way.

k-ary n-Cube Network: Rings, meshes, tori, binary n-cubes (hypercubcsj, and Omega networks are
topologically isomorphic to a family of k-my n-cube networks. Figure 2.20 shows a 4-ary 3—cube network.

--'-s.-1-ea-t-4
/I/I/viiij
17I./JV I‘.:9-my-lg
'lufjfi

oi
0lII'I

'\

'i'ii'iiii X_‘_":\",",:\§li|.‘a

‘s.\~t&‘!1\
\\“:\‘?.\;:

‘\-

1n.".1|.
I I

Fig. 2.20 Theta-ary n-ctrb-enerwrrttsh-ouvnvrtrhtc =-tan-cln H 3;htdden nudes orccmnectiuusarenccshown

,.,,,,,,,,, ,,,,_,,_,,,,,,,,,,,. ,5
The parameter n it the dimension of the cube and It is the radix, or the number of nodes (multiplicity)

along each dimension. These two numbers are related to the number ofnodes, N, in the network by:

.y=t-",(t-= ‘§;W,n= |ng,ni| (2.3)
A node in the Ir-ary n-cubc can bc identified by an n-digit radix-Jr address A = n, a; ...n,,, where rt,-

represents the node’s position in the nh dimension. For simplicity, all links are assumed bidirectional. Each
line in the network represents two communication channels, one in each direction. In Fig. 2.20. the lines
between nodes are bidireet ional links.

Traditionally, low-dimensional ll‘-ary ri-cubes arc called tori, and high-dimensional bina.ry n-cubes arc
called }:__vl-Jemzlbm. The long end-around connections in a torus can be avoided by folding the network as
shown in Fig. 2.21. 1n this case, all links along the ring in each dimension have equal wire length when the
multidimensional network is embedded in a plane.

iiiII '_I'-‘—II "ii"-"_

IFI P. I F. III 'iii'iiii'¢|.l.1|.l.1|.l.1|.-.-+

Ii.-.1|.-.1|.-.1|.-J»
I I I I

-[al Tratitiond torus {a -it-ary 2-oubal

c.l.|1'.'|1...|1-|_

n.-.|1-'11.-.|1'-|—-
I J I I

{blflttorus wilt folded eornectiorn

Fig. 111 Folded connections tn equalize the wine Iengdt in a tnorus network (Courtesy o‘l'W1 Dally; reprinted
with permission from l'.EEE Tmna Computers, june W90}

William Dally (I990) has revealed a number of interesting properties of k-ary n cube networks. The oost
of such a network is dominated by the amount of wire, rather by the numb-ezr oi‘ switches required. Under the
assumption ofconstant wire bisection, low-dimensional networks with wide channels provide lower latency,
less contention, and higher hot-spot throughput than higher-dimensional networks with narrow channels.
NetworkThroughput The network rhmrigfniur is defined as the total number ofmessages the network can
handle per unit time. One method of estimating throughput is to calculate the capacity of a network, the total
number of messages that can be in the network at once. Typically, the maximum throughput of a network is
some fraction of its capacity.

A hm spur is a pair of nodes that accounts for a disproportionately large portion of the total network
traffic. Hot-spot traflic can degrade performance of the entire network by caltsing congestion. The ho!-spot
throughput oi‘ a network is the maximum rate at which messages can be sent from one specific node P, to
another specific node P)-.

Low-dimensional networks operate better under nonuniform loads because they allow better resource
sharing. in a high-dimensional network, wires are assigned to particular dimensions and cannot be shared
between dimensions. For example, in a binary n-cube, it is possible for a wire to be saturated while a
physically adjacent wire assigned to a different dimension remains idle. In a torus, all physically adjacent
wires are combined into a single channel which is shared by all messages.

‘ _ Par I J11!!!‘ l'mrJI||r_.u|i¢\

‘ta i Ad~iov1cedCorr|pute|'.lu'ch¢itecbtrn2

As a rule oi‘ thumb, minimum network latency is achieved when the network radix Ii: and dimension
n are chosen to make the components of communication latency due to distance D {the number of hops
between nodes] and the message aspect ratio Li‘ H-" (message length L normalized to tllc channel width Hr)
approximately equal.

Low-dimensional networks reduce contention because haying a few high—bandwidtl'1 channels results in
more resource sharing and thus a bctter queueing performance than having many low-bandwidth channels.
While network capacity and worst-case blocking latency are independent of dimension, low-dimensional
networks have a higher maximum throughput and lower average block latency than do high-dimensional
networks.

Both fat tree networks and Jr-ary n-cube networks are considered universal in the sense that they can
efliciently simulate any other network ofthe same volume. Dally claimed that any point-to-point network can
be embedded in a 3-D mesh with no more than a constant increase in wiring length.

Summaryofstotic Network In Table 2.2, we summarize thc important characteristics ofstatic connection
networks. The node degrees of most networks are less than 4, which is rather desirable. For example, the
[NMCIS Transputer chip was a compute communication microprocessor with four ports for communication.
Sec also the T[LE6-4 systern-on-a-chip described in Chapter 13.

Table 2.2 Summary of Stnrlc Network Gtnmaerlsrlcs

Mo. of '
links. 1

l"l'em'or.k !_t]x' l't|'ucle
degree, J

Ei.r-er.'l'io.r1 Renxrrkr on
n'io".rh, B

Netw-or.i'r Jstsmm-2.|'ry
diamerer: net t-writ" size

Linear Array 2 N - l N- I 1 No N llflilfii

Fdns 2 Lao- N 2 Yes N nodes

Completely
Connected

N 1'\'l1"»'— W3 tact’ Yes N no-ties

Binary
Tree

3 so - o N- I 1 No Trcc height
s |'tag3.t"

Star N 2 N—l LM'2_- No N 11.0-tl.¢s

ID-Mesh 4 l(r—1) 2N— Ir I‘ No r X r mesh
where r o‘ N

llliac
Mesh

4 r—l 2N Zr No Equivalent to
a chordal ring
ofr -" 5

2D-Torus 4 2|_r."2_ ZN Zr Yes rxrtotus

wlterer \|'l'u'

I Iypercube fl‘ fl‘ nN.|'Z It-l"1 Yes N nodes,
rr log; N
{d'trne|tsiot1]-

CCC 3 2k- 1 1- lw2_- 3N|’2 N."(2.k l Yes N X 2*-

notles with a cycle
length it E 3

A--ary n-cube Zn !Il_.ltI.'r2_' nN 21¢“ Yes N Ir” nodes

,,,,,,, ,,,,,,,,,,,,,,,,,,,, _,_ ,,
With a constant node degree of 4, a 'I1'ansputer {such as the T800] becomes applicable as a building block.

The node degrees for the completely connected and star networks are both had. The hypercube node degree
increases with log; N and is also bad when the value oi'N becomes large.

Network diameters vary over a wide range. with the invention ofhardwarc routing (worrnhole routing),
the diameter has become less critical an issue because the communication delay between any two nodes
becomes almost a constant with a high degree ofpipclining. Thc number oflinks aficcts the network cost.
The bisection width ailects the network bandwidth.

The property of symmetry affects scalability and routing efficiency. it is fair to say that the total network
cost increases with n‘ and I. A smaller diameter is still a virtue. But the average distance between nodes may
be a better measure. The bisection width can he enhanced by a wider channel width. Based on the above
analysis, ring, mesh, torus, it-ary n-cube, and CCC all have some desirable features for building MPP systems.

2.4.3 Dynamic Connection Networks
For multipurpose or general—purpose applications. we may need to use dynamic connections which can
implement all commtniication patterns based on program demands. Instead of using fixed connections,
switches or arbiters must be used along the connecting paths to provide the dynamic connectivity. In
increasing order of cost and perfonrtance, dynamic connection networks include bus s_t-'s'rcms, nm!Iis'Iogc
inrcrconnccrion ncru-'ork.r {'MlNj, and crossizrrr svt-‘itch ncm-'orks.

The price tags ofthesc networks are attributed to the cost ofthe wires, switches, arbiters, and connectors
required. The perfonnance is indicated by the network bandwidth, data transfer rate, network latency, and
communication patterns supported. A brief introduction to dynamic connection networks is given below.
Details can be found in subsequent chapters.
Digital Bum A bus .~i_-.-‘stem is essentially a collection oi" wires and connectors for data transactions among
processors, memory modules, and peripheral devices attached to the bus. The bus is used for only one
transaction at a time between source and destination. In case of multiple requests, the bus arbitration logic
must be able to allocate or dcallocale the bus, servicing the requests one at a time.

For this reason, the digital bus has been called conrcnrion has or a Iin.=c-shoring bus among multiple
functional modules, A bus system has a lower cost and provides a limited bandwidth compared to the other
two dynamic connection networks. Many industrial and IEEE bus standards are available.

Figure 2.22 shows a bus-connected multiprocessor system. The system bus provides a common
communication path between the processors, U0 subsystem, and the memory modules, secondary storage
devices, network adaptors, cue. The system bus is often implemented on a backplane of a printed circuit
board. Other boards for processon-;, memories, or device interfaces are plugged into the backplane board via
connectors or cables.

The active or master devices (processors or HO subsystem] generate requests to address the memory. The
passive or slave devices (memories or peripherals) respond to the requests. The common bus is used on a
time-sharing basis, and important busing issues include thc bus arbitration, interrupts handling, coherence
protocols. and transaction processing. We will study typical bus systems, such as the VME bus and others.
in Chapter 5. Hierarchical bus structltres for building larger mulfiprooessor systems are studied in Chapter T,

TB i Adumicedfontpuwwkdriemim

 ‘ ' - I

Su baystom
. ' . I

Bus \\3

Main M Secondary
Memory 2 Storage

Flg.2.22 A bus-connected mulnlproeoss-or syscom. such as the Sequont Symrnetry 51

Switch Moduli: An cl >< b sn-'i1't-it module has o inputs and b outputs. A br'n.or__\-' sn-‘itch corresponds to a 2 ><
2 switch mod|.tlc in which n = in = 2. in theory, n and in do not have to be equal. However, in practice, n and I:
arc often chosen as integer powers of2; that is, a = {J = 2* forsomc it 2 1.

Table 2.3 lists several commonly used switch module sizes: 2 >4 2, 4 >< 4, and 8 >< 8. Each input can be
connected to one or more oi‘ the outputs. However, conflicts must be avoided at the output terminals. ln other
words, one-to-one and one-to-many mappings are allowed; but many-to—one mappings are not allowed due
to conflicts at the output terminal.

Table 2.3 Switch Modules nod‘ Legitimate Stats

.llr:fr:d'ui'e' Size Lcgirinure .'_i'.l'a.|'e.s Permutation C.'onne\ci‘ions

21-<2 4 2
4 X 4 256 24

E X 8 l'figT:i,2li5 40.3-ZQ
n X n :1” :1!

When only one-to-one mappings {permutations} are allowed, we call tl1e module an n >< n crossbar switch.
For example, a 2 >< 2 crossbar switch can connect two possible patterns: straight or crnssm-'cr. In general, an
n >< n cros shat can achieve rt! pcrmutat ion s. The numbers oflcgitimatc connection patterns for switch modules
oi‘ various sizes are listed in Table 2.3.
Multistage Interconnection Network: 3»-lINs have been used in both MIND) and SIMD computers. A
generalized multistage network is illustrated in Fig. 2.23. A number of o >< h switches arc used in each
stage. Fixed interstage connections are used between the switches in adjacent stages. The switches can be
dynamically set to establish the desired connections between the inputs and outputs.

Different classes of MINs differ in the switch modules used and in the kind of inrcrsmgc cormecfion -[i [SC]
patterns used. The simplest switch module would be the 2 >< E switches -[is = b = 2 in Fig. 2.23}. The ISC
panems ofien used include perfect skufiie, butterfly. mnltiway shagfiie, crossbar, cube connection, etc. Some
ofthesc [SC patterns are shown below with examples.

,.,,,,,,,,, ,,,,_,,,,,,,,,.,,,,,,., ,9

-1 DCi1 ass —" so CF IF‘ a.=<.i:-. 1
I I i." I I I&_1 switch switcit . 4 __.> . switch . b_1

l}ass assCF 3 ass. n+1
_ switch , , switch . J. __$_ . switch , 2b_1

isc, IS-C2 iscn

Z I I I
I I I I

"- b“-h“ “ BK!) 31-=.iJIF 21‘-' so.
and switch : : switch : _L"'_L : switch : b,,_1

Stago1 Stago2 Q Q Q Stagen

R?»
+03 I

Fig. 2.23 A generalized structure of a multistage interconnection networlt {MIN} bolt with a x b switch
filDdi.Ht‘.!S and intcrstagc ccrmcetien patterns ISC1, |SC;, i5C,.,

Omega Network Figures 2.24a to 2.2441 show four possible connections of 2 >< 2 switches used in
constructing the Omega network. A I6 >< 16 Omega network is shown in Fig. 2.2-4e. Four stages of 2 X 2
switches are needed. There an: lo inputs on the left and 16 outputs on the right. The ISC pattcm is the perfect
sltuflle over 16 objects.

lo general, an rt-input Omega network requires log; rt stages ofl >< 2 switches. Each stage requires m'2
switch modules. In total, thc network uses n log; n.I’2 switches. Each switch module is individually controlled.

Various combinations of the switch states implement dil'l'ercnt permutations, broadcast, or other
connections front the inputs to the outputs. The interconnection capabilities of the Omega and other networks
will be fi.n"t|1eI studied in Chapter T.

Baseline Network Wu and Feng {I98-G) have studied the relationship among a class of multistage
interconnection networks. A Bast-fine netit-‘ark can be generated recursively as shown in Fig, 2.25:1,

The first stage contains one NX Nbkick,andtl1c second stage contains t\vo(A"/2]>< {Nt'2)subb1o-t:ks,1abelcd
Cr, and C |. The construction process can be recursively applied to the subl:-locks until the M2 subblocks cl‘
size 2 X 2 are reached.

The small boxes and the ultimate building blocks ofthe subblocks are the 2 >< 2 switches, each with two
legitimate connection states: straight and £‘.l'O.'i‘.S‘O'|-'£'!‘ between thc two inputsand two outputs. A 16 >< 16 Baseline
network is shown in Fig. 2.25b. In Problem 2.15, readers are asked to prove the topological equivalence
between the Baseline and other networks.

l _ _ rr<- Mclinrw HJ'lI:'|-rr.-W.-.-|-r~
BU ii Adwmced Cm1pu1JerArchitecunre

O 0 G O 0 0 w 0

1 1 1 T 1 1 1 t

{a}51rarg'11 {up Doeacwer 10: Upper lroaclcaai ¢d:| Lower brcxacl»::aa1

2 I I I 3’

émmmwM=i=.%*»'i=i\M=i*»%*»"'g ~w=w*~*»~a:¢-*~*»w-~-
‘a=4%=$%=$*'1; I I I I 12

G T6\<.15 flflfl-14 } . Dme-g mm

Fig. 2.14 The use ofl x 1 swiuchus and perfisct shuffle as an inuricagu cmnectinn pmern um construct a
16 x 1-5 Omega nitwork {Camrbesy of Dunan Lawrbl; reprimed with purrriisslon from IEEE Tmns.
C-ompumrs.Dec.19T5)

2(I I (?

2,‘ I-Q-I
I-Q::;{/:m‘$‘-I:

2:? I-W‘-I-y-I-7-I2
1.:-:’0f’&'i'i;%Ehn ::=

:3 ~|ii'4|i-V: :3
N ><- N 15 15
[b;§~§;:;é1%fl

{aj Re-aurawwwwIuqion (b}|.A16 >=.16 Baaeme IH!'1'lJOl‘ll

Fig. 125 Rewrshre curmruction of I Baseline network {Caurnsy of'Wu and Fang; reprirmed with perminicm
frnrn [EEE Tmns. C0fl14;vlI!eI's,August 1930}

,.,W,M,,_,,,,,,,k,.,q,,fl H
Crossbar Network The highest bandwidth and interconnection capability are provided by crossbar
networks. A crossbar network can be visualized as a single-stage switch network. Lilce a telephone
switchboard, thc crosspoint switches dynamic conncctions hctwccn source, destination pairs. Each
cmsspoint switch can provide a dedicated connection path hcttvccn at pair. The switch can be s-ct on or ofi
dynamically upon program demand. Two types of crossbar networks are illustrated in Fig. 2.26.

To build :1 sharod-memory multiprocessor, one can use a crossbar rtclworlc bctwccn thc processors
and memory modules (Fig. 2.262.]. This is essentially a memory-access network. The pioneering C.1:m:up
multiprocessor (Wolf and Bell, 1972} implemented a [6 >< I6 crossbar network which connected 16 PDP
ll processors to I 6 memory modules, each ofwhich had s capability of 1 million words ofmemory cclls. The
115 memory modules could be accessed by thc processors in parallel.

Transmit

HEO-0-0-0 »~<>@»0@~0e~0 __;Q__O__ »—0@»0~0~0 O0moO000 00--00

oostIIIII
E0-0Qo-O-5E Q}:-_'_

.............-0

I I I
w - - 0 on CF‘ P E03 I I IPE219 PEZZO F‘EZ21F'E222l

M2 ... M15
O or Receive

[aj lnterprooessor-rnorrtory crossbar [bj The lnterpro-oooso-r cnoesbar network bultt in tho
network bu ltt In the C.n1rnp Fuj|tsu\.-'PP5-D0voctorpa|'a|lolprooo<ssor(19921
multiprocessor at Carnegie-
Mollon University [19-T2]

Fig. 2.26 Two crossbar swlcch non-voric configurations

Note that each memory module can satisfy only one processor request at a time. When multiple requests
arrive at the some memory module simultaneously, the crossbar must resolve the conflicts. The behavior
of each crossbar switch is very similar to that of a bus. However, each processor can generate a sequence

_ War If J11!!!‘ I'mi!I;|(1rinr\ _

B1 I Adnoinccd Corr|pn'tct'At'chitcctuvc

oi‘ addresses to access multiple memory modules simidtaneously. Thus, in Fig. 2.2641, only one crosspoint
switch can be set on in each column. However, several crosspoint switches can be set on simultaneously in
order to support parallel (or interleaved] memory accesses.

Another type ofctossbar network is for interproccssor communication and is depicted in Fig. 2.2611. This
large crossbar [224 >< 224) was actually built in a vector parallel processor [\"PP5tlD} by Fujitsu Inc. (1992).
The PEs are processors with attached memory. The CPs stand for control processors which are used to
supervise the entire system operation, including the crossbar networks. In this crossbar, at one time only one
crosspoint switch can be set on in each row and each column.

The interprocessor crossbar provides permutation connections among the processors. Only one-to-one
connections are provided. Thereibrc, thc n >< rt crossbar connects at most n source, destination pairs at :1 time.
We will further study crossbar networks in Chapters 7 and 8.

Summary In Table 1.4, we summarize the important features of buses, multistage networks, and crossbar
switches in building dynamic networks. Obviously, the bus is the cheapest to build, but its drawback lies in
the low bandwidth available to each processor.

Table 2.4 Summary o]"Dynnmic Network Chnrocrerttris

l't-Ternvrrir
f.'irarrrc'!c'ri.tr ie.'r

But
Eyre‘em

Mr.rii‘i.st‘ rrgc
l'i|'c't' tt'rrr.it

Cnrsrrbar
Stvii'c.ir

A-'linimu.m latency for
unit data nvntsiier Constant Uilflttt I1} Constant

Bandwidth per
processo1-

(I tt'i"rr} to (X tr) U{ tr} to Ui[rru.'} Uiwl I11 5'i-W)

Vfiting Complexity Eirti. U{rru.' lutlgkyrr}
Switchirtg Complexity Clfll t'){n log; rr} crab
Connectivity and
routing capability

Only onetc oneatatime. Sornc perrnutations
and broadcast, if
network unblocked

All permutations.
one at a time.

Early representative
computers

Symmetry S-1.
Encore Multinnnt

BEN TC-2000.
IBM RP3

only Y-l»[Pitt16.
Fujilst1VPP5DtI

Remarks Assurue rr processors
on the bus; bus
width is w bits.

rr X rr MIN
using it >< it
switches with line
width of u- bits.

Arsunte n x n
crossbar with
line widtlt of
u- bits.

Another problem with the bus is that it is prone to failure. Some fault-tolerant systems, like the Tandem
multiprocessor for transaction processing, used dual buses to protect the system from single failures.

The crossbar switch is the most ertportsive one to build, due to the fact that its hardware complexity
inc reascs as :12. However, the crossbar has the highest bandwidth and routing capability. For a small network
size, it is the desired choice.

rr--alrfimw Hriicmpwv,,,__,W M, ,,,MkHm _ H
Multistage networks pmvidc a compromise between the two c:-ttrcmcs. Thc major advantage of MlNs

lies in their scalability with modular construction. However, the latency increases with log n, thc number of
stagcs in the network. Also, costs duo to increased wiring and switching complexity are another constraint.

For building MPP systems, some of thc static topologies arc more scalable in specific applications.
Advances in VLS1 and intcrcoimccl icclmologies have had a major impact on multiprocessor system
architecture. as \ve shall see in Chapter I3, and there has been a clear shift towards the use of packet-based
switched-media inte'rconnccts.

,__

$5 Summary

ln thischaptenwe have foc used on basic program properties which make parallelism possible and determine
the amount and type ofparallelism which can be exploited.'lNith incrsing degree of multiprocessing,the
rate at whida data must be communicated between subsystems also increases, and therefore the system
interconnect architecture becoma important in determining system performance.

We started this chapter with a study of the basic conditions which must be satisfied for parallel
computations to be possible. in essence. it is dependences between operations whidw limit the amount
of parallelism which can be e)cploited.After all. any set of N fully independent operations can always be
performed in parallel.

The three basic data dependences between operations are flow dependence, o.rrt.i-dependence and output
dependence. Resource dependence refers to a limitation in available hardware andfor software raources
which limits the achievable degree of parallelism. Bernstein‘s conditio ns—which apply to input and output
sets of processes—must be satisfied for parallel execution of processes to be possible.

Parallelism may be exploited at the level of software or hardware. For software parallelism. program
design, and the program development and runtime environments play the key role. For hardware
parallelism. availability of the right mix of hardware resources plays the key role. Program partitioning,
grain size, communication latency and scheduling are important concepts; scheduling may be static or
dynamic.

Program flow may be control-driven, data-driven or demand-driven. Of these, comzrol-driven program
flow. as exemplified in the von Neumann model, is the only one that has proved commercially successful
over the last six decadesfither program flow models have been tried out on research-oriented syscems.
but in general these models have not found acceptance on a broader basis.

When computer systems consist of multiple processors—and several other sub-systems such as
memory modules and network adapters—the system interconnect architecture plays a very important
role in determining final system performance.We studied basic network properties. including topology
and routing functionality Network performance can be characterized in terms of bandwidth. latency.
functionality and scalability.

We studied static network topologies such as the linear array. ring, tree. fat tree. toms and hypercube;
we also looked at dynamic network topologies which involve switching andlor routing of data.'iNith higher
degree of multiprocessing.bus-based systems are unable to meet aggregate bandwidth requirements of
the system; multistage inter-connection networks and crossbar switches can provide better alternatives.

53
FM M¢Gl'i1I-H Hillfmmlunm :

B4 D Advanced Compu'terA|'chiitecture

Exercises

Problem 1.1 Define the following terms related (c) Wlrat are the differences between string
to parallelism and dependence relations: reduction and graph reduction machines?

lll
(bl
{Cl
ldl
[El
lll
{El
{hi
(ll
lll

Problem 2.2 Define the following terms for

Computational granularity.
Communication latency.
Flow depe ndence.
Antidependence.
Output dependence.
HO dependence.
Control dependence.
Resource dependence.
Bernstein conditions.
Degree of parallelism.

various system interconnect architectures:

Problem 2.4 Perform a data dependence analysis
on each of the following Fortran program fragments.
Show the dependence graphs among the statements
with justification.

{a} S1 = B + D
$2 = A X 3
53 =A + C
54 = A I I

(bi) S1 = $lN(Y)
52 = X + W
S3 = -2.5 XW
54: X = CO5(Z}

-<H)<"'|IlI-i"‘iZb-

{El} NC-Clfl dEgI‘EE- {c} Determine the data dependences in
(b) Network diameter. the same and adjacent iterations of the
(c) Bisection bandwidth. following Do-loop.
[d} Static connection networks. DD 10 | = LN
{e} Dynamic connection networks. 5]; A“ + 1) = B{| _ 1) + cm
(f) Nonbloclting networks. 51; gm = Aw X |(
(g) l"1ulticast and broadcast 53; cm = 5“) _ 1
(h) Mesh versus torus. 1Q continue
(i) Symmetry in neovorlts.

Problem 2.5 Analyze the data dependencfl
[ii Multistage networks. am the fa" .n mt ts . .
(it) Crossbar networks.
(I) Digital buses.

Problem 1.3 Answer the following questions on
program flow mechanisms and computer models:

la‘!

(bi

Compare oontrol-flow. dataflow. and
reduction computers in terms ofthe program

ong oun g s emen |n a gnren program:

Si? Lflfiil R]. lUZ4 IR] (-1024!
51: Load R1. l"l{lO) IR! <— l"1emory(lCl).l
5]: Add R]. R2 IR] t—(R1]+(R1)l
54: Store M(1n24}. R1 i'l"'1emory[1024} <- (R1)!
55: Store M([R2)). 1024 ll‘*‘Iemory{64] <- 1024:

fl°\'\" mE¢l13|'ll5lT'l |-|5Ed- where (Ri) means the content of register Hi and
Comment on the advantages and
disadvantages in control complexity. potential
for parallelism. and cost-effectiveness of the
above computer models.

l“‘|emc|-ry|[l D) contains 64 initially.
{a} Draw a dependence graph to show all the

dependences.
(la) Are there any resource dependences if only

Program and NetworltPrape i 35

one copy of chfunctional unit is available in
the CPU?

{c} Repeat the above for the following program
statements:

S1: Load R1. l"l{100}
S2: Hove R1. R1

inc R1
Add R1. R1
Store M(100). R1

rm <- l"lemory[1UD]-I
nu <- {R1)1
rm <- (R1) + 1:
nu <- (R2) + (R1)!
.fl""lemory(1DO) <- {R1}!

Problem 1.6 A sequential program consists
of the following five statements. S1 through S5.
Considering each statement as a separate process.
clearly identify input set ly and output set O; of each
process. Restructure the program using Bernstein's
conditions in order to achieve maximum parallelism
between processes. If any pair of processes cannot
be executed concurrently. specify which ofthe three
conditions is not satisfied.

= B + C
= B :>< D

= Cl
S4: Do I = A. 100

5 = S + X{l)
End Do

S5: IF (S .G'l'.1000} C = C :>< 2

'U‘lU‘lU'lsew.-_~ '-fin)»

Problem 1.7 Consider the execution of dve
following code segment consisting of seven
statements. Use Bernstein's conditions to detect
the maximum parallelism embedded in this code.
justify the portions that can be executed in parallel
and the remaining portions that must be executed
sequentially Rewrite the code using parallel
constructs such as Cobegin and Coend. No variable
substitution is allowed. All statements can be
executed in parallel if they are declared within the
same block of a |[Cc|-begin. Co-end) pair.

M: A=B+C
S1: C = D + E

: G + E

=A + Fn'H

S5: l"l=G+C
S6: A=L+C
ST: A=E+A

Problem 1.B According to program order. dve
following six arithmetic expressions need to be
executed in minimum time. Assume dvat all are
integer operands already loaded into working
registers. No memory reference is needed for the
operand fetch.Also. all intermediate or final results
are written back to working registers without
conflicts.

P1: X-t—[A+B)><(A-B]
P1: ‘i'<—(C+D]f(C-D)
P3: Z t— X +‘l’
P4: A -t— E >< F
P5: Y t— E — Z
P6: B <— (X — F) '>< A

(a) Use the minimum number of working
registers to rewrite the above HLL program
into a minimum-length assembly language
code using arithmetic opcodes odd. subtract.
multiply. and divide exclusively. Assume a fixed
instruction format with three register fields:
two for sources and one for destinations.

{la} Perform a flow analysis of the assembly
code obtained in part {a} to reveal all data
dependences with a dependence graph.

{c} The CPU is assumed to have two odd units.
one multiply unit. and one divide un.|'t.Work out
an optimal schedule to execute the assembly
code in minimum time. assuming 1 cycle for
the add unit. 3 cydes for the multiply unit.
and 18 cycles for the divide unit to complete
the execution of one instruction. Ignore all
overhead caused by instruction fetch. decode.
and writeback. No pipelining is assumed here.

Problem 1.9 Consider the following assembly
language code. Exploit the maximum degree of
parallelism among the 16 instructions. assuming no
resource conflicts and multiple functional units are
available simultaneously. For simplicity. no pipelining

TM Illnffirihi-* Hfllfiuroponnri .
B5 i Advanced Compu'terArchi'tectui'e

is assumed.All instructions take one machine cycle
to execute. Ignore all other overhd.

1: Load R1.A .lR1t— l"'lem{A)J'
1: Load R1, s no <- l"'1em(B}!

Z Hui R3. R1. R2 .fR3 (— {R1} X [R2}f
2 Load R4. D .fR4 <— l"'lem{D)f
: Hui R5, R1. R4 IRS t— {R1} I>< {R4}!
: Add R6. R3. R5 .fFl.6 t— {R3} 1' (R5]f
: Store X, R6 fMem[X] <— (R6)!
1 Load R1. C .fR7 <— l"1em(C).i'

9; Mul R8. R7. R4 ins ¢- in?) >< (R4)!
10: Load R9. E IR‘? <— l"'lem(E}i'
11: Add R10. R8. R9 {R10 t— (RB) + (R9)!
1;‘; StoreY.P.10 l‘l'lem(Y} <- {R10}!
131 Add R11. R6. R10 .lR11 t— (R6) + {R10}!
14: Store u,n.11 fl'“1em(U} <- (R11)!
15: Sub R12. R6. R10 IR12 t— {R6} — (R10)!
1s; Storelf. R12 l'Her1'|(V) <- {R12}!

N“-l-lG\U"l-h-f-n-l

{a} Draw a program graph with 16 nodes to
show the flow relationships among the 16
instructions.

(b) Consider die use of a three-issue superscalar
processor to execute this program fragment
in minimum time. The processor can issue
one memory-access instruction (Load or
Store but not both). oneAddl'Sub instruction.
and one l"'lul (multiply) instruction per cycle.
The Add unit. Load.lStore unit. and l"‘lultiply
unit can be used simultaneously if there is no
data dependence.

Problem 1.10 Repeat part (b]- of Problem 2.9
on a dual-processor system with shared memory.
Assume that the same superscalar processors are
used and that all instructions take one cycle to
execute.

(a) Partition dve given program into two balanced
halves. You may want to insert some load
or store instructions to pass intermediate
results generated by the two processors to
each other. Show the divided program flow
graph with the final output U and‘! generated
by the two processors separately.

(b) Work out an optimal schedule for parallel
execution of the above divided program by
the two processors in minimum time.

Problem 1.11 You are asked to design a direct
network for a multicomputer with 64 nodes using
a three-dimensional torus. a six-dimensional binary
hypercube. and cube-connected-cycles (CCC]- widv
a minimum diameter. The following questions are
related to the relative merits of thae network
topologies:

{a} Let d be the node degree. D the network
diameter. and I the total number of links in
a network Suppose the quality of a network
is measured by (.1 >< p .>< ljr‘. Rank the three
architectures according to this quality
measure.

(b) A mean irrtemode distance is defined as the
average number of hops {links} along the
shortest path for a message to travel from one
node to another".The average is calculated for
all (source.destination} pairs.Order the three
architectures based on their mean internode
distances. assuming that the probability that a
node wfll send a message to all other nodes
with distance i is (0 -r+1}1zf=, k.where 0
is the network diameter.

Problem 1.11 Consider an llliac mesh (B >< 8).
a binary hypercube. and a barrel shifter. all with 64
nodes labeled N0. N1. Ng3.All network links are
bidirectional.

{a} List all the nodes reachable from node N9
in exactly three steps for each of the three
networks.

(b) Indicate in each case the tightest upper bound
on the minimum number of routing steps
needed to send data from any node N, to
another node Ni.

{c} Repeat part (b) for a larger network with
1024 nodes.

Problem 1.13 Compare buses. crossbar switches.
and multistage networks for building a multiprocessor
system with n processors and m shared-memory

Program and NetworkPmpa W 31

modules.Assume a word length of w bits and that
2 '>< 2 switches are used in building the multistage
networks. The comparison study is carried out
separately in each of the following four categories:

(a) Hardware complexities such as switdwing.
arbitmtion. wires. connector. or cable
requirements.

(b) Minimum latency in unit data transfer between
the processor and memory module.

[c] Bandwidflw range available to each processor.
(d) Communication capabilities such as

permutations. data broadcast. blocking
handling. etc.

Problem 2.14 Answer t.he following questions
related to multistage networks:

{a} How many legitimate states are mere in a
4 >< 4 switch module. induding both broadcast
and permutations? justify your answer with
reasoning.

(b} Construct a 64-input Omega network using
4 >< 4 switch modules in multiple stages. How
many permutations can be implemented
direcdy in a single pass through the network
without blocking?

{c} What is the pencentage of one-pass
permutations compared with the total
number of permutations achievable in one or
more passes through the network!‘

Problem 1.15 Topologically equivalent networks
are those whose graph representations are iso-
morphic widw the same interconnection capabili-
ties. Prove the topological equivalence among the
Omeg. Flip.and Baseline networks.

[a] Prove that dwe Omega network (Fig. 2.24}
is topologically equivalent to the Baseline
network [Fig. 2.25b}.

(b) The Flip network (Fig. 2.2?) is constructed
using inverse perfect shuffle (Fig. 2.14b} for
interstage connections. Prove that the Flip
network is topologically equivalent to the
Baseline network.

(c) Based on the results obtained in (a} and [b].
prone the topological equivalence between
the Flip network and the Omega network.

‘i I I I S

2 I-ll"-I-lll‘-I-ll.“-I-Ni A
“.1 I4 l 2*.
1: I-I I-I I-I I-l 2.. \:'\:'\='

Fig. 2.27 A 16 >< 16 Flip network {Courtesy of
Keri Baecher: reprinted from Proc. int.
cm. Pan:|lieiPmc-esslng. 1915;

Problem 2.16 Answer the following questions
for the k-ary n-cube network:

{a} How many nodes does the network contain?
(b) What is the network diameter?
{c} What is the bisection bandwidth!‘
(d) What is the node degree?
(e) Eaqalain the graph-theoretic relationship

among k-ary n-cube networks and rings.
meshes. tori. binary n-cubes. and Omega
networltrs.

{f} Explain the difference between a conventional
torus and a folded torus.

{g} Under the assumption of constant wire
bisection. why do low-dimensional networks
(tori) have lower latency and higher hot-spot
throughput dwan high-dimensional networks
(hypercubes)?

Problem 1.17 Read the paper on fat tnees by
Leiserson.which appeared in IEE Trans. Computers.

Fhr MIG-l‘l7l|H Hflllluqieuira-s
BB W fiialwaviced Computer Architecture

pp. 391-9111. Oct 1985. Answer the following
questions related to the organization and application
of fat trees:

{a} Explain the advantages of using binary fat
trees over conventional binary trees as a
multiprocessor interconnection network.

(ti) A uriiversai fat tree is defined as a fat tree of
n nodes with root capacity w. where nm 5 W
E n . and for each channel qt at level it of die
tree. the capacity is

C. = min ll"-Tl]. i“»'2’*"‘*1i
Prove that the capacities of a universal fat tree
grow exponentially as we go up the tree from
the leaves. The channel capacity is defined
here as the number of wires in a channel.

Problem 1.18 Read the paper on k-ary n-cube
networks by Dally. which appeared in IEEE Trans.
Computers. june 1990. pp. 775-785. Answer
the following questions related to the network
properties and applications as aVL5l communication
network:

{a} Prove that the bisection width B of a it-ary
n-cube with iv-bit wide communication
channels is

B(k. J1) = 1w-J'fik“'1"' = 2wNIk
where N = it" is the network size.

(b) Prove that the hot-spot throughput ofa it-ary
n-cube neowork with deterministic routing

is equal to the bandwidth of a single channel
vv = k— 1. under the assumption ofa constant
wire cost.

Problem 1.19 Network embedding is a technique
to implement a network A on a network B. Explain
how to perform the following network embeddings:

{a} Embed a two-dimensional torus r >< r on an
n-dimensional hypercube with N = 1" nods
where r1 = 1".

(b) Embed the largat ring on a CCC with
N=k>< 2"nQdi==§=n-=ii<z3_

[c] Embed a complete balanced binary tree with
maximum height on a mesh of r>< r nodes.

Problem 1.20 Read the paper on hypernets
by Hwang and Ghosh, which appeared in lEE.E
Tmns. Computers. Dec. 1989.Answer the following
questions related to the network properties and
applications of hypernets:

(a) Erqalain how hypernets integrate positive
features of hypercube and tree-based
topologies into one combined architecture.

(b) Prove that the average node degree of a
hypernet can be maintained essentially
constant when the network size is increased.

(c) Discuss the application potentials of hypernets
in terms of message routing complexity. cost-
effective support for global as well as localized
communication. HO capabilities. and fault
tole ran ce.

TM Htfiflhlt Hfllio-nponnti

— —

Principles of Scalable
Performance

We study performance mmsures. speedup laws. and scalability prindpies in this chapter.Three speedup
models are presented under different computing objectises and rmource constraints. These include
Amdahfs law (1967). Gustafson‘s scaled speedup {19E-B). and the mernory-bounded speedup by Sun and
Ni (1993).

The efficiency. redundancy. utilization. and quality of a parallel computation are defined. involving the
interplay between architectures and algorithms. Standard performance memures and several benchmark
kernels are introduced with relevant performance data.

The performance of parallel computers relies on a design that balances lordware and software. The
system architects and programmers must exploit parallelism. pipelining. and networking in a balanced
approach. Toward building massively parallel systems. the scalability issues must be resolved first.
Fundamental concepts of scalable systems are introduced in this chapter. Case studies can be found in
subsequent chapters, especially in Chapters 9 and 13.

PERFORMANCE METRICSAND MEASURES
— In this section, we first study parallelism profiles and define the asymptotic speedup factor,

ignoring communication latency and rcsourcc limitations. Tbcn wc introduce thc concepts of
system clficiency. utilization, redundancy. and quality of parallel computations. Possible tradcoffs among
these performance metrics are examined in tl'te context of cost-el’fectivenc$$. Several commonly used
performance mcasurcs, MIPS, Mflops, and TP5, arc forrruslly dcfincd.

3.1.1 Parallelism Profile in Programs
The degree of parallelism reflects the extent to which software parallelism matches hardware parallelism.
We characterize below parallelism profiles, introduce the concept of average parallelism, and define an
idcal spccdup with infinitc machine rcsourccs. Variations on thc id-cal spccdup factor will bc prcscntcd in
subsequent sections from various application viewpoints and under different system limitations.
Degree of Parallelism The execution of‘ a program on a parallel computer may use different numbers
of processors at diffcrcnt time pcriocls during thc cxocution cycle. For each tirnc period, thc number of
processors used to execute a program is defined as the degrw tJf]JtlI‘rIHt’ff$t?1 (BOP). This is a discrete time
function, assuming only nonnegarive integer values.

F?» Mtfiruw ,‘["I_nlfJ|ll;l|'lII'\

9B i Advanced Comp-uter Architecture

The plot of the D-OP as a function ol" time is called the parallelism pm-fitle of a given program. For
simplicity, we concentrate on the analysis of single-program profiles. Some software tools are available to
Lrace the parallelism profile. The profiling of multiple programs in an interleaved fashion can in theory be
extended from this study.

Fluctuation of the profile during an observation period depends on the algoritlunic structure, program
optimization, resource utilization, and run-time conditions of a computer system. The DOP was defined
under the assumption ofhat.-‘ing an unbounded number of available processors and other neoessary resources.
The DOP may not always be achievable on a real computer with limited resources.

Wlien the DOP exceeds the maximtun number of available processors in a system, some parallel branches
must be executed in chunks sequentially. However, parallelism still exists within each chunk, limited by the
machine sizte. The DDP may be also limited by memory arid by other nonprocessor resources. We consider
only the limit imposed by processors in our discussions on speedup models.
Average Fturallelism In what follows, we consider a parallel computer consisting of n homogeneous
processors. The maximum parallelism in a profile is m. In the ideal case, rt .1>;> m. The contpriririg cqvm:'i!_y
A of a single processor is approximated by the execution rate, sueh as MIPS or Mflops, without considering
the penalties from memory access, communication latency, or system overhead. When i processors are busy
during an observation period, we have DDP = i.

The total amount of work ll-"' (instructions or computations} performed is proportional to the area under
the profile curve:

isw=.¢-._[[none) dr (3.1)
I

This integral is often computed with the following discrete summation:
J71’

it-'=a Zr‘-I, (3.2)
I I

where r,- is the total amount of time that DOP = i and If’ , r, = r; — r; is the total elapsed time.
The at-wage parallelism A is computed by

1 I

A — ij ’ DOP{_r) df (3.3)
I2 — I] 1|

ln discrete form, we have

HT HI

A = (3.4)

Example 3.1 Parallelism profile and average parallelism29
of a divide-and-conquer algorithm (Sun and
Hi,1993}

As illustrated in Fig. 3.1, the parallelism profile of a divide-and-conquer algorithm increases from l to its
peak value m = 8 and then decreases to 0 during the observation period (rt, I2).

Fr‘:-r Mtfiruur Hlllr rd’ imo 'rqn \

Principle: ofS<:orlo.bile Perfrrmonce i. - q|

It Degree of Parallelism
a - roots
1'-
6._

5.-

4._

3_

2_

"""" ".liv'€r5r_iei E>.§r'itE|'t§ri-Fri "““""

_______u

1- t r1 I r 4 t I t 1 r 2
2 4 T ‘lfl 13 15 1? 2!] 24 27

Time?!»

Fig. 3.1 Parallelism pntrfile of I divide-and-conquer algoritltrn

lnFig. 3.l,theaverageparallelismA —(l ><5 +2><3+3><4+4><6+ 5><2+6><2+8><3)l['5+3-4
+ 6 + 2 + 2 + 3) = 93:25 = 3.72. In fact, the total workload H-"'= A A (r; — til. and A is an upper bound of the
asymptotic speedup to be defined below.

Available Parallelism There is a wide range of potential parallelism in application programs. Engineering
and scientific codes exhibit a high DOP due to data parallelism. Manoj Kumar (I983) has reported that
computation-intensive codes may execute 500 to 3500 arithmetic operations concurrently in each clock cycle
in an idealized environment. Nicolau and Fisher (I984) reported that standard Fortran programs averaged
about a factor of 90 parallelism available for very-long-ins‘o'uction word architectures. These numbers show
thc optimistic side of available parallelism.

However, David Wall (I991) indicated that limits of instruction-level parallelism is around 5, rarely
exceeding 7. Bulter et al. (I991) reported that when all constraints are removed, the DOP in programs
may exceed 17 instructions per .cyclc. If the hardware is perfectly balanced, one can sustain fi-om 2.0 to
5.8 instructions per cycle on a superscalar processor that is reasonably designed. These numbers show the
pessimistic side of available parallelism.

The above measures of available parallelism show that computation that is less numeric than that in
scientific codes has rclativcly little parallelism cvcn when basic block boundaries art: igt1r.n'cd.A basic block
is a sequence or block of instructions in a program that has a single entry and a single exit points. While
compiler Dptimirflfion and algorithm redesign may increase the available parallelism in an application,
limiting parallelism extraction to a basic block limits thc potential instruction-lcvcl parallelism to a factor of
about 2 to 5 in ordinary programs. However, the DO? may be pushed to thousands in sortie scientific codes
when multiple processors are used to exploit parallelism beyond the boundary of basic blocks.
ilsympnatic Speedup Denote the amount of work executed with DOP = i as ll’, = r‘.'1tr,- or we can write
W = E,’-°"| ll-'}. Thc execution time of Hr} on a single processor [sequentially] is r,{l) = rrys. The execution
time of ll’, on it processors is r,{_lr) - ltr',J.t-A. With an infinite number of available processors, r,{=>~=] — llilio for
l E i E rrr, Thus we can W‘l'ite the response time as

nn- Zr. m- —' out
ll

a

l[*'l§ l-1-._¥

War Mcliruur irrttr-...s-,.n,t.¢. '
92 i Advanced Cornp-uter Architecture

Tie") — fir; (ml — (315)

The .n.syntptoric sireeriitp .S',, is defined as the ratio of TU} to ii»):

zit-1.
= rm = .- . _s._. -—-nun) -in, (3.7)

Zn-‘F
1' I

Comparing Eqs. 3.4 and 3.1’, we realize that S.__, = A in the ideal ease. In general, S,_ £ A if communication
latency and other system overhead are considered. Note that both S... and .-t are defined under the assumption
n=wornl>;"-in.

3.1 .2 Mean Performance
Comider a parallel computer with n processors executing m programs in various modes with tlifferent
perfomtance levels. We want to define the mean performance of such multimode computers. With a weight
distribution we can define a meaningful performance expression.

Different execution modes may correspond to scalar, vector, sequential, or parallel processing with
tlifiierent program parts. Each program may be executed with a combination of these modes. Hrtrnionic- mean
perfomiance provides an average perfonnance across a large number of programs running in various modes.

Before we derive the harmonic mean performance expression, let us study the arirhnreric nterm performance
expression first derived by James Smith (1938). The execution rate R, for program i is measured in MIPS rate
or Mflops rate, and so are the various performance expressions to be derived below.

Arithmetic Mean Performance Let {R,-} be the execution rates ofprograms i— l, 2,. . ., m. The rtri£hmc'Iic'
.-storm execution rare is defined B5

Rtr = fr"
r -1

The expression R“ assumes equal weighting (lim) on all m programs. If the programs are weighted with a
distribution rr + {;§| i — l, 2, .. ., m}, we define a 'tt‘c’igJi?Ic’(|i in-irhmerir mean ct-ccurimi mic as follows:

R:= Eu.-a-.1 (1.91
J" I

Arithmetic mean execution rate is proportional to the stun of the inverses of execution times; it is not
inversely proportional to the sum of execution times. Consequently, the arithmetic mean execution rate fails
to represent the real times oonstuned by the benchmarks when they are actually executed.
Harmonic Mean Performance With the weakness of arithmetic mean performance measure, we need
to develop a mean performance expression based on aritlunetie mean execution time. 1n fact, 7} = UR, is thc
mean execution time per instruction for program i. The arirhnicric mean t'.ror*urii'1n time per instruction is
defined by

Principle: of Scalable Perftrmonce i Q3

III III

T..= = ow)
The hrrrrrronie moan oxorririorr rote across m bcnclirmark programs is thus dcfinod by the fact RI, = li"?':,:

mR ,=i {111}I l{-1|:-El] .

Therefore, the harmonic mean performance is indeed related to the average execution time. With a weight
distribution It = {_f,3|r' = 1, 2, . .., rrr}, we can define the it-wightcr! harmonic rrrcrm exrmrrtion rote as:

s-=;,=A (1:2)
E" 1 U"-'rRr_l

The above harmonic mean performance expressions correspond to the total number of operations divided
by the total time. Compared to arithmetic mean, the harmonic mean execution rate is closer to the real
performance.
Harmonic Mean Speedup Another way to apply the harmonic mean concept is to tie the various modes
of a program to the number of processors used. Suppose a program {or a workload of multiple programs
combined) is to be executed on an n-processor system. During thc executing period, the program may use
i - 1, 2, .. ., n processors in different time periods.

We say the program is executed in rrror.i'o i, if r‘ processors are used. The corresponding execution rate R, is
used to reflect the collective spend of r‘ processors. Assume that T1 = HR] = l is the sequential execution time
on a uniprocessor with an execution rate R, — l.Then T,- - 1tR,- - lit is the execution time of using i‘ processors
with a combined execution rate of R, = i in the ideal case.

Suppose the given program is executed in n execution modes with a weight distribution w = {j,?|i = 1, 2,
. . ., rt}. A it-'or'g}rtod harmonic moon .spocdup is defined as follows:

s=r,n"*=A (3.13)
{E-i"i | J'i"Rrl

where T"‘ — ltR1t, is the it-riglrrr-rt nrir!rnu=n'r- nrerm o.x'or:'rrIion tr'nrr_' across the n execution modes, similar to
that derived in Eq. 312.

Ir]
g Example 3.2 Harmonic mean speedup for a multipro-

cessor operating in n execution modes
(Hwarlg and Briggs, 19:14)

In Fig. 3.2, we plot Eq. 3.13 based on the assumption that 7] = lti for all i = 1, 2, ..., n. This corresponds to
the ideal case in which a unit-time job is done by i processors in minimum time. The assumption can also
be interpreted as R, = i because the execution rate increases i times fi"om R1 = I when iprocessors are fully
utilized without waste.

The three probability distributions rt], I2, and E3 correspond to thrcc processor utilization patterns. Lot
s = E:-' | F. rt] = (1/n, lfn, _. ., Lin) corresponds to a uniform distribution over the rt cxocution modes, rt; =(1t's,
2."s, ..., n.I'.s') favors rising more processors, and 21'; = (m‘s,{n — ljfs, .. .,2."s,l."s_) favors using fcwcr processors.

rm‘ MIGIELH HI" t'm'rIq|r_.\.I|n*\ ‘I _

94 Z5 Advanced Conrp-uter Architecture

The ideal ease corresponds to the 45“ dashed line. Obviously, 11'; produces a highccr speedup than tr] does.
The distribution 11-1 is superior to the distribution :13 in Fig. 3.2.

‘ s=%i

r1024- 51,», P I = ___,
/ 2 5

or / as
Spggdup 64- cf _ n 11-1 1

,1’ I3-'l§' _:s_'

\.
N

\

ii .-—-..-—-. ‘J-he-h Et-IMM

‘IE — ,5 H
,1 whemas= El‘

d = ._¢
4_1

I

4 '15 B4 255 ‘H124 Tl

Fig. 3.2 Harrnordc rn-eon speedup performance with respect no 1:hree probability dls1:rtn.r|:lonsr :r1 for tmtforrn
-cHsr.riburlori. ;rr1 in faror ofuslng more prooessors. and rt; to favor ofuslog fewer processors

Amdnhli Law Using Eq. 3.13, one can derive Amda1'|l's law as follows: First, asstlme R,-= i, w={|'1‘, GI, D, .. .,
0, 1 — tr); i.e., wl = or, ti-',, = I — tr, and +1; = O for r‘ ¢ 1 and r'a= n. This implies that the systern is used either in a
pure sequential mode on one processor with a probability tr, or in a fiilly parallel mode usingn processors with a
probability 1 — 0:. Substituting R; = 1 andR,,=n and w into Eq. 3.13, we obtain the following speedup expression:

H
$.= W (3-14)

This is known as Amdahl’s law. The implication is that S —> lfrras H —> W. In other words. under the above
probability assumption, the best speedup one can expect is upper—b-ounded by llrr, regardless of how many
processors are employed.

In Fig. 3.3, we plot Eq. 3.14 as a function of n for four values of tr. When tr = Cl, the ideal speedup is
achieved. As the value of rr increases from 0.0] to 0.1 to 0.9, the speedup performance drops sharply.

; _ n
S_'l+{rr—1[|tr

1024- ,°o=lJ
I2

25s — ,<f
/1’ tr = C|.C|1

Speedup 5; _ Id
I

dd

15” 1 u:=U.'|
I

I
4_

11 = [LB
1 n

4 16 64 256 11124

Fig.1.} Speedup perforrnanee wl1:h respect no the probability distribution rr = {opt}, CL1- cc) where II ls the
fralzrion of sequential boctlenedc

rs» MIG:-|:|'u|' Hillr tr rm-r '1 .I;|(It

Principle: ofS-soluble Perflrmonce i. - Q5

For many years, Amdahl's law has painted a pessimistic picture For parallel processing. That is, the system
performance cannot be high as long as the serial fiaction rr exists. We will furtlier examine Amdabl’s law in
Section 3.3.1 from the perspective of workload growth.

3.1.3 Efficiency, Utilization, and Quality
Ruby Lee (1930) has defined several parameters for evaluating parallel computations. These are fundamental
concepts in parallel processing. Tradeoffs among these performance factors are often encountered in real-life
applications.

System Efficiency Let (In) be the total number of unit operations performed by an n-processor system and
Tin) be the execution time in unit time steps. In general, Tin} *1 Uta} ifmore than one operation is performed
by n processors per unit time, where n 2 2. Assume Til) = 0(1) in a uniprocessor system. The speedup_firr-rnr
is defined as

Sin) = Til]./Tin] (3.15)

The system c;fi‘icz‘ene_v for an n-processor system is defined by
5" T 1'

rt nT{nl
Efiiciency is an indication of the actual degree of speedup performance achieved as compared with the

maximum value. Since 1 5 5l[_n) 5 n, we have lln 5 Erin) 5 I.
The lowest efficiency conesponds to the case of the entire program code being executed sequentially

on a single processor, the other processors remaining idle. The maximum efficiency is achieved when all n
processors are fully utilized throughout the execution period.

Redundancy and Lftilizotion The l"t.’|tIfN.F?|til|iI;l'I-C‘_}-‘ in a parallel computation is defined as the ratio of Ofn) to
17(1):

R(n] = O(ri)fO(l] (3.17)

This ratio signifies the extent of matching between software parallelism and hardware parallelism.
Obviously 15 Rio) £ n. The s_t-stem un'l'i:a!r'on in a parallel computation is defined as

O
Lilfri) = R{n_}E(n_) = [_3.1ll_)

nT{_n)

The system utilization indicates the percentage of resources (processors, memories, etc.) that was
kept busy tll.lI‘i1‘|g the execution of a parallel program. lt is interesting to note the following relationships:
1:515 E(n]| S L"(n) S 1 and 1 SR(n] 5 HE-['n] 5 n,

Quality of Parallelism The qznrlirv of a parallel computation is directly proportional to the speedup and
efficieney and inversely related to the redundancy. Thus, we have

3 .

Qt») = = (3.19){Ml HT -[n)O{nj
Since Elin) is always a 'Frat:t‘ion and Rlfn) is a number between l and n, the quality Q‘{_n) is always upper-

bounded by the speedup .5l[n').

96 ii Advanced Carnp-uter Arclw'Iectm'e

I/I
lg Example 3.3 A hypothetical workload and performance

plots
In Fig. 3.4, we compare the relative magnitudes of5(_n), E{n), R{_n), U{n), and Q{n'] as a fimetion of machine
sire n. with respect to a hypothencal workload characterized by O(l } = T111) = n3, O{n) = H1 + nlloggn, and
1m= 4,r‘r(n + 3).

Substituting these measures into Eqs. 3.15 to 3.19, we obtain the following performance expressions:

S|['n_) = (n + 3_)f4
E('n] = {n + 3]/(4:1)
R-['n} — {n + log; n]I'n
Lin] = (ri + 3_](n + log; n).-‘(4n2)
fin] = 1;» + 3]Fr(1s(n + log; ND

The relationships lfn S E(_n) S Ufn) S I and I] S Q(_n) S BT11} S n are observed where the linear speedup
eerresponds to the ideal ease of 1DD% effieieney.

Speedup S[n]
Efiidencv Elfll Redundancy Rm]
Utilization U[n] Quality Q[n]

It I

10- --------------------------- -- +32
Linear /

os— &“**% -16
EE'-

EE.

\
\ “W.

\
2\ =-

\
\

_-_____--_‘:
o.e- -is

\
\
\

X.
\
\
\

N
\0.4- -'4

I
l

02- -2

00- 4q[|‘n‘IEMIlI.'* -1
i u I I I
1 2 4 a 1s 32

Numberof processors {n]

Fig. 3.4 Perfcrrnanea measures for Example 3.3 on a parallel computer with up to 32 processors

To summarise the above discussion on perforrnanee indices, we use the speedup Sin] to indicate the
degree of speed gain in a parallel computation. The efieieney E{'n) measures the useful portion ofthe total
work perfonned by n processors. The redundancy Rm] measures the extent ofworkload increase.

The utilization Ufn) indicates the extent to which resources are utilized during a parallel computation.

ram Mrlirului Hfllf nr" w :1 .I||r_.u| u

Principles ofScololslePetftI'ma.nce 0 - Q1

Finally, the quality Qfnj combines the effects of speedup, efficiency, and redundancy into a single expression
to assess the relative merit of a parallel computation on a computer system.

The speedup and efiiciency of 10 parallel computers are reported in Table 3.1 for solving a linear system
of I000 equations. The table entries are excerpts from Table I in I1-‘ongan"a's report (1092) on LINPACK
benchmark performance over a large ntunber of computers.

Either the standard LINPAL‘-K algorithm or an algorithm based on matrix-matrix multiplication was used
in these experiments. A high degree of parallelism is embedded in these experiments. Thus high efficiency
{such as 0.94 for the IBM 30‘90."fi-008 VF and 0.95 for the Convex C3240] was achieved. The low efficiency
reported on the lntel Delta was based on some initial data.

Table 3-1 Speedtrp and Efliciency offlnrallel Computers fiar Solving 0 Linear System with ‘F000 Unknowns

Computer N0. of UIII'- Mudfl-
Madel Processors processor processor

firming Timing

Speedup Efiicieney

n T; fir) T, fr) 5 r,.=r,, E‘=S-":1

Cray Y-MP can is 0.1": 0.069 11.12 00.80
NEE SX-3 2 0.15 0.052 I .82 0.9]
Cm]! v-stars 5 2.11 c-:01: 6.96 0.01
Fujitsu AP I000 512 160.0 l.l0 I410 0.29
IBM 309010005 VF 0 7.27 L19 5.64 0.9-4

lutc1Delta iii 22.0 1.50 g 14.1 0.03
Alliant FX/2800-200 14 22.9 2.06 1].] 0.79
nCU'HE-‘2 i024 331.0 2.59 I23 .0 0.12

Convex C3240 _ _ l-4.9 _ 3.0]
Parsytec FT-400 400 l0'II‘5.0 4.90 219.0 0.55

Source: Jack Dongarra. “Performance of Various Computers Using Standard Linear Equations Soflvraref‘ Computer
Science Dept, Univ. of'Tetmessec, Knoxville. TH N996-1301. March ll. 1992.

3.1.-I Benchmarks and Performance Measures
We have used MIPS and Mfiops to describe the r'n.srrm:-rion erccurion rare andfloating-point‘ capability of a
parallel computer. The MIPS rate defined in Bq. l.3 is calculated from clock frequency and average L‘-Pl. In
practice, the 1'vl1PS and Mfiops ratings and other performance indicators to be introduced below should be
measured from nlnning benchmarks or real programs on real machines.

ln this section, we introduce standard measures adopted by the industry to compare various computer
performance, including Mflopr, MIPS, KLIPS, Din-ysrane, and Pl-’h¢-stone, as often encountered in reported
computer ratings.

Most computer manufacturers state peak or sustained performance in terms of MIPS or Mfiops. These
ratings are by no means conclusive. The real performance is always prograrlt-dependent or application-
driven. In general, the MIPS rating depends on the instruction set, varies between programs, and even varies
inversely with respect to performance, as observed by Hennessy and Patterson (I990).

F?» Mtfirpw Hfllt'n.-rqiwtnw

93 i Advanced Comp-uter Architecture

To compare processors with different clock cycles and different instruction sets is not totally fair. Besides
the native MIPS, one can define a reittttve MIPS with respect to a reference machine. We will discuss
relative MIPS rating against the VAKFTRU when Dhrystone perforrnanee is introduced below. For numerical
computing, the LINPACK results on a large number of computers are reported in Chapter B.

Similarly, the Mflops rating depends on the machine hardware design and on t11e program behavior. MIPS
and Mflops ratings are not convertible because they measure difierent ranges ofoperations. The conventional
rating is called the native Mflops, which doe-s not distinguish unnormalized from normalized floating-point
operations.

For example, a r-ea! fioanng-pom: divide operation may correspond to four normoltzedfioating-point
rift-'ic1'c operations. One needs to use a conversion table between real and normalized floating-point operations
to convert a native Mflops rating to a normalized Milo-ps rating.

The Dhrynone Result: This is a CPU-intensive benchmark consisting of a mix of about IUD high-
level language instructions and data types found in system programming applications where floating-point
operations are not used fweicker, 1984). The Dbrystone statements are balanced with respect to statement
type, data type, and locality of reference, with no operating system calls and making no use of library
functions or subroutines. Thus the Dhrystone rating should be a measure of the integer perfomiance of
modem processors. The unit K.Dhtj-vst‘or:esi'.s is often used in reporting Dhrystone results.

The Dhrystone benchmark version l.l was applied to a number of processors. DEC VAX ll."'i'8U scored
1.7 KDltrystonesfs performance. This machine has been used as a reference computer with a IMIPS
pcrfomtance. The relative VAX.-"MlPS rating is commonly accepted by the computer industry.

The Whetstone Result: This is a Fortran-based synthetic benchmark assessing the floating-point
performance, measured in the number ofKWhetstortesfs that a system can perform. The benchmark includes
both integer and floating-point operations involving array indexing, subroutine calls, parameter passing,
conditional branching, and trigonometricitrariscertdental functions.

The Whetstone benchmark does not contain any vectorizable code and shows dependence on the system’s
trtathelrtatics library and efiiciency ofthe code generated by a compiler.

The Whetstone performance is not equivalent to t.he Mflops performance, although the Whetstone contains
a large number ofscalar floating-point operations.

Both the Dhrystone and Whetstone are synthetic benchmarks whose perfomiance results depend heavily
on the compilers used. As a matter of fact, the Dhrystone benchmark program was originally written to test
the CPU and compiler performance for a typical program. Compiler techniques, especially procedure in-
lining, can significantly affect the Dhrystone performance.

Both benchmarks were criticized for being unable to predict the performance of user programs. The
sensitivity to compilers is a major drawback of these benchmarlts. In real-life problems, only application-
oriented benchmarks will do the trick. We will examine the SPEC and other benchmark suites in Chapter 9.

The TPS and KUPS Rating: On-line transaction processing applications demand rapid, interactive
processing for a large number of relatively sirnple transactions. They are typically supported by very large
databases. Automated teller machines and airline reservation systems are familiar examples. Today many
such applications one web-based.

FM Mtfirpw Hlllr wt’ wins1 qt

Principle: of Scalable Peiflrmonce i pg

The throughput o fcomputers for on-line transaction processing is often measured in !r.on.s'm:'Iion.spc"r second
(TF5). Each transaction may involve a database search, query answering, and database update operations.
Business computers and servers should be designed to deliver a high TPS rate. The TP1 benchmark was
originally proposed in I985 for measuring the transaction processing of business application computers. This
benclnnark also became a standard for gauging relational database perfonnances.

Over the last couple of decades, there has been an enormous increase both in the diversity and the scale
of computer applications deployed around the world. The world-wide web, web-hosed applications, multi-
media applications and search engines did not exist in the early l99'9Ds. Such scale and diversity have been
made possible by huge advances in processing, storage, graphics display and networking capabilities over
this period, which have been reviewed in Chapter I3.

For such applications, application-specific henchmarlts have become more important than general purpose
benchmarks such as Whetstone. For web servers providing 24 >< 7 service for example, we may wish to
bencl1mark—under simulated but realistic load conditions—performance parameters such as: throughput {in
number of requests served and.-‘or amount of data delivered) and or-vzrage rsrsyionse time.

ln artificial intelligence applications, the measure KLIPS (kilo logic iri_,r‘i'r+.'ric-¢'s per soc-mint‘) was used at
one time to indicate the reasoning power of an A] machine. For example, the high-speed inference machine
developed under Japan's Fii’th—Generation Computer System Project claimed a performance of 400 KLIPS.

Assuming that each logic inference operation involves about 100 assembly instructions, 400 KLIPS
implies approximately 40 MIPS in this sense. The conversion ratio is by no means fixed. Logic inference
demands symbolic manipulations rather than numeric computations. Interested readers are referred to the
book edited by Walt and Ramamoorthy -[I990].

PARALLEL PROCESSING APPLICATIONS

— Massively parallel processing has become one of the Frontier challenges in supercom-
puter applications. We introduce grand challenges in high-performance computing and

conlrmlnications and then assess the speed, memory, and I."O requirements to meet these challenges.
Characteristics of parallel algorithms are also discussed in this context.

3.1.1 Massive Parallelism for Grand Challenges
The l1Bflll.lT.lOtl of massive parallelism varies with respect to time. Based on today’s standards, any machine
having hundreds or thousands of processors is a rr1r:r.ssr' t-'ei'_1-‘ ;JrIrol'h'1 proc'es.s ing {MPP} system. As computer
technology advances rapidly, the demand for a higher degree ofparallelism becomes more obvious.

The performance of most commercial computers is marked by their peak MIPS rate or peak Mllops
rate. In reality, only a fraction of the peak performance is achievable in real benchmark or evaluation runs.
Observing flte sustained performance makes more sense in evaluating computer perforrnance.

Gr-and Challenge: We review below same of the grand challenges identified in the U.S. High-Performance
Computing and Communication fl-IPCC} program, reveal opportunities for massive parallelism, assess past
developments, and comment on firture trends in MPP.

{'1 j Thc magnetic rc-cording industry rclics on thc usc ofoomputcrs to srttdy mcgmctostatic and ctcharigc

F?» Mtfirpw Hlllrlimpwinw

ton 1- Advanced Cornpoterhrdritectwe

interactions in ordcr to reduce noisc in mctallic thin films used to coat high-density disk-;. ln gcncraL
all rcscarch in science and cnginccring makes hcavy demands on computing powcr.

(El Rational drug design is bcing aided by computers in thc search for a curc for cancer, acquircd
immunodeficiency syndrome and other diseases. Using a high-pcribrmanoc computer, new potential
agents have bccn idcntificd that block thc action ofhuman immunodeficiency virus protcasc.

{'3} Dcsign of high-spccd transport aircraft is bcing aidcd by computational fluid dynamics running on
supcrcomputcts. Fucl combustion can bc madc mon: cfficicnt by designing bcttcr cnginc models
through chemical kinetics calculations.

(J-lj Catalysts for chemical reactions arc being dcsigncd with computers for many biological proccsscs
which arc catalytically controlled by cnzymcs. Massively parallel quantum models demand largc
simulations to rcducc thc time rcquircd to design catalysts and to optimia: thcirpropcrtics.

{'5} Ocean modeling cannot bc accurate without supcreomputing MPP systcms. Ozonc dcplction and
climatc rcscarch demands thc usc of computers in analyzing thc complex thcrmal, chcmical and fluid-
dynamic mcchanisnu; involved.

{'6} Othcr important arcas demanding computational support includc digital anatomy in rcal-time mcdical
diagnosis, air pollution reduction through computational modeling, thc dcsign ofprotcin structures
by computational biologists, image processing and understanding, and technology linking rcscatch to
cducation.

Bcsidcs computer scicncc and computer cnginccring, thc abovc challcngcs also cncouragc thc cmcrging
discipline of computational science and engineering. This demands systematic application of computer
systems and computational solution techniques to mathematical models formulated to describe and to
simulate phenomena ofscicntific and cnginccring intcrcst.

Thc I-[FCC Program also identified some grand challenge computing rcquircrncnts ofthe time, as shown
in Fig. 3.5. This diagram shows the levels ofprocessing speed and memory size required to support scientific
simulation modeling, advanced computer-aided design (CAD), and real-time processing of largevscale
database and information rctricval operations. In the sincc thc carly 19905, thcrc have bccn hugc
advances in the processing, storage and networking capabilities of computer systems. Some MFP systems
have reached petaflop perforrnance, while even PCs have gigabytes of memory. At the same time, com.puting
rcquircmcnts in scicnoc and cnginccring have also grown cnormously.

Exploiting Massive Parallelism The parallelism embedded in the instruction level or procedural level is
rather limited. Very few parallel computers can successfirlly execute more than two instructions per machine
cyclc from thc samc program. Instruction parallelism is oficn constrained by program behavior, con1pilcrr"US
incapabilities, and program flow and execution mechanisms built into modern computers.

On the other hand, alum paralleimm is much higher than instruction parallelism. Data parallelism refers to
thc situation whcrc thc samc operation (instruction or program} eitccutcs ovcr a large array ofdata lopcrands}.
Data parallelism has been implemented on pipelinod vector processors, SIMD array processors, and SPMD
or MPMD multicomputer systems.

In Table 1.6, we find SIMD data parallelism over 65,536 PEs in the CM-2. One may argue that the CM-2
was a bit-slicc machine. Evcn if vvc divide thc numl:rc:r by 64 (thc word lcng1.h ofa typical supercomputer},
we still end up with a DDP on the order of thousands in CM-2.

The vector length can be used to determine the parallelism implementable on a vector supercomputer.

I'M Mrfiruw Hill!‘ NT -.- I .l]lI_J.|lM"|

Principls ofS<:ol-ubile Pelflrmonce -- H"

In the ease of the Cray Y.-‘MP C-9|), 32 pipelines in lo processors eoulrl potentially achieve a DUP of
32 >< 5 = 160 ifthe average pipeline has five stages. Thus a pipelined processor can support a lower degree of
data parallelism than an STMD computer.

M°'"'°"lf c"=\P3°“l" Global Change
Human Geno-moI.
Flilo Turbulence
Vehicle Dynam lea

1000 GBi _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Q4533“ clfgliaflon

Viscous Fluid Dy-nalnles
Suporoonducbr Modeling
Semiconductor Modeling
Quantum £';l1romod3|' namles

100 GB __ Vlfilflfl I

1o GB — ~ — — — — — — — — — — — — — 5"“°‘““*‘Mohlelo Bbbar
Sig rnturo

___________________J

72-Hour
1 '35 — Weather Pmrggcgxfical

SD Plasma
10435551 Modeling

Chemical Dynamics
118-How
Weather10 MB —

Alrfoll OH Reservoir
Modeling

ioso 1968 1991 1993 19Q5ancl boyonld
I I I I I '-Steam Seed

1lJ'DMflorpe 1G-flops 10Gflorpe 1fl0Gflope 1Tflops
Fig. L5 Grand challenge requirements in curnputiltg and OOlI‘ll1'I.ll'lll;l‘ClU|'IS{cOl.I'liE¥f of U.S.H@l

Gonrpudng and Con'ln1|.lnlcatl-on Progrant. 1992}

Dn a message-passing multiwmputer, the parallelism is more scalable than a shared-meme-ry
multiprocessor. As revealerl in Table 1.4, the nCUBE.|'2 could achieve a maximum parallelism on the order of
thousands if all the node processors were kept busy simultaneously.
The Past and the Future MPP systems started in 1968 with the introduction of the llliac IV computer
with 64 PEs under one controller. Subsequently, a massively parallel processor, called MPP, was built by
Goodyear with 16,3 84 PEs. IBM built a GF1 I machine with 5T6 PEs. The MasPa.r MP-I , AMT IJAPGIO, and
CM-2 were all early examples of STMD computers.

FM Mtfiruw Hllltbmpwins

I BI i Advanced Camp-uter Architecture

Early MPP systems operating in MIMD mode included the BEN TC-2000 with a maximum configuration
of 512 processors. The IBM RP-3 was designed to have 512 processors (only a 64—pro-cessor version was
built). The Intel Touchstone Delta was a system with 5'l'[l processors.

Several subsequent MPP projects included the Paragon by lntel Supercomputer Systems, the CM-5 by
Thinking Machine Corporation, the I-{SR-I by Kendall Square Research, the Fujitsu VPP500 System, the
Tera computer, and the MIT *T system.

[BM announced MPP projects using thousands of IBM RS.!6tl0O and later Power processors, while C-ray
developed MPP systems using Digital‘s Alpha processors and later AMD Opterort processors as building
blocks. Some early MPP projects are summarized in Table 3.2. We will study some of these systems in later
chapters, and more recent advances in Chapter 13.

Table 3.2 Early Representative Massively Parallel‘ Processing Systems

MPPSystem Archiaec-nrre, Teeilnologa, and Operational Fenfllres

lntel Paragon A 2-D mesh-cormlected muiticomputler, built with i860 XP procsors and
wonnhole routers, targeted for 300 Ciflops in peak performance.

IBM MPI‘ Model Use IBM RlSC.I‘t‘§IlIlIl procsors as building blocks, 5-ll Gflops
peak expected for a I024-processor configuration.

TMC CM-S A universal architecnrre for SIMIJ-'MTlvID computing using SPARC PEs and
custom-dmigned FPUs, control and data networks, 2 Tflopa peak for 15K nodes.

Cray Research
It-IPP Model

A 313 torus heterogeneous architecture using DEC Alpha ehips with special
communication support, global addrem space over physically distributed memory;
first system offered 150 Gllops in a I024-process-or configuration in 1993; capable
of growing to Tllops with larger configurations.

Kendall Square
Research KSR-I

An ALLCACHE ring-connected multiprocsorr with custom-designed processors,
-t3 Gflops peak performance for u ltlllli-processor configuration.

Fujitsu VPPSOU A crossbar-connected 222-PE MIME! vector system, with shared distributed
memories using VP2tlt1tl as a host; peak performance = 355 Cifleps.

3.1.1 Application Models of Parallel Computers
ln general, if the workload is kept unchanged as shown by curve rr in Fig. 3.6a, then the efficioncy E decreases
rapidly as the machine size n increases. The reason is that the overhead h increases faster than the machine
size. To maintain the efliciency at a desired level, one has to increase the machine size and problem size
proportionally. Such a system is lmown as a scalable conipurer for solving .rcrilezf;JrobIerrts.

in the ideal case, we like to see a workload curve which is a linear fimction ofn [curve 1' in Fig. 3.6a). This
implies linear scalability in problem size. Ifthe linear workload curve is not achievable, the second choice is
to achieve a subliuear scalability as close to linearity as possible, as illustrated by curve ,3 in Fig. 3.6a, which
has a smaller constant of proportionality than the curve 1'.

Euppose that the workload follows an exponential growth pattern and becomes enormously large, as
shown by curve B in Fig. 3.6a. The system is considered poorly scalable in this case. The reason is that to
keep a constant efficiency or a good speedup, the increase in workload with problem size becomes explosive
and exceeds the memory or HO limits.

.
Principles oficololale Peiftrmortce h -- "B

Workload Efflclgriql
1 mums 1 _ _ _ _ _ B

H {Exponential} ‘I’
ll [Suhllnoarj

0.5 B

o. [Constant]

I I | I ,. 0
I1

_.n—-\

, , I I |,,.,
1 10 100 1000 10 11343 111043

Machine size, n Ma-chin-eslzie, n
la] Four workload growth patterns [hi Conespondlng efileleney curves

Work load F |neel- memoryMe-"Mow model
Bound

Flsed-time model

Fixed-load mode-I g°m°"“d"“ “mm

F

Machine size [n]
(e}Appllc.atlon models for parallel oornp uters

Fig. 3.5 Wlorldood growcli. lfliellnqr curves. and qiplicatlon models of parallel eomputanr undw resources
conso-am:

The Efilcioncy Curve: Corresponding to the four workload patterns specified in Fig, 3.6a, four efiicieney
curves an: shown in Fig. 3.6h, respectively. With a constant workload, the efficiency curve {tr} drops rapidly.
In fact, curve rr corresponds to the famous Amdahl’s law. For a linear workload, the efficiency curve (11) is
almost fiat, as observed by Gustafson in 1983.

The exponential workload (8) may not he implementable due to memory shortage or U0 bounds [if real-
time application is considered). Thus the Gefliciency (dashed lines) is achievable only with exponentially
increased memory [or U0) capacity. The suhlinear efficiency curve (B) lies somewhere between curves r:
and y.

Scalability analysis determines whether parallel processing of a given problem can offer the desired
improvement in perforrnance. The analysis should help guide the design ofa massively parallel processor. lt
is clear that no single scalability metric suffices to cover all possible eases. Different measures will be usefiul
in different contexts, and further analysis is needed along nitdtiple dimensions for any specific application.

Aparallol system can he used tn solve arbitrarily large problems in a fixed time if and only if its workload

FM Mtfiruw Hlllrilmylorrns

I B4 i Advanced Comp-uter Architecture

pattern is allowed to grow linearly. Sometimes, even ifminimum time is achieved with more processors, the
system utilization {or efliciency) may be very poor.
Application Model: The workload patterns shown in Fig. 3.6a are not allowed to grow unbounded. In
Fig. 3.oc, we show three models for the application of parallel computers. These models are bounded
by limited memory, limited tolerance of IPC latency, or limited U0 bandwidth. These models are briefly
introduced below. They lead to three speedup performance models to be formulated in Section 3.3.

Thcfixed-load model corresponds to a constant workload (curve rr in Fig. 3.6a}. The use of this model is
eventually limited by the communication bound shown by the shaded area in Fig. 3.6c.

The_fi.:eci-time model demands a constant program execution time, regardless of bow the workload scales
up with machine size. The linear workload growth [curve y in Fig. 3.6a) corresponds to this model. The
fixed-memorjv model is limited by the memory bound, corresponding to a workload curve between yand H‘ in
Fig. 3.6a.

From the application point of view, the shaded areas are forbidden. The communication bound includes
not only the increasing IPC overhead but also the increasing U0 demands. The memory bound is determined
by main memory and disk capacities.

in practice, an algorithm designer or a parallel computer programmer may choose an application model
within the above resource constraints, as shown in the unshaded application region in Fig. 3.-tic.
Trad-cuff: in Scalability Analysis Computer cost c and programming overhead p (in addition to speedup
and efficiency) are equally important in scalability analysis. After all, cost-effectiveness may impose the
ultimate constraint on computing with a limited budget. What we have studied above was concentrated on
system efficicncy and fast execution of a single algorithtrtfprogram on a given parallel computer.

ll would be interesting to extend the scalability analysis to multiuser environments in which multiple
programs are executed concurrently by sharing the available resources. Sometimes one problem is poorly
scalable, while another has good scalability characteristics. Tmdeoffs exist in increasing resource utilization
but not necessarily to minimize the overall execution time in an optimization process.

Exploiting parallelism for higher performance demands both scalable architectures and scalable
algorithms. The architectural scalability can be limited by long communication latency, bounded memory
capacity, bounded [ID bandwidth, and limited processing speed. I-low to achieve a balanced design among
these practical constraints is the major challenge ol'today’s MPP system designers. On the other band, parallel
algorithms and efficient data structures also need to be scalable.

3.1.3 Scalability of Parallel Algorithms
in this subsection, we analyze the scalability of parallel algorithms with respect to key machine classes.
An isoelliciency ooncept is introduced for scalability analysis of parallel algorithms. Two examples are
used to illustrate the idea. Further studies of scalability are given in Section 3.4 after we study the speedup
perforrna.nce laws in Section 3.3.

Jllgoritlrmic Characteristic: Computational algorithms are traditionally executed sequentially on
uniprocessors. Parallel algorirhrns are those specially devised for parallel computers. The idealized parallel
algorithms are those written for the PRAM models if no physical constraints or communication overheads are
imposed. ln the real world, an algorithm is considered efficient only if it can be cost effectively implemented
on physical macltines. In this sense, all machine-implementable algorithms must be architecture-dependent.
This means the effects of oommunicaiton overhead and architectural constraints cannot be ignored.

rt» MIG:-|:|'u|' Htltr ..r sm-r '1 .I;|(\

Principle: ofS-coloblc Perfrrmonce i. - [Q5

We siunmarize below important characteristics of parallel algorithms which are machine implementable:
(1] Deterttritrr'str'r- versrrs nondcterministic: As defined in Section 1.4. 1, only deterministic algorithms are

implementable on real machines. Our study is confined to deterministic algorithms with polynomial
time complexity

(Zj Computcrtinnrti grrurrriarity: As introduced in Section 2.2.1, granularity decides the size of data items
and program modules used in computation. ln this sense, we also classily algorithms as fine-grain,
medium -g rain, or coarse-grain.

-['3] Patr:rHcIt.smptr:1tife:The distribution offne degree ofparallelism in an algorithm reveals the opportunity
for parallel processing. This ofien afiects the effectiveness of the parallel algorithms.

{J-ll Cottrtnrttrtrrrttnn prrrttertrs and s_'mr'hmnt:r;rtt'ntr reqrrtnzments: Communication patterns address both
memory access and interprocessor communications. The partems can he .strrtr'c or dit-nrrttrtc, depending
on the algorithms. Static algorithmsare more suitable tbr SIMD orpipelined machines, while dynamic
algorithms are for MIMD machines. The st-'ne!rmtrfiatr'otr _,ti'eqrrerrc_v often affects the efficiency of an
algorithm.

{'5} L-"trr:,t'hrmr't_v of the operations: This refers to the types of fundamental operations to be pcrlbrmed.
Obviously, ifthe operations are uniform across the data set, the SIMD processing or pipelining may
be more desirable. [n other words, randomly structured algorithms are more suitable for MIMD
processing. Other related issues include data types and precision desired.

{oj .'l»l'ettrorfr-' reqrrtrcttrent and data structures: In solving large-scale problems, the data sets may require
huge memory space. Mettrnrfr-' tjfhctenrji-' is atfected by data structures chosen and data movement
patterns in the algorithms. Both time and space complexities are key measures ofthe granularity ofa
parallel algorithm.

The lloafilcilnqr Concept The workload ll‘ of an algorithm grows with s, the problem size. Thus, we
denote the workload w = no"; as a function of s. Kumar and Ran {I987} have introduced an t's0e;fl‘ict'enr.?y
concept relating workload to machine size n needed to maintain a fixed efficiency E when implementing
a parallel algorithm on a parallel computer. Let tr be the total communication overhead involved in the
algorithrn implementation. This overhead is usually a lhnction ofboth machine size and problem size, thus
denoted tr = Ms, n].

The cfficieney of a parallel algorithm implemented on a given parallel computer is thus defined as

E = rm)
t1\[sj+h|[.s,n]

The workload wis) corresponds to useful computations while the overhead Fits, rt} are computations
attributed to synchronization and data communication delays. In general, the overhead increases with respect
to both increasing values ofs and n. Thus, the efficiency is always less than I. The question is hinged on
relative growth rates between u'{-Y} and lll-Y, H).

With a fixed problem size {or fixed workload), the efficiency decreases as n increase. The reason is that the
overhead it-ls, rt) increases with n. With a fitted machine size, the overhead It grows slower than the workload
l1-‘. Thus the effic-iency increases with increasing problem size for a fixed-size machine. Therefore, one can
expect to maintain a constant efficieney if the workload ‘H-' is allowed to grow properly with increasing
machine size.

F?» Mtfiruw Hlllrlimpwrnw

loll 1- Advanced Cornputerhrchitectme

For a given algorithm, the workload w might need to grow polynomially or exponentially with respect to
n in order to maintain a fixed efiiciency. l3ifl‘erent algorithms may require different workload growth rates
to keep the efficiency from dropping, as n is increased. The isoefiiciency functions of common parallel
algorithms are polynomial fimctions ofn; i.e., they are rJ(_n“) for some It 2 I. The smaller the power ofn in
the isoelficiency function, the more scalable the parallel system. Here, the system includes the algorithm and
architecture combination.

lsoefficieney Function We can rewrite Eq. 3.20 as E = lt(l + fr(.s__ n]v‘u{s}). In order to maintain a constant
E, the workload wls) should grow in proportion to the overhead his, tr). This leads to the following condition:

n-{.s') = g X h(s,n_] (3.21)

The Factor C = Et{l — E] is a constant for a fixed elliciency E. Thus we can define the r's'oe_fil‘icr1cncy_fimr'ti0n
as follows:

jg-{'rr) = C >< !r{_s, tr] (3.22)

If the workload v.-ts) grows as fast a.s_,fl._-(in) in Eq. 3.2 l, then a constant efliciecncy can be maintained for a
given algorithm-architecture combination. Two examples are given below to illustrate the use ofisoefficiency
functions for scalability analysis.

I/)
£5 Example 3.4 Scalability of matrix multiplication algorithms

(Gupta and l(uma.r,1992)
Four algorithms for matrix. multiplication are compared below. The problem size s is represented by the
matrix order. In other words, we consider the multiplication of two s >< s matrices A and B to produce an
output matrix C = AX B. The total workload involved is iv = C-‘(s3). The number ofprocessors used is confined
within l 5 n £ s3. Some of the algorithms may use less than 53 processors.

The isoefliciency functions of the lbur algorithms are derived below based on equating the workload with
the communication overhead [Eq. 3.21) in each algorithm. Details of these algorithms and corresponding
architectures can be found in the original papers identified in Table 3.3 as well as in the paper by Gupta and
Kumar [I 9'92}. The derivation of the communication overheads is left as an exercise in Problem 3.l4.

The Fox-{ltto~Hey algorithm has a total overhead tits, n} = rJ(n log rt + $2 [ii }. The workload n'= 0t¢3)=
Gin logn + s2 Ni; J. Thus we must have Dlltjl = Ulrt logfll and 5T-'~‘l = Oi ~51. Combining the two, we obtain
the isoefficiency fi.1ncl:ion tlsj) = (Iain), where l S tr S as shown in the first row of Table 3.3.

Although this algorithm is written for the torus architecture, the toms can be easily embedded in a
hypercube architecture. Thus we can conduct a fair comparison of the four algorithms against the hypercube
architecture.

Berntsen’s algorithm restricts the use of n 5 ad"; processors. The total overhead is Ola“ + n logn + .s2nm’]|.
To match this with (Isa), we must have O{'s3) = O(tr'm) and O{.s3) = Oln). Thus, Olsj) must be chosen to yield
the isoelliciency function tiling).

The Gupta—l(.umar algorithm has an overhead Gin logo + .s'2n “log ti). Thus vvemust have Otsi) = Ola log n)
and Utfijl = 5'l'$2H“3 log tr]. This leads to the isoefficicncy fimction Ulntlog old) in the third row of Table 3.3.

Fr‘:-r Meomw nrmr rd’ am-r '
Prim-We at Sortable Petftrmonce I W i ' i. - to‘!

The Dekel-Nassimi-Sahni algorithm has a total overhead O{n logn + .-13) besides a useful computation time
of tlrlfril for sz 5 n 5 s3. Thus the workload growth 0(.-vi) = O[_n log n) will yield the isoefliciency listed in
the last row of Table 3.3.

Table 3.3 llsymptotic lsoefliciency Functions of Four Matrix Mulnipiiootion Algorithms (Gupta and Ktmior. 1992}

Morris Mukipiicorion Lrogfiieiemy Range of iilsrger Mehilre
.-'l lg-:1-ri.rhm Fr.rm;'.t‘ flu} .-"lpp] i|;'rrt'1i Ii1'_ 5' A .r't:'.ir1".t‘é'r:'.r1:rrr=*

Fox, Otto, and Hey ooér’) 1 s n 5 E A ,4‘; >< J;torus
(1931)
Bemtsen Ding) 1 5 rr 5 .9“ A hypercube with
(19891 it if _f{=I“7m'5¢[
Gupta and Kumar U{n(iogn}'l] 1 5 ,1 5 .6 A hypercube mm
(19921 n = 2“ no-dos

and it <% log s

Dekel. Nassimi, and O{r1-logn} .35 nil .3 hhypermshewlfll
Sahni(l9Bl] n=.#=2’*me=s

Note: Two s‘ >< s matrices are multiplied.

The above isoefliciency fimctions indicate the asymptotic scalahilities of the four algorithms. In practice,
none of the algorithms is strictly hettecr ’cl'ta.n the others for all possible problem sizes and machine sizes. For
example, when these algorithms are implemented on a multicomputer with a long communication latency [as
in Intel iPSC 1), Berntsen's algorithm is superior to the others.

To map the algorithms on an SIMD computer with an extremely low synchronization overhead, the
algorithm by Gupta and Kumar is inferior to the others. Hence, it is h-est to use the Dekel-Nassirni-Sahni
algorithm for s2 5 n 5 s3, the Fox-Otto-Hey algorithm for .sm £ n 5 sz, and Berntseifs algorithm for n £ sm
for SIMD hypercube machines.

I»)
gl Example 3.5 Fast Fourier transform on mesh and hypercube

computers (Gupta and l(umar,1993)
This example demonstrates the sensitivity of machine architecture on the scalability of the FFT on two
different parallel computers: mesh rind h__vpercnbe. We consider the Cooley-Tukey algorithm for one-
dimensional s-point fast Fourier nensfonn.

Gupta and Kiunar have established the overheads: h5{s, n] = Din logn + .s log n] for FFT on a hypercube
machine with n processors, and I12 {'s, n} = C-‘(n log n + s J;) on a viii >< vrri mesh with n processors.

Foran s»point FFT, the total workload involved is it-{_s_] = O{.s log s}. Bquating the workload with overheads,
we must satisfy Cllis logs) = Oin logn} and Dis logs} = O{sIogn], leading to the isoefficicncy fimction

_,t'] = Ofn logn] for the hypercube machine.

re» Mrliruuv H'["I'm'l!I||r1rlM'\ '
Ins 1- _ .lrdv\onosdCnrnptrter'.ltrdrJIectru'e

Similarly, we must satisfy Ofs logs) — Urn log n) and O'~[_s'lOgs] —- Ots viii) by equating ntj s) - kgs, n). This
leads to the isoefficiency functionf; — Oi M5) for some constant Ir '5 2.

The above analysis leads to the conclusion that FFT is indeed very scalable on a hypercube computer. The
result is plotted in Fig. 3.?a for three effieiency values.

Problem size [s] Problem also [si
1o.=<1c5 1o_><1o5

E oar Mesh
B;-t‘lD5 s>=.1c5

21-<1o5 E MB 2111115
= ' Hypereube

O 500 1000 1500 2000 0 5-DD 1llOG 15-CH} 2000
Machlnoslaa [n) Machine also [nj

[ai Hyp-srcub-a under three operating elflclenclo-s [bi Comparison between mosh and hyporctbo

Fig.3.? lsoeffleiency curves for FFT on rvvo parallel computers {Courtesy of Gupta and l<r.rnur: 1W3]

To maintain the same efiiciency, the mesh is rather poorly scalable as demonstrated in Fig. 3.Tb.
This is predictable by thc fact that the workload must grow exponentially in {Iii nk "iii) for the mosh

architecture, while the hypercube demands only D(n log n} workload increase as the machine size increases.
Thus, we conclude that the FFT is scalable on a hypercube but not so on a mesh architecture.

If the bandwidth of the comrnunication channels in a mesh architecture increases proportional to thc
increase of machine size, the above conclusion will change. 1-'or the design and analysis of Fl-'1‘ on parallel
machines, readers are referred to the books by Abo, Hopcroft and Ullman (1974) and by Quinn (I987). We
will ftnthcr address scalability issucsfrom thc architecture standpoint in S-oction 3.4.

SPEEDUP PERFORMANCE LAWS

1 Thrcc speedup pcrforrnancc models are defined below. Amrlahl's law {I967} is based on a
fixed workload or a fixed problem size. Gustafson’s law (I98?) is applied to scaled problems,

where the problem size increases with the increase in machine sine. The weedup model by Sun and Ni (1993)
is for scaled problcrns bounded by memory capacity.

3.3.1 Amdahl’s Law for a Fixed Workload
in many practical applications that demand a real-time response, the computational workload is often fixed
with a fixed problem size. As the number of processors increases in a parallel computer, the fixed load is
distributed to more processors for parallel cxccution. Thtntforc, thc main objcc-tivc is to produce thc results

ram Mtfiruw Hflif N1" w :1 .I||r_.u| u

Principles efS-cctlahtle P£lftI'fl"l0Jl€E ? - "lg

as soon as possible. In other words, rninimal turnaround time is the primary goal. Speedup obtained for time-
eritical applications is called fixed—load speedup.
Fixed-Load Speedup The ideal speedup fonrnttla given in Eq. 3.7 is based on a fixed workload. regardless
of the machine size. Traditional formulations for speedup, including Amdahl's law, are all based on a fixed
problem size and thus on a fixed load. The speedup factor is upper-bounded by a sequential bottleneck in this
C338.

We consider below both the cases of DDP < n and cl‘DOP 2 n. We use the ceiling Function |i.t-_| to represent
the smallest integer that is greater than or equal to the positive real number x. Whenx is a fraction, lxi equals
l. Consider the ease where DOP = F 1* n. Asstune all rt processors are used to execute ll] exclusively, The
execution time of ll-} is

ll r, = ——’- — 3.23rod ifiini (l
Thus the response time is

1'11 .- .

T(N)= Z (3.24)
1 I

Note that ii‘? < n, then r,{n_] = r,{=-=) = W,~*'id. Now, we define tbejired-load speedtipfiactor as the ratio of
T[1) to Tin}:

I

ZMH. ..,E_[‘4=‘1i,J";3--.

S": a =

Note that S-',, S S“ 5 .-l, by comparing Eqs. 3.4, 3.7, and 3.15.
K number of factors we have ignored may lower 1:he speedup perforrnance. These include communication

latencies caused by delayed memory access, interprocessor communication over a bus or a network,
or operating system overhead and delay caused by interrupts. Let Qin) be the lumped sum of all system
overheads on an n-processor system. We can rewrite Eq, 3.25 as follows:

II‘!

Ec-
S = = I l

" T(n]+Q(n] _

' in-i + QM)

The overhead delay Q(n] is certainly application-dependent as well as machine-dependent. It is very
difficult to obtain a closed form for Qirr). Unless otherwise specified, we assume QM] = I] to simplify the
discussion.

Jl.mdahJ": Law Revisited In I967, Gene Amdahl derived a fixed-load speedup For the special case
where the computer operates either in sequential mode {with DOP = 1) or in perfectly parallel mode (with
DOP = n]. That is, ll’, = ID if i#= lor F asn in the profile. Equation 3.25 is then simplified to

if m+m
m+mm

(3.26)

ZMH ~E

(3.2?)

That Ml.'I;Ifllb' HI" l'n¢r.q|r_.tI|»r\ -

lltfii Advanced Cmtpttterfltrdaiiedtue

Amdahl’s law implies that the sequential portion oi‘ the program ii} does not change with respect to the
machine size H. However, the parallel portion is evenly executed by n processors, resulting in a reduced time.

Consider a normalized situation in which ii] + Hi, = rr i (1 - tr] = 1, with rr = IF, and rr = iij,
Equation 3.27 is reduced to Eq. 3.14, where cr represents the percentage of a program that must be executed
sequentially and 1 — rr corresponds to the portion of the code that can be executed in parallel.

Amdahl’s law is illustrated in Fig. 3.8. when the number of processors increases, the load on each
processor decreases. However. the total amount of work (workload) ii’, + W” is kept constant as shown in
Fig. 3.8a. In Fig. 3.Bb, the total execution time decreases because 7], = H-",,r'n. Eventually, the sequential part
will dominate the perfonnance because 1",, —-> U as n becomes very large and T1 is kept unchanged.

Workload Eioacution Tlmo

IE
1

*~W" W“ W“ W" W“ W" T 1~ T.
T" J7

n n
1 2 3 4 5 6 1 2 3 4 5 B

No of processors Ho. of processors
[a] Fixod workload [bl Decroasi ng execution time

-‘=‘-tmdtmsi "3 102491!

_

102491* Sass‘ m.
4-Bx

31” 24x-——- 1x

0% 1% 2% 3% 4% 100%
Sequential fraction of prcgram
[e] Speedup with afisod load

Fig. 3.! Fixed-ioa-d speedup model arrdhmdahfs law

Sequential Bottleneck Figure 3.8c plots Amdahl’s law using Eq. 3.14 over the range ii 5 rr 5 1. The
maximum speedup S" = rt if rr = D. The minimum speedup 8,, = 1 if rr = l. As rt —> M, the limiting value of
5',,—> 11"rr. This implies that the speedup is upper-bounded by lfrr, as the machine size becomes very large.

FM Mcfiruw Htllr or wins1 qr

Pimple Dfs-C|t?rlGbtl|E Perfwmorrce i | | |

The speedup curve in Fig. 3.8:: drops very rapidly as rr increases. This means that with a small percentage
ofthe sequential code, the entire perfonnance cannot go higher than llrr. This rrhas been called the sequential
horrlene-:-Ir in a program.

The problem of a sequential bottleneck cannot be solved just by increasing the number of processors in a
system. The real problem lies in the existence ofa sequential fraction of the co-tlc. This property has imposed
a pessimistic view on parallel processing over the past two decades.

In fact, two major impacts on the parallel computer industry were observed. First, manufacturers were
discouraged from making large-scale parallel computers. Second, more research attention was shifted toward
tlevclopitrg parallelizing compilers which would reduce the value of rr and in turn boost the perfomianee.

3.3.2 Gus'l:afson’s Law for Scaled Problems
One of the major shortcomings in applying Amdahl’s law is that the problem (workload) cannot scale to
match the available computing power as the machine size increases. ln other words. the fixed load prevents
sealahility in performance. Although the sequential bottloneclt is a serious problem, the problem can be
greatly alleviated by removing the fixed-load (or fixed-problem-size) restriction. John Gustafson (I 988] has
proposed a fixed-time concept which leads to a scaled speedup model.
Scaling for Higher Accumcy Time-critical applications provided the major motivation leading to the
development of the fitted-load speedup model and Amdahl’s law. There are many other applications that
emphasize accuracy more than minimum turnaround time. As the machine size is upgraded to obtain more
computing power, we may want to increase the problem size in order to create a greater workload, producing
more accurate solution and yet keeping the execution time unchanged.

Many scientific modeling and engineering simulation applications demand the solution of very large-
soale matrix problems based on some partial differential equation (PDE} formulations diseretized with a
huge number of grid points. Representative examples include the use of finite-element method to perform
structural analysis or t.he use of finite-difference method to solve computational fluid dynamics problems in
weather forecasting.

Coarse grids require less computation, but finer grids require many more computations, yielding greater
accuracy. The weather forecasting simulation often demands the solution of four-dimensional PDEs. if one
reduces the grid spacing in each physical dimension (X, l", and Z] by a factor of lll and increases the time
steps by the same magnitude, then we are talking about an increase of 10* times more grid points. The
workload thus increases to at least 10,000 times greater.

With such a problem scaling, of course, we demand more computing power to yield the same execution
time. The main advantage is not in saving time but in producing much more accurate weather forecasting
This problem sealing for aecrlracy has motivated Gnstafson to develop a fixed-time speedup model. The
scaled problem keeps all the increased resources busy, resulting in a better system utilization ratio.
Fixed-Time Speedup In accuracy-critical applications. we wish to solve the largest problem size possible
on a larger machine with about the same execution time as for solving a smaller problem on a smaller machine.
As the machine size increases, we have to deal with an increased workload and thus a new parallelism profile.
Lct m’ be the maximum DCIP with respect to the scaled problem and Hr]-' be the scaled workload with D01‘ = i.

Note that in general ll";-’ re Hr’, for 2 E i E of and W1 = l-l"|. Thc fiitcd-time speedup is defined under the
assumption that TU) — T’{n], where T’('n') is the execution time of the scaled problem and Tl 1] corresponds
to the original problem without scaling. We thus obtain

I I115 Advanced CurtputerArdw'Iect||u'e

m ml _r; .

E"? = + Qt») (3.2s)
J | 1 l

A general formula for fitted-time speedup is defined by Sf, = Til)fT'(n), modified from Eq. 3.26:

M“ -s :t~4= -s
s',,= = mi (3.29)

LL Qt») zlu-;

Gu.rtofson": Law Fixed-time speedup was originally developed by Gustafson for a special parallelism
profile with W, = 0 if i sé l and i as n. Similar to ."tmdahl‘s law, we can rewrite Eq. 3.29 as follows, asswtiing
Qfnl = D,

IP45

.m
_-1ii,

Sir _ t_t'{+ it-',; _ ti-1 Hm-',,
‘" HQ + PF" ll-"1 + W"Zn}.

1" I

where H’; — n H-"',, and H-'1 + H-"',, — H-"1 + H-"'j,="n, corresponding to the fixed-time condition. From Eq. 3.30, the
parallel workload H-‘f, has been scaled to n times H--1, in a linear fashion.

The relationship of a scaled workload to Gustafson's scaled speedup is depicted in Fig. 3.9. In fact,
Guatafsonb law can be restated as follows in terms of rr = HF] and 1 — rr = HF" under the same assuntption
W, + H-',, — 1 that we have made for Arndahl‘s law:

s:.= l"‘i’ =~--so 1) cw)rr + {1— rt) '
In Fig. 3.911, we demonstrate the workload scaling situation. Figure 3.91:: shows the fixed-time execution

style. Figure 3.9c plots Ji-‘I, as a fiirlction of the sequential portion 1'1‘ ofa program ru.t|J1i.t1g on a system with
n — 1024 processors.

Note that the slope of the .5, curve in Fig. 3.90 is much flatter than that in Fig. 3.EIc. This implies that
Gustafson‘s law does support mlable perfomiance as the machine size increases. The idea is to keep all
processors busy by increasing the problem size. When the problem can scale to match available computing
power, the sequential fraction is no longer a bottleneck.

(3.30)

3.3.3 Memory-Bounded Speedup Model
Xian-I-le Sun and Lionel Ni (1993) have developed a memory-bounded speedup model which generalizes
A_mdahl‘s law and Gustafsons law to maximize the use of both CPU and memory capacities. The idea
is to solve the largest possible problem, limited by memory space. This also demands a scaled workload,
providing higher speedup, higher accuracy. and better resource utilization.
Memory-Bound Problem: Large-scale scientific or engineering computations often require larger
memory space. In fact, many applications of parallel computers are memory—bound rather than CPU—bound

H‘-1 Mrfiruw HIM!‘ NT 5. - I .q|r_.u||rs ;

Principim ofS<:oI-olale Peiftrmonce 1- | [3

Worlooad Eitacutlon Time

1

W W»
W“ n Til TH TH TH TH TH

‘"“ n n1 2 3 4 5 6 1 2 3 4 5 6
No. of processors No. of processors

la] Scaled workload [bl Fined eioacutlon time

Speedup).
[SA] 1024a

'i F-1 F -t t
1014:: 1954;; 993,; *3,‘

aim =1o2t -102341

- -I-11
0% 1% 2% 3% 4%

S-aouortlal fraction of pro-gram
[cl Speedup with flioad oxia-cutlon time

Fig. 3.9 Fit-md~tlrne speedup model and Gttsrafsonb law

or U0-bound. This is especially true in a multicomputer system using distributed memory. The local memory
attached to each node may be relatively small. Therefore, each node can handle only a small subproblem.

when a large number of nodes are used collectively to solve a single large problem, the total memory
capacity increases proportionally. This enables the system to solve a scaled problem through program
partitioning or replication and domain decomposition of the data set.

instead of keeping the execution time fixed, one may want to use up all the increased memory by scaling
the problem size further. In other words, if you have adequate memory space and the scaled problem meets
the time limit imposed by Gustafsorfs law, you can further increase the problem size, yielding an even better
or more accurate solution.

A memory-bounded model was developed under this philosophy. The idea is to solve the largest possible
problem, limited only by the available memory capacity. This model may result in an increase in execution
time to achieve scalable pcrformanoe.

Fr‘:-r Mtfirow uritt-...¢-,.,at.¢. '
I I4 "XII Advanced Cunp-uterArdu';tectm'c

Fixed-Nlemory Speedup Lct M be the memory requirement ofa given problem and H-‘be the computational
workload. These two factors are related to each other in various ways, depending on the address space and
architectural constraints. Let us write It’ = g{'il-1") or M = g l{_ H"), where g l is the inverse ofg.

ln a multicomputer, the total memory capacity increases linearly with the number of nodes available.
We write W = E:-"1 Ii} as the workload for sequential execution of the prograln on a single node, and

H»-'* = if-7', li-'1 as the scaled workload for execution on n nodes, where m* is the maximum DOP of the scaled
problem. The memory requirement for an active node is thus bounded by g 1 (_E_j." I Iii.) .

A_,|"i.xed-memory speedup is defined below similarly to that in Eq. 3.29.
of2»?
1 Is:=.= o-so

1 i'l+oc~i
I N

The workload for sequential execution on a single processor is independent of the problem size or system
size. Therefore, we can write W1 = lt"1 = lt'1‘- in all three speedup models. Let us consider the special case of
two operational modes: .sequcnrin! versus pwrfirctlit parallel execution. The enhanced memory is related to the
sealed workload by W1‘, = g*(nM_], where mid is the increased memory capacity for an n-node multicomputer.

Furthermore, we assume g*{_nM‘j = G[n)g(_M) = G{n]li’,,, where ll"',, = gtit-f,t and g"‘ is a homogeneous
function. The factor Gin) reflects the increase in workload as memory increases n times. Now we are ready
110 reunite Eq. 3.32 tutder the Hssumpfion that Ht] = Cl if i ac lor n and Q11) = ll:

St: tr; + W; = ti; + o{_a)tt',, (3.33)
up + it-;r*;,, H-I + G-[n]li'".~’n

Rigorously speaking, the above speedup model is valid under two assumptions: {ll The collection of
all memory forms a global address space (in other words, we assume a shared distributed memory space];
and (2) All available memory areas are used up for the sealed problem. There are three special cases where
Eq. 3.33 canapply:

2%.

Cam I .' Gfnl = l. This corresponds to thc case whcrcthcpmblcm size is fixed. Thus, thc fixcd-memory
speedup bccomcs cquivalcnt to Arndahlls law; i.c. Eqs. 3.2? and 3.33 arc cquivalcnt whcn a fixcd
workload is given.
Case 2: G('n] = n. This applics to thc case whcrc thc workload increases rt times when thc mcmory is
increased rt timcs. Thus, Eq. 3.33 is identical to Gu.stafson‘s law (Eq. 3.30j with afixed csccution time.
Case 3: 6'1’rt] 2* n. This corresponds to thc situation where thc computational workload incrcascs faster
than thc memory tcquircmcnt. Thus, thc fixed-mcmoty modcl (Eq. 3.33] will likcly give a higbcr
speedup than thc fixed-time spccdup |[:Eq. 3.30).

The above analysis leads to the following conclusions: Amdahl’s law and Gustafson‘s law are special
cases of the fixed-memory model. When computation grows faster than the memory requirement, as is often
true in some scientific simulation and engineering applications, the fixed-memory model (Fig. 3.10} may
yield an even higher speedup (i.e., 5'1‘, 2 51, 2 3,) and better resource utilization.

The fixed-memory model also assumes a scaled workload and allows an increase in execution time. The
increase in workload (problem size) is memory-bottnd. The growth in machine sine is limited by increasing

rt».-Mrliruw rrmr ..|- mm '1 qt; \

Principle: ofS<:olo.ble P£lf£I'fl"l0JlCE _ i - | [5

eonununication demands as the number ofproeessors becomes large. The fixed-time model can be moved
very close to the fi:r.ed—memory model if available memory is fully utilized.

Workload Ettoeutlon Time

T 1W“ wn ‘ll

W T T

i n Tn TI] Tn Tn n nII II

No. of processors No. of pro-oossors
[a) Scaled workload {la} Increased 9JtQfl.lllO1'lllfl\B

toU5A5to -ll en co _.. to or -ll on er:

Fig. 3.10 Scaled speedup model using fixed memory {Cournesy of Sun and Niwepfineed with purrnission from
MM Supercmnpud|1g,'l‘?9D}

L»)
£3 Example 3.6 Scaled matrix multiplication using global

versus local computation models (Sun and
Hi,1993)

In scientific computations, a matrix ofien represents some diseretized data continuum. Enlarging the matrix
size generally leads to a more aoeutate solution for the continutun. For matrices with dimension n, the munber
of computations involved in matrix multiplication is 2:13 and thc memory requirement ia roughly M = 3n2.

As the memory increases n times in an n-processor multicomputer system, nil! = n >< 3-n2 = 3n3. If the
enlarged matrix has a dimension of N, then 3:23 - 3N2. Therefore, N - 111-5. Thus Gui] - ni "5, and the sealed
workload lV‘f, = G'[n]W,, = nu Hr’. Using Eq. 3,33, we have

ll" '-‘W u-' ‘-5 tr5" = ~23-34>WI + it H3, ii, + n - H5,
H

under the global computation model’ illustrated in Fig. 3.113,. where all the distributed memories are used as.
a common memory shared by all processor nodes.

As illustrated in Fig. 3.] lb, the node memories are used locally without sharing. In such a lam! t-om,nurnn'rn
nirztdef, Gin} - n, and we obtain the following speedup:

sf; _ (3.35)ii, + ll"

I I6 1- Advanced Cornputerhrchitecture

- -1

liil ~l ii ti
AB1 A52 AB3 AB“

[a] Global computation with eistrihuted shared memories

AB1 AB: A53 AB“
[b] Local oomputatlon with distributed private memories

Fig. 3.11 ‘Fm: models for die distributed rnatrlx multiplication

The above example illustrates Gustafson’s scaled speedup for local computation. Comparing the above
two speedup expressions, we realize that the fixed-memory speedup (Eq. 3.34) may be higher than the fixed-
time speedup [Eq. 3.35}. In general, many applications demand the use of a combination of local and global
addressing spaces. Data may be distributed in some nodes and duplicated in other nodes. Data duplication is
added deliberately to reduce communication demand. Speedup factors for these applications depend on the
ratio between the global and local computations.

SCALABILITY ANALYSIS AND APPROACHES

_ The perfonnance of a computer system depends on a large number of factors, all affecting the
scalability of the computer architecture and the application program involved. The simplest

definition of .sc'ofrIlJr'fr'I_y is that the performance of a computer system increases linearly with respect to the
number of processors used for a given application,

Scalability analysis of a given computer system must be conducted for a given application program’
algorithm. The analysis can be pcnforrocd under different constraints on the growth of the problem size
(workload) and on the machine size (number of processors}. A good understanding of scalability will help
evaluate the performance of parallel computer architectures for large-scale applications.

3.4.1 Scalability Metrics and Goals
Scalability studies determine the degree of matching between a computer architecture and an application
algorithm. For different (architecture, algorithm) pairs, the analysis may end up with different conclusions. A
machine can be very efficient for one algorithm but bad for another, and vice versa.

Thus, a good computer architecture should be efficient in implementing a large class of application
algorithms. ln the ideal case, the computer performance should be linearly scalable w'ltl1 an increasing number
of processors employed in implementing the algorithms.
Scalability metric: identified below are the basic metrics (Fig. 3.12) affecting the scalability ofa computer
system for a given application:

r Mocfrinesize 1' n-j—tl'|e number ofproeessors employed in a parallel computer system. A large machine
size implies more resources and more computing power.

rs» Mefirulw Hlllf nr" w :1 .I||r_.u| u

Pnncrpla ofS<:olablePetfu'ma.nce ? - H1

CPU chine Computer
S an

fit?
mancl

isEli sHui
E

Scalability of
[architecture agorlthm]

Demand Comb-I nation De

Problem Communication
Ov ad

Fig. 3.12 Scalability metric

Clock rnre (fl—the clock rate dctennines the basic machine cycle. We hope to build a machine with
components (processors, memory, bus or network, etc.) driven by a clock which cart scale up with
better technology.
Problem size {s')—the amount ofcomputational workload or the ntlmber ofdata points used to solve a
given problem. The problem size is directly proportional to the seqrienrriei exeeririon rime T(.s, 1] for a
uniprocessor system because each data point may demand one or more operation s.
CPL’ time (T_t—the act1.|al CPU time {in seconds] elapsed in eseeuting a given program on a parallel
machine with rt processors oollectively. This is the parable! exeerrrion tirrte, denoted as ifs, rt] and is a
firnction ofbofn .1." and rr.
HO deemed (d')—the inputioutput demand in moving the program, data, and results associated with a
given application run. The [IO operations may overlap with the CPU operations in a mu ltiprog rammed
environment.
Merrtorft-' eupneiF_1-' {'rrrj—the amotmt of main memory [in bytes or words] used in a program execution.
Note that the memory demand is affected by the problem size, the program size, the algorithms, and
the data structures used.
The memory demand varies dynamically during program -tntecution. Here, we refer to the maximum
number of memory words demanded. Virtual memory is almost unlimited with a 64-bit address space.
lt is the physical memory which may be limited in capacity.
Cnrnmrmienrinn at-'erfi-end {.lr'j—the amount of time spent for interprocessor communication,
synchronization, remote memory access, etc. This overhead also includes all noneompute operations
which do not involve the C'PUs or [IO devices. This overhead !r{.s__ rt] is a function ofs and rr and is not
part of Tfs, rrj. Fora uniproeessor system, the overhead h(s, 1) = U.
Cornpurer ens‘! ('e]—the total cost of hartlware and software resources required to carry out the
execution ofa program.
Progmnrrrnng overlread {pj—the development overhead associated with an application program.
Programming overhead may slow down software productivity and thus implies a high cost. Unless
otherwise stated, both computer cost and programming cost are ignored in our scalability analysis.

Depending on the computational objectives and resource constraints imposed, one can fix some of the
above pra.ramEl¢1'$ and optimize the remaining ones to achieve the highest performance with the lowest eost.

The notion of scalability is tied to the notions of speedup and efiieieney. A sound definition of scalability
must be able to express the effects ofthe art:l:|iteeture‘s interconnection network, ofthe communication patterns

re» Altliruw um r-...=-mm. '
I in 1- _ .ltduenoedCornptrte|'.l|rclti1ectm'e

inltercnt to algorithms, of the physical constraints imposed by technology, and of the cost effectiveness or
system cfliciency. We introduce first the notion of speedup and efficiency. Then we define scalability based
on the relative performance of a real machine compared with that of an idealized theoretical machine.
Speedup and Efflcleney Revisited For a given architecture, algorithm, and problem size s, the est-‘ntpro.'ic
.5‘peerfi.ip 5'(s, n) is the best speedup that is attainable, varying only the number tn} of processors. Let Tis, 1)
be the sequential execution time on a uniprocessor, T(s, n) be the minimum parallel execution time on an
n-processor system, and Ms, n) be the lump sum of all comrnunioation and UCI overheads. The asymptotic
speedup is formally defined as follows:

sor, H] =i (3.315)
T(_s,rI)+ h(.~t, rt]

The problem size is the independent parameter, upon which all other metrics are based. A meaningful
measurement ofasymptotic speedup mandates the use of a good sequential algorithm, even it is different from
the structure of the corresponding parallel algorithm. The Ti-t, rt) is minimal in the sense that the problem is
solved using as many processors as necessary to achieve the minimum runtime for the given problem size.

In scalability analysis, we are mainly interested in results obtained from solving large problems. Therefore,
the run times ‘Its, n) and Its, I} should be expressed using order-of-magnitude notations, reflecting the
asymptotic behavior.

The system efliciency of using the machine to solve a given problem is defined by the following ratio:

E(s, H) = ~‘i*i-1-”l om
ln general, the best possible cfliciency is one, implying that the best speedup is linear, or Slfs, n} = n.

Therefore, an intuitive definition of scalability is: A system it scalable ifrhe svsrem efliciertcy El.-r, rt} = lfor
nil nigtnrirhrns it-‘lift any ntvmirer ofn pmeessors turd any problerrr size .s_

Mark Hill (I990) has indicated that this definition is too restrictive to be useful because it precludes any
system from being called scalable. For this reason, a more practical elliciency or scalability definition is
needed, comparing the performance of the real machine with respect to the theoretical PRAM model.
Scalability Definition Nussbaum and Agarwa] ([991) have given the following scalability definition
based on a PRAM model. The scalability <D(_s, n) ofa machine for a given algorithm is defined as the ratio of
the asymptotic speedup Sts, rt) on the real machine to the asymptotic speedup S,{_s, rt] on the ideal realization
of an EREW PRAM.

T(.s,l)s . =i_,{s_ rt) in [Sm]

where 1']-{'s, rt) is the parallel execution time on the PRAM, ignoring all communication overhead. The
scalability is defined as follows:

S(s, rt] T} (s, rt]
. , = i = —? 3.38

(Du. H) .S',.{_.s,n] T(.s,n) ()

intuitively, the larger the scalability, the better the performance that the given architecture can yield
running the given algorithm. in the ideal case, S;{_s, rt} = rt, the scalability definition in Bq. 3.38 becomes
identical to the efliciency definition given in Eq. 3.31".

Principle ofS-soluble Perftrmonce i | |g

5*? Example 3.? Scalability of various machine architectures
for parity calculation (Nussbaum and Agar-wal,
1991)

Table 3.4 shows the execution times, asymptotic speedups, and sealabilities (with respect to the ER.EW-PRAM
model) offive representative interconnection architectures: linear array, 2-D and 3-D meshes, hypercube, and
Omega network, for running a parallel parity calculation.

Table 3.4 Scoialility of ‘vlarious Hentrorlt-Based iirchinecnires fir the Parity Calculation

."l1lcrc'hine' ."l.F£'.i1'l:.l'é'£'l‘I.|'.l"¥.'

Tl}, n) rm rm 3"‘ logs lflgzs

.'§[.'t', Ir] rm ity} .9“ .t.I'lDg .'l' .s/logzx

."l-{err icat
Linear army I 2-D ntrsir 3-D mesh fi'_iyx-rcube O-negu Nenwrir

(Dis, rr) lDg.t/sm log .tf.sl'l3 log .\‘I.tm l lfiog .r

This calculation examines s bits, determining whether the number of bits set is evtm or odd using a
balanced binary tree. For this algorithm, T-[s, I}- s, i"]{s, n] — logs, and 5‘,{'s, n) - silogs for the ideal PRAIH
machine.

On real architectures, the parity algorithm"‘s performance is limited by network diameter. For example,
the linear array has a network diameter equal to n — l, yielding a total parallel running time of sin + n. The
optimal partition of the problem is to use n — J; processors so that each processor performs the parity check
on J; bits locally. This partition gives the best match between computation costs and communication costs
w ith ills, rt) = am, S[_s, n} = .3": and thus scalability <l>{s, n) = logsism.

The 2D and 3D mesh architectures use a similar partition to match their own cornniunieation structure with
the computational loads, yielding even better scalability results. It is interesting to note that the scalability
increases as the communication latency decreases in a network with a smaller diameter.

The hypercube and the Omega network provide richer communication structures [and lower diameters)
than meshes of lower dirnensionality. The hypercube tlocs as well as a PRAM for this algorithm, yielding
tlilts, n} — l.

The Omega network {I-‘lg. 2.24) does not exploit locality: communication with all processors takes the
same amount of time. This loss of locality hurts its performance when compared to the hypercube, but its
lower diameter gives it better scalability than any of the meshes.

Although performance is limited by network diameter for the above parity algorithm, for many other
algorithms the network bandwidth is the performance-limiting factor. The above analysis assumed unit
eornmunieafion time between directly connected cornniunication no:1es.An architecture may be scalable for
one algorithm but unsealable for another. One must examine a large class of useful algorithms before drawing
a scalability conclusion on a given architecture.

I 20 "Z5 Advanced Carnpinzerhrclnitectm-e

3.4.2 Evolution of Scalable Computers
The idea of massive parallelism is rather old, the technology is advancing steadily, and the software is
relatively unexplored, as was observed by C-ybenko and Kuck (1992). Cine cvolutional trend is to build
scalable supercomputers with distributed shared memory and standardized LJNIXILINLTX for parallel
processing. In this section, we present the cvolutional path and some scalable computer design concepts;
recent advances in this direction are discussed in Chapter I3.

The Evolutionol Path Figure 3.13 shows the early evolution of supercomputers with four-to-five-
year gestation and of micro-based scalable computers with three-year gestation. This plot shows the peak
performance ofCray and NBC supercomputers and ofCray, lntel, and Thinking Machines scalable computers
versus the introduction year. The marked nodes correspond to machine models with increasing size and cost.

10.000

The lntel
Teiaflop saaoii

..-. t _/'- C-ray
cos s2»:or:,/ /‘ Massively _I /’ .Ei‘sti,

ems S120-M I-‘T
_ |ma|s55|v| a . /

CM5 SEJDM

PG

§ "“*\

anee{Gigs-flo

S
l.

NEC
" Sip-are _

PeakPerfom
10-

ray
Sipersr

1 .
19-B3 1990 19% 1994 1996 1998- 2000

Year

Fl‘. 3.13 The perfornwi-i:e {lo Gftops] of various comp-uters manufactured during 19% by Cray itesmrch. |ne..
NEG lra:el.antl'l'l'|lnltlng Machines Corporation Slloursesy oi Gordon Bell: reprinted with permlulon
from the Communications 0-MGM. August ‘i99'2][1

In 198 8, the Cray ‘r’-MP S delivered a peak of2.8 Gflops. By 1991, the Intel Touchstone Delta, a 672—node
multicomputer, and the Thinking Machines CM-2, a 2K PF. SIMD machine, both began to supply an order-
of-rnagnitude greater peak power (20 Gfiops} than conventional supercomputers. By mid-1992, a completely
new generation of computers were introduced. including the CM-5 and Paragon.

in Thinking l\"l.|'.‘|Cl1lt‘l£'S Corporation has since gone out of business.

F?» Mtfirpw Hlllf wt’ mm1 qt

Principle: ofS-colohle Perftrmonce i |1|

tn the past, the IBM Systenfloll provided a ltltlzl range of growth for its various models. DEC VAX
machines spanned a range of lllllllcl over their lifetime. Based on past experiences, Gordon Bell has identified
three objectives for designing scalable computers. Implications and case studies of these challenges will be
further discussed in subsequent chapters.
Size Scalability The study of system scalability started with the desire to increase the machine size. A size-
scalable computer is designed to have a scaling range fi'om a small to a large number of resource components.
The expectation is to achieve linearly increased performance with incremental expansion for a well-defined
set of applications. The components include computers, processors or processing elements, memories,
interconnects, switches, cabinets, etc.

Size scalability depends on spatial and temporal locality as well as component bottleneck. Since very large
systems have inherently longer latencies than small and centralized systems, the locality behavior ofprogram
execution will help tolerate the increased latency. Locality will be characterized in Chapter 4. The bottleneck-
free condition demands a balanced design among pming, storage, and H0 bandwidth.

For example, since MP'Ps are mostly interconnected by large networks or switches, the bandwidth of the
switch should increase linearly with processor power. The L"O demand may exceed the processing bandwidth
in some real-time and large-scale applications.

The Cray Y-MP series scaled over a range of I6 processors (the C-90 model) and the current range of
Cray supercomputers offer a much larger range of scalability (see Chapter I3). The CM-2 was designed to
scale between SK and 6411 processing elements. The CM-5 scaling range was 1024 to 16K computers. The
KER-l had a range of 3 to I038 processor-memory pairs. Size-scalability cannot be achieved alone without
considering cost, efficiency, and prograrnmability on reasonable time scale.
Generation [Time] Scalability Since the basic processor nodes become obsolete every three years, the
time scalability is equally important as the size scalability. Not only should the hardware technology be
scalable, such as the CMOS circuits and packaging technologies in building processors and memory chips,
but also the soflwarelalgoritlun which demands software compatibility and portability with new hardware
systems.

DEC claimed that the Alpha microprocessor was generation-scalable for 25 years. In general, all computer
characteristics must scale proportionally: processing speed, memory speed and size. interconnect bandwidth
and latency, U0, and soflware overhead, in order to be useful for a given application.

Pmblelrl Scalability The problem size corresponds to the data set size. This is the key to achieving scalable
performance as the program granularity changes. A problem scalable computer should be able to perfomi
well as the problem size increases. The problem size can be scaled to he sufficiently large in order to operate
cfliciently on a computer with a given granularity.

Problems such as Monte Carlo simulation and ray tracing are “perfectly parallel”, since their threads of
computation do not come together over long spells of computation. Such an independence among threads is
very much desired in using a scalable MPP system. In general, the pro elem gnmu!rtrr't‘_t-‘ (operations on a grid
point./data required from adjacent grid points] must be greater than a nuichirw Is grannlariri-' (node operation
mte.|'no-dc-to-node communication data rate) in order for a multicomputer to be effective.

I 22' 1- Advanced Comp-uter Architecture

5*? Example 3.8 Problem scaling for solving Laplace equation
on a distributed memory multicomputer
(Gordon Bell, 1992)

Laplace equations are often used to model physical structures. A 3-D Laplace equation is specified by
‘Ila H21: H21:V2 = '_+_+_=o 3.39)“ of of H22 ("

We want to determine the problem scalability of the Laplace equation solver on a distributed-memory
multicomputer with a sufficiently large number of processing nodes. Based on finite-diflierenee method,
solving Eq. 3.39 requires performing the following averaging operation iteratively across a very large grid,
as shown in Fig. 3. I4:

tot 1 z u t -Ii < -In -1: c —|i —u“i'._."J~' * E |:i"';':iT_.I'.-l" +“i':r|._,|'.Jt +ui.n.Ii—l..l +Hi.3f+l_k +“:':[k—| +ui.:r.i+l

where I 5 i,j, It 5 N and Nis the number of grid points along each dimension. In total, there are hi] grid points
in the problem domain to be evaluated during eaeh iteration m for 1 S m S M.

The three-di.|:nensional domain can be partitioned into p sub-domains, each having n3 grid points sueh that
)'JH3 - Ev“. where p is the machine size. The computations involved in each subclomain are assigned to one
node of a multicomputer. Therefore, in each iteration, each node is required to perfomi Trri computations as
specified in Eq. 3.40.

Z

[0, r rm, r n]
[0, m, r n) [0, rn, r n]AP

g [0, r n, r n-n]

[r n, ID, r rt)

,-L In

‘ ‘ L’ (0, r n, my

A, [rn, Ct, ID] [r n, rn, D]

X
la] 5|! GU59 5IJ|i'5<>"‘B|"$ [b] An Ha" N 1-: Hgrld partitioned Into p subdomelns,

aqaeent to a cube so belomaln 3 3 3Mme came, each being an n3 etbe, where p = r = N In

Fig‘. 3.14 Partitioning of a ED domain for solving the Laplace equation

isQillqan

FM-Altfirulw Hiiir ..|- our '1 qt; It

Principle: ofS-colobile Petftrmonce i - [13

Each subdomain is adjacent to sis other subdomains (Fig. 3.14s]. Therefore, in each iteration, each node
needs to exchange (send or receive] a total of6:12 words offloating-point numbers with its neighbors. Assume
each floating-point number is double-precision (ti-4 bits, or 8 bytes}. Each processing node has the capability
ofperforming lll-tl Mtlops (or lJ.l.il he per floating-point operation}. The internode communication latency is
assumed to be 1,us [or l megaword/s} for transferring a floating-point number.

For a balanced multicomputer, the computation time within each node and inter-node communication
latency should be equal. Thus l].D?n3,us equals (Sn: its communication latency, implying that n has to be at
least as large as 86. A node rnernory of capacity 863 >< S = 640K >< 8 = 5120 Kwords = 5 megabytes is needed
to hold each subdomain of data.

On the other hand, suppose each message exchange takes 2 ,us [one receive and one send) per word. The
eonummicafion latency is doubled. We desire to scale up the problem size with an enlarged local memory
of 32 megabytes. The subdomain dimension sine n can be extended to at most loti, because I503 >< ti = 32
megabytes. This size problem requires 0.3 s of computation time and 2 >< 0.15 s of send and receive time.
Thus each iteration takes [L6 (0.3 + 0.3) s, resulting in a computation rate of fill Mflops, which is only 5i'l%
of the peak speed of each node.

ll" the problem size n is further increased, the elTective Milops rate and efficiency will be improved. But
this cannot be achieved unless the memory capacity is further enlarged. For a fixed memory capacity, the
situation corresponds to die memorybound region shown in Fig. 3.6c. Another risk of problem sealing is to
exacerbate the limited U0 capability which is not demonstrated in this example.

To summarize the above studies on scalability. we realize that the machine size, problem size, and
technology scalabilities are not necessarily orthogonal to each other. They must be considered jointly. In the
next section, we will identify additional issues relating scalability studies to software compatibility, latency
tolerance. machine prograrnmability. and cost-effectiveness.

3.4.3 Research Issues and Solutions
Toward the development of truly scalable computers, much research is being done. In this section, we briefly
identify several frontier research problems. Partial solutions to these problems will be studied in subsequent
chapters.
The Problem: When a computer is sealed up to become an MPP system, the following difficulties can
arise:

1 Memory-access latency becomes too long and too nonuniformly distributed to be considered tolerable.
I The [PC complexity or synchronization overhead becomes too high to be useful.
I The multicache inconsistency problem becomes out of control.
I The processor utilization rate deteriorates as the system size becomes large.
I Message passing [or page migration) becomes too time-consuming to benefit resource sharing in a

large distributed system.
' Overall system perforlnanoe becomes saturated with diminishing retum as system size increases

further.

Some Approaches In order to overcome the above difficulties, listed below are some approaches being
pursued by researchers:

re» Mtfiruw um =-...=-mam. '
I 24 1- _ flidmnced Clrnpti-tarhrchitecuue

' Searching for latency reducing and fast synchronization techniques.
- Using weaker memory consistency models.
- Developing scalable caehc coherence protocols.
I Realizing shared virtual memory system.
' [ntegrating multithreaded architectures for improved processor utilization and system throughput.
' Expanding software portability and standardizing parallel and distributed Ul\lIX|"I..lNU'X systems.

Scalability analysis can be carried out either by analytical methods or through trace-driven simulation
experiments. In Chapter '9, we will study both approaches toward the development of scalable computer
architectures that match program.-’ algorithmic behaviors. Analytical tools include the use of Markov chains,
Pelri nets, or queueing models. A number of simulation packages have already been develop-ed at Stanford
University and at MIT.
Supporting Issue: Besides the emphases of scalability on machine size. Problem sire and technology, we
identify below several extended areas For continued research and development:

-[1] .'i'q,iFinure seoloiaiiiri-': As problem sin: scales in proportion to the increase in machine size, the
algorithms can be optimized to match the architectural constraints. Software tools are being developed
to help programmers in mapping algorithms onto a target architecture.

A pericct match between architecture and algorithm requires matching both computational and
communication patterns through performance-tuning experiments in addition to simple numerical
analysis. Optimizing compilers and visualization tools should be designed to reveal opportunities for
algorithm.-‘program restructuring to match with the architectural growth.

(Zj Reducing eonrnnrniearion or-'crherm".' Scalability analysis should concern both uselitl computations
and available parallelism in programs. The most difficult part of the analysis is to estimate the
communication overhead accurately. Excessive communication overhead, such as the time required to
synchronin: a large number of processors, wastes system resources. This overhead grows rapidly as
machine size and problem size increase.

Furthermore, the run time conditions are often diflicult to capture. l-low to reduce the growth of
communication overhead and how to tolerate the growth of memory-access latency in very large
systems are still wide-open research problems.

(3) Enimnerhgrimgrornrnnhiiirt-': Thccomputing community generally agrees that multicomputers are more
scalable; multiproccssors may be more easily programmed but are less scalable thart multicomputers.
It is the centralized-memory versus distributed private-memory organization that makes the difihrcnoe.
In the ideal case, we want to build machines which will retain the advantages of both architectures.
This implies a system with shared distributed memory and simplified message communication among
process-ornodes. Hsterogencous programming paradigms are needed for fi.|t1.|re systems.

{'4} Providing longer-'ir_i-' and gent-miiry: Other scalability issues include longer-ir_t-, which requires an
architecture with sufliciently large address space, and g,v.=nemiiI_1-', which supports a wide variety oi
languages and binary migration of software.

Performance, scalability, progxarnmability, and generality will be studied throughout the book for general-
purpose parallel processing applications, unless otherwise noted.

n-rrrcrrmrv Hffliormortnrr ‘
Princripl-in of Scalable Performance Z

||-- -
I $>~‘* --_»' SummaryI.

'lNith rapid advances in technology, scalability becomes an important criterion for any modern computer
system—and especially so for a parallel processing system. However: system scalability can only be
defined in terms of system performance, and therefore issues of scalability and system performance are
very closely interrelated. in this chapter. we have studied some brnic issues related to the perfornnnce
and scalability of parallel processing systems.

The main performance metric considered is the execution tirne of a parallel program which has a
specific parallelism profilc.As a program executes, the degree of parallelism in it vanes with time, and
therefore we can calculate the average degree of parallelism in the program.The parallelism profile also
allows us to csrirnarc the speedup achievable on the system as the number of processors is increased.

Apart from speedup. we also defined system efiiciency and system utilization as asymptotic functions
of the number of processors. On an n processor system, efficiency is defined as the speedup achieved
divided by n [which is the ideal case speedup). System utilization, on the other hand. indi-canes tl'1e fraction
of processor cycles which was actually utilized during program execution on the n processor system.

Benchrmrk programs are very useful tools in measuring the performance of computer systerns.‘ir'\€a
looked at certain well-known benchmark programs. although it is also true that no two applications are
identical and that therefore, in the final analysis, application specific benchmark programs are more useful.

We took a brief look at so-called ‘grand challenge’ applications of high performance computer systems;
those are applications which are likely to have major impact in science and technology Massively parallel
processing {MPP} systems are increasingly being applied to such problems; clearly performance and
scalability are important criteria for all such applications.

We then looked at some speedup performance laws governing parallel applications. Ant-dahl's law
states in essence that. for a problem of a given fixed size,as the number of processors is increased. the
speedup achievable is limited by the program fraction which must necessarily run as a sequential program,
i.e. on one processor. Gustafson's lawton the other hand, studies also the effect of increasing the problem
size as the system size is increased, resulting in the so—called fixed time speedup model. The third model
studied was the memory-bounded speedup model proposed by Sun and Ni.

The specific metrics which affect the scalability of a computer system for a given application aro—
machine size in number of processors, processor clock rate, problem size. processor tlrnre consumed, IID
requirement. memory requirement communication requirement. system cost. and programming cost of
ld'lE application.Open research issues related to scalability in massively parallel systems were reviewed.

gExercises

I25

Problem 3.1 Consider the parallel execution for synchronization among the four program parts
of the some program in Problem 1.4 on tr four- 50000 extra instructions are added to each divided
p rocessor systc m with shared me mory. The p rogram p rogram part.
Cflfl bfl pQ|'l.llIlOl‘lIEd lI‘lI.O fUl.lf 'BqL|3.l PHFI3 fO|' b-Blflflflfld _A5g_,|r|1,E thg garfye in-5[f'|_,|fljQ|'1 35 in Ppgblem

execution by the four processors. Due to the need for each divided program part;

TM Illnffifihir Hillfiurnpennri .
|z‘—

The CPI for the memory reference (with cache
miss) instructions has been increased from B to 12
cycles due to contentions.The CPlsfor the remaining
instruction types do not change.

{a} Repeat part (a) in Problem 1.4 when die
program is executed on the four-processor
system.

(b) Repeat part [b] in Problem 1.4 when the
program is executed on the four-processor
system.

(c) Calculate the speedup factor of the four-
processor system over the uniprocessor
system in Problem 1.4 under the respective
trace statistics.

{cl} Calculate the efficiency of the four-processor
system by comparing the speedup factor in
part (c) widw dwe ideal case.

Problem 3.1 A uniprocessor computer can
operate in either scalar or vector mode. In vector
mode. computations can be performed nine tima
faster than in scalar mode. A ceriain benchmark
program tool-c time T to run on this computer.
Further. it was found that 25% of T was attributed to
the vector mode. In the remaining time.the machine
operated in the scalar mode.

[a) Calculate the effective speedup under the
above condition as compared with die
condition when dwe vector mode is not used
at all. Also calculate :1‘, the percentage of
code that has been vectorized in the above
program.

(b) Suppose vve double the speed ratio between
the vector mode and the scalar mode by
hardware improvements. Calculate five
effective speedup that can be achieved.

(c) Supposethesame speedup obtainedinpart [b]-
must be obtained by compiler improvements
instead of hardware improvements. ‘What
would be the new vectorization ratio rz
that should be supported by the vectorizing
compiler for the same benchmark program?

Advanced Compuiter Architecture

Problem 3.3 Let rr be the percentage of a
program code which can be executed simultaneously
by n processors in a computer system.A.ssume that
the remaining code must be executed sequentially by
a single processor. Each processor has an execution
rate of it HIPS. and all the processors are assumed
equally capable.

{a} Derive an expression for the effective HIPS
rate when using the system for exclusive
execution of this program. in terms of five
parameters n. rz, and x.

(b) lfn= 16 and x=40O l"‘llPS.determine the value
of {I which will yield a system performance of
4000 HIPS.

Problem 3.4 Consider a computer which can
execute a program in two operational modes: regular
mode versus enhanced mode. with a probability
distribution of irr. i rr}, respectively.

{a)lfr1'varies between oand band O E o -=‘-b E 1.
derive an -expression for fine average speedup
factor using the har'monic mean concept

(b) Calculate the speedup factor when 0 -3 O and
b -1 1.

Problem 3.5 Considertheuseofafour-proces.s»or.
shared-memory computer for the execution of a
program mix.The multiprocessor can be used in
four execution modes corresponding to die active
use of one.tvvo. three. and four processors. Assurn-e
that each processor has a peak execution rate of
500 l‘-1| PS.

Let f] be the percentage of time dwat I processors
will be used in the above program execution and
1’, + fl + 1‘:-1 + f4 = 1.You can assume the execution
rates R1. R1. R3. and R4. corresponding to five
distribution (fi. fi. 15. fl). respectively.

(a) Derive an expression to show the harmonic
mn execution rate R of the multiprocessor
in terms of ff and R. for i = 1. 2. 3. 4.Also
show an expression for the harmonic mean
execution time T in terms of R.

FM liilcfimu-‘ Hilllimnponm
Piirrcipko of Scalable Peifwmance

(b) What would be the value of dwe harmonic
mean execution time Tof die above program
mix given fi = 0.4.fi = 0.3.1‘; = 0.2.151 = 0.1 and
R1= 400 l"1lPS.R1 = B00 l"1|PS.R3 = 1100 MIPS.
R4 = 1500 MIPS? Explain the possible causes
of observed R. values in the above program
execution.

{c} Suppose an intelligent compiler is used to
enhance the degree of parallelization in the
above program mix with a new distribution
f1 = 0.1. f1= 0.2. f3 =0.3. 1‘; =0.4.Whatwould
be the harmonic mean execution time of the
same program under the same assumption on
{R} as in part (b)?

Problem 3.6 Explain the applicability and
die restrictions involved in using Amdahl's law.
Gustafs/on‘s law. and Sun and Ni's law to estimate
die speedup performance of an n-processor system
compared with that of a single-processor system.
Ignore all communication overheads.

Problem 3.? The following Fortran program is
to be executed on a uniprocessor. and a parallel
version is to be executed on a shared-memory
multiprocessor.

Ll: no 10 I = 1,1024
L2: SIJM-{Ii = If]
L3: Do 2'3 J = 1, I
L4: 20 SLIM -:Ii = SUM -:Ii + I
La: 10 Continue

Suppose statements 2 and 4 each take two
machine cycle times, including all CPU and memory-
access activities. Ignore the overhead caused by the
software loop control {statements L1. L3. and L5}
and all other system overhead and resource con-
flicts.

(a) What is the total execution time of the
program on a uniprocessor?

[b] Divide the outer loop iterations among
32 processors with prescheduling as follows:
Processor 1 executes the first 32 iterations
(i = 1 to 32). processor 2 executes the

W r21

next 32 iterations (l' = 33 to 64). and so on.
What are the execution time and speedup
factors compared with part (a)? (Note that
the computational worldoad. dictated by the
j-loop. is unbalanced among the processors.)

(c]- Modify the given program to facilitate
a balanced parallel execution of all the
computational workload over 32 processors.
By a balanced load.we mun an equal number
of additions assigned to each processor with
respect to both loops.

{d} What is the minimum execution time resulting
from the balanced parallel execution on 32
processors? What is the new speedup over
the uniprocessor!‘

Problem 3.8 Consider the multiplications of
two n >< n matrices A = {oi} and B = {by} on a scalar
uniprocessor and on a multiprocessor. respectively.
The matrix elements are floating-point numbers.
initially stored in the main memory in row-major
order.The resulting product matrix C = {cg} where
C = A >< B. should be stored back to memory in
contiguous locations.

Assume a 2-address instruction format and
an instruction set of your choice. Each loadistore
instructiontakes. on the average.4 cycles to complete.
All ALU operations must be done sequentially on
the processor with 2 cycles if no memory reference
is required in the instruction. Dthenrvise. 4 cycles
are added for each memory reference to fetch an
operand. Branch-type instructions require. on the
average. 2 cycla.

{a} Write a minimal-length assembly-language
program to perform the matrix multiplication
on a scalar processor with a load-store
architecture and floating-point hardware.

{b} Calculate the total instruction count. the
total number of cycles needed for the
program execution. and the average cydes
per instruction [CPI]-.

{c} What is the MIPS rate of dwis scalar machine.
If the processor is driven by a 400-MH: clock?

FM liilcfimur Hilllimnponm
|zB—

(d) Sugest a partition of the above program to
execute dve divided program parts on an
N-processor shared-memory system with
minimum time.Assume n = 1000N. Estimate
the potential speedup of the multiprocessor
over the uniprocasonassu ming dwe same type
of processors are used in both systems. Ignore
the memory-access conflicts. synchronization
and other overheads.

(e) Sketch a scheme to perform distributed
matrix computations with distributed
data sets on an N-node multicomputer
with distributed memory. Each node has a
computer equivalent to the scalar processor
used in part [a].

|[f} Specify die message-passing operations
required in part [e). Suppose dvat. on the
average. each message passing requires 100
processor cycles to complete. Estimate the
total execution time on the multicomputer
for the distributed matrix multiplication.
Hake appropriate assumptions if needed in
your timing analysis.

Problem 3.9 Consider the interleaved execution
of the four programs in Problem 1.6 on each of
dve three machines. Each program is executed in a
particular mode with the msured HIPS rating.

{a} Determine the arithmetic mean execution
time per instruction for each machine
executing the combined workload. assuming
equal weights for the four programs.

(b) Determine the harrnonic mean MIPS rate of
each machine.

{c} Rank the machines based on the harmonic
mean performance. Compare this ranking
with that obtained in Problem 1.6.

Problem 3.10 Answer or prove the following
statements related to speedup performance law:

(a] Derive the fixed-memory speedup expression
S3: in Eq. 3.33 under reasonable assumptions.

(b) Derive Amdahl‘s law {Sn in Eq. 3.14) as a
special case of the S: expression.

{c} Derive Gus1afson's law [S1, in Eq. 3.31} as a

Advanced Computer Architecture

special case of the Si‘ expression.
{d} Prove the relation 5.1.‘; S1. 2 Sn for solving the

same problem on the same machine under
different assumptions.

Problem 3.11 Prove the following relations
among the speedup Sin}. efficiency E(n}, utilization
U[n). redundancy Ri[n). and quality Q(n} of a parallel
computation. based on the definitions given by Lee
{W80}:

{a} Prove 1fn E E[n) E U[n) E 1, where n is the
number of processors used in the parallel
computation.

{b} Prove 1 5 R(n} S 1i'E{n]- E n.
{c} Prove the expression for Q(n} in 3.19.
(d} Verify the above relations using the

hypodwetical workload in Example 3.3.

Problem 3.11 Rept Example 3.? for sorting s
numbers on five dilferentn-processor machines using
dve linear array. 2D-mesh. 3D-mesh. hypercube. and
Clnvep network as interprocessor communication
ardwitectures. respectively.

(aj Show the scalability of the five architectures
as compared with the EREVV-PRAM model.

{b} Compare the results obtained in part (a) with
those in Example 3.7‘. Based on these two
benchmark raults. rank the relative scalability
of the five architectures. Can the results be
generalized to the performance of other
algorithms?

Problem 3.13 Consider the execution of two
benchmark programs. The performance of three
computers running these two benchmarks are given
below:

Be.uit.l'z.|ritu'.I'r .lfii'.i'r'0.u.v' t'.'om.iJu.rc.i' ifonupurer t'.'o.m.imIe.i'
of i 2 3

flmflhgv T. |".v'1‘r.: _i T;|’.\'ec)]i'_.r.m-..1
|l'J0fJI.i'

r.~p¢.=rr¢:|Ir'ni:'.v

Pmblcml | mo i I0
Problem 2 | 100 rum
Totaitime | 1001 110 40

S 1'-lll-l :I<:I

rr» Mcfi-rm-H um rmmm-I111
Principles of Scalable Peifwmance

{a} Calculate Rd and Fly, for each computer under
the equal-weight assumption fi = 15 = 0.5.

{b} W"hen benchmark 1 has a constant R1 =
10 Mflops performance across the three
computers. plot Ra and Rh asa function of R1.
which varies from 1 to 100 |*"'I'l"lops under the
assumption fl = 0.8 and fl = 0.1

{c} Repeat part (b} for the case f1 = O2 and
f1 = 0.8.

{d} From the above performance results under
diffe rentconditions,can you draw a conclusion
regarding the relative performance of the
three machines!

Problem 3.14 In Example 3.5. four parallel
algorithms are mentioned for multiplioation of s >< s
matrices. After read ing the original papers describing
these algorithms. prove the following com munication
overheads on the target machine architectures:

fa) Prove that h[s. n} = O(n log n +516) when
mapping the Fox-Otto-Hey algorithm on a

J; X ‘ll; 1I'Dl"LlS.

{b} Prove that h(s. n} = Ofinm + nlogn + sin“)-
when mapping Berntsen‘s algorithm on
a hypercube with n = 23* nodes, where

kS% logs.

{c} Prove that h(.s. n) = O{nlogn + s3} when
mapping the Delcel-Nassimi-Sahni algorithm
on a hypercube with n = s3 = 23* nodes.

Problem 3.15 Xian-He Sun [1992]] has
introduced an iscrspeecl concept for scalability
analysis.The concept is to maintain a fixed speed for
each processor while increasing d1e problem size.
Let W and W be two workloads corresponding to
two problem sizes. Let N and N’ be two machine
sizes {in terms of the number of processors}. Let TH
and Ty be the parallel execution times using N and
N’ processors. respectively.

The isospeed is achieved when WKNTH} = VII’!
[N ’Thr). The isoeflfiolency concept defined by Kumar
and Rao (1987) is achieved by maintaining a fixed
elficiency through SN{W'_)fN = SH-(W)!N’. where
S~(W} and are the corresponding speedup
factors.

Prove that the two concepts are indeed equivalent
if (i] the speedup factors are defined as the ratio of
pom.ll'el speed Rh, to sequential speed R1 {rather than
as the ratio of sequential execution time to parallel
execution time). and {ii} R1(W} = R1[W’}. ln other
words. isoefiiciency is identical to isospeed when
the sequential speed is fixed as the problem size is
increased.

n-nlcsmv Hilliormorinrr ‘

Part ll
Hardware Technologies

Chapter 4
Processors and Memory Hierarchy

Chapter 5

Bus, Cache, and Shared Memory

Chapter 6

Pipelining and Superscalar Techniques

i
Summary

Part ll contains flwree chapters dealing with hardware technologies underlying dwe development of parallel
processing computers. The discussions cover advanced processors. memory hierarchy. and pipelining
technologies. These hardware units must work with software. and matching hardware design with
program behavior is the main theme of these chapters.

vie will study RISC. CISC. scalar. superscalar.‘v'Ll‘lN. superpipelined. vector. and symbolic processors.
Digital bus. cache design. shared memory. and virtual memory technologies will be considered.Advanced
pipelining principles and their applications are described for memory access. instruction execution.
arithmetic computation. and vector pro-cessing.These d"|apters are hardware-oriented. Readers whose
interfit is mainly in software can skip Chapters 5 and 6 after reading Chapter 4.

The material in Chapter 4 presents dwe functional architectures of processors and memory hierarchy
and will be of interest to both computer designers and programmers. After reading Chapter 4. one
should have a dear picture of the logical structure of computers. Chapters 5 and 6 describe physical
design of buses. cache operations. processor architectures. memory organizations. and their management
ISSUES.

TM Illnffirthlt Hiilturnpenm

_ —

Processors and Memory
Hierarchy

This chapter presents modern processor technology and the supporting memory hierarchy. We begin
with a study ofinstruction-set architectures including CBC and RlSC.and we consider typical supersmlar.
VUW. superpipelined. and vector processors.The third section covers memory hierarchy and capacity
planning. and the final section introduces virtual mernoryt address translation mechanisms. and page
replacement methods.

[nsrruction-set processor ardtitecmres and logical addressing aspects of the memory hierardty are
emphasized at the functional level. This treatment is directed toward the programmer or computer
science major. Detailed hardware designs for bus. cache. and main memory are studied in Chapter 5.
Instruction and arithmetic pipelines and superscalar and superpipelined processors are further treated
in Chapter 6.

ADVANCED FROCESSORTECHNOLOGY
- Architectural familics of modem processors are introduced hclow, irom processors uscd in

workstations or multiproccssors to those dcsigncd for mainframes and supcroomputcrs.
Majorproccssor iii milics to hc studied includc thc C15‘C, RISC, s'upcrsc-tilor, i-'1!if", supcrpipelirrct-t 1-‘error:

and sji-'ml'Jol'ic proocssors. Scalarand voctorproccssors an": for numerical computations. Symbolic proccssors
have been dcvclopcd for Al applications.

4.1.1 Design Space of Processors
Various proccs sor iiimilics can lac mapped onto a coordinated spacc ofclock rare vcrs us c-__\-‘clot per insrrric-Iron
(C Pl j, as illustrated in Fig. 4.1. As implcmcntation technology cvo hes rapidly, thc clock rates of various
processors have moved from low to higher sp-ocds toward thc right ofthe design space. Anothcrtrcnd is that
proccssor manufacturers have hccn trying to lowcr thc CPI ratc using innovatit-‘c hardware approaches.

Based on these trends, the rnapping of processors in Fig. 4.1 reflects their implementation during the past
dccadc or so.

Figurc 4. l showsthcbroad CPI vc rsus cloclt spccd characteristics of major catcgoricsofc urrcnt processors.
Thc two broad categories which we shall discuss arc CISC and R] SC. ln thc fomtcr category, at prcscnt thcrc
is thc only one dominant prcscncc—thc 1:86 processor architccturc; in thc lattcr category. thcrc arc scvcral
cxamplcs, c.g. Powcr scrics, SPARC, MIPS, ctc.

Thur Ml.'I;Ifllb' "III l'n¢r.q|r_.u|»rs -

I34 i Admmced Cmnpmerfirehéteczure

Muttl-core, embodied,
low on-st, low power High performance

5|_

"_"‘_'I

| I I I I | I I I I | I I I I | I I I I

___-___4
4 _

CISC
3 _

CPI
‘___-1 I I I I 1 I I I I 1 I I I I 1 I I I I2 1

1 _ RISE??? fimyy

'1 L L
Clo-ck speed [GHz)

Fig.-1.1 CPI versus procasor clock speed of rnalor categories of processors

r""-1IIIII 'lI 'lIII 'lIILI

I I I I I I I I

__.

Under both CISC and RISC categories, products designed for multi-core chips, embedded applications, or
for low cost and~"or low power consumption, tend to have lower clock speeds. High performance processors
must necessarily be designed to operate at high clock speeds. T'he category of vector processors has been
marked VP; vector processing features may be associated with C [SC or RISC main prooessors.

Tlre Design Space Conventional processors like the lntel Pentium, M65040, older VAX.<"B6G{l, IBM 390,
etc. fall into the family known as eonrrrfer-instruction-set comparing -['ClSC_) architecture. With advanced
implementation techniques, the clock rate oftoday‘s CISC processors ranges up to a tevv GHI. The CPI of
difierent CISC in st mctions varies from 1 to EU. Therefore, CISC processors are at the upper part ofthe design
space.

Redhead-insrrrrerrbn-.ser eornprrrrrrg (RISC) prooessors include SPARE‘, Power series, MIPS, Alpha,
ARM. etc. With the use of efiicient pipelines, the average C-PI of RISC instnrctions has been reduced to
between one and two cycles.

An important subclass of RISC processors are the .s'rrper.se.r1far processors, which allow multiple
instructions to be issued simultaneously during each cycle. Thus the effective CPI of a supcrscalarprocessor
should be lower tha.n that ofa scalar RISC processor. The clock rate of superscalar processors matches that
of scalar RISC processors.

The verjr-' long insrrrrerrhrr word |[_“v'LIW] architecture can in theory use even more functional units than a
superscalarprocessor. Thus the CPI ofa\-'L[W processor can be firrthcr lowered. Intel‘s i8-60 RISC processor
had VLIW architecture.

The processors in veemr srrpereornpurers use multiple functional units for concurrent scalar and vector
operations.

The efiective CPI ofa processor used in a supercomputer should be very low, positioned at the lower
right corner ofthe design space. However, the cost and power cortsumption increase appreciably ifprocessor
design is restricted to the lower right comer. Some key issues impacting modern processor design will be
discussed in Chapter 13.

rr-I-M1-rimw HJ'iIr'r-rr.-pr.-.-r-rs _
Rruoessrzrs and Memory Hiar 7-- r us

Ilutruetion Pipeline: The execution cycle of a typical instruction includes four phases: fetch, decode,
execute, and write-boeir. These instruction phases areoften executed by an instruction pipefirreas demonstrated
in Fig. 4.2a. In other words, we can simply model an instruction processor by such a pipeline structure.

For the time being, we will use an abstract pipeline model for an intu itivc explanation ofvarious processor
classes. The pr'_rJei'r'ne, like an industrial assembly line, receives successive instnrctions fiom its input end and
executes them in a streamlined, overlapped fashion as they flow through.

A pipetine eyde is irrtuitively defined as the time required for each phase to complete its operation,
assuming equal delay in all phases [pipeline stages). Introduced below are the basic definitions associated
with instruction pipeline operations:

l:I:lil:l
match D:s:edaEmc|.I:o -mm luck

Suooassisra
I nstructions

IIIIIIIIIIIII ,.
O12345B?B91U'I'112‘I3TunainBaaaCyr.Ies

|[a) Etrawiion in a base seals plocesaa

Successive lilililil
||15,h|,|r;.f_ir:|11g -lhhch Du:oc\sEmcr.m ‘ttnhabadr Tina in Base C

I I I I I I I I I I I I I I I L...
012 3 4 5 B T B 9101112131-#1516

-(tr) Urtdarpjpeljnad with two cydes per instruction isara

Sueoeasiua |
'"511"=’¢*="** iii; $121; Time in Basra Cycles

I I I I I I I I I I I I I I I Lb,
O12 3 4 5 B T B Q1U11121314‘I5'IB

{e)Ur'|darpipdir'|adwili1twicethabasaq,rda

Fig. 4.2 Pip-eined execution of successlve ll'IGI3‘l.ICl2lfl‘|G In a base smhr processor and In two urrrderp-Ip-eiin-ed
cases {Cotrrrnesy O-Ijtllppi andtflallrreprh-med irorn Proc..ASPL-DS,AC1"'l Pres, 1989]

-[I 'j Instruction pipeiirre e_teie—the clock period of the instruction pipeline.
-[2] Irrstruction issue Ir:rterre_v—tI1c time {in cycles] required between thc issuing oftwo adjacent instructions.
{3} Irrstrrrr'tt'o.rr issue rote—the number of instructions issued per cycle, also called the degree of a

superscalar prooes sor.

Thu‘ Ml.'I;Ifllb' HI" l'n¢r.q|r_.u|»rs -

I35 i Admnced Cmnprmerfirehtteezum

-[4] Sirrrpfe opemrton Ioterrc_t-'—Si1"nple operations make up the vast majority of instructions executed
by the machine, sueh as rinteger odds. loads, stores, branches, moves, ctr. On the oontrary, oomplcx
operations are those requiring an order-of-magnitude longer latency, sueh as dit-'r1rfes. crzclre rrrisses, etc.
These latencies are measured in numberof cycles.

{5} Resource r-onjflic!s~—This reters to the situation where two or more instructions demand use of the
same functional unit at the same time.

A base scofor processor is defined as a machine with one instruction issued per cycle, a one-cycle latency
for a simple operation, and a one-cycle latency between instruction issues. The instruct ion pipeline can be fitlly
utilized ifsuccessivc instructions can enter it continuo usly at the rate ofone per cycle, as shown in Fig. 4.2a.

However, the instruction issue latency can be more than one cycle tbr various rats-ons [to be discussed
in Chapter 6]. For csample, ifthc instruction issue latency is two cycles per in.str|.|ction, the pipeline can be
underutilized,as demonstrated in Fig. 4.2b.

Another undcrpipelined situation is shown in Fig. 4.E'.c, in which the pipeline cycle time is doubled by
combining pipeline stages. ln this case, thejerch and oircode phases are combined into one pipeline stage,
and execute and wrire-boeir are combined into another stage. This will also result in poor pipeline utilization.

The efl'ecti1.-'c CPI rating is lforthe ideal pipeline in Fig. 4.3a, and 2 forthe case in Fig. 4.2b. ln Fig. 4.Ec,
the clock rate ofthe pipeline has been lowered by one-half According to Eq. I 3, eitherthe case in Fig. 4.2b
or that in Fig. -4..?.c will reduce the pcrforrnanoe by one-half, compared with the idml ease (Fig. 4.221) tbr the
base machine.

Figure 4.3 shows the data path architecture and control unit of a typical, simple scalar processor which
does not employ an inst mction pipeline. Main memory, ID controllers, etc. are connected to the extemal bus.

Esta mal bus t 1
Address PC

Dab IR
AL

Internal
bus B

'3°""d FEW um ma
UM Dontrd W5“

dgnsls

I 1'
Registers

Fig. 4.3 Dara path ard1-tractor: and control imtr of a scalar processor

Thc control unit generates control signals required for thcjerch, decode, .-ILL’ operation, memorv access,
and write result phases of instruction execution. The control unit itselfrnay employ hardwired logic, or—as

Prucesscrs and Memory Hierouz! T H-y

was more common in older CISC style process-ors—microcoded logic. Modem RISC processors employ
hardwired logic, and even modem CISC processors make use of many ofthe tcctmiqucs originally developed
for high-performance RISE pmccssorsl U.

4.1.1 Inst:r|.|ct:ion-Setfltrchitecturwes
[n this section, we characterize computer instnrction sets and examine hardware features built into generic
RISC and C [SC scalar processors. Distinctions between them are revealed. The boundary between RISC and
CISC architectures has become blurred in recent years. Quite a few processors are now built with hybrid
RJSC and CISC feat|.|res based on the same technology. However, the distinction is still rather sharp in
instnrction-set architectures.

Thc instruction sct of a computer specifics the primitive commands or machine instructions that a
programmer can use in programming the machine. The complexity ofan instruction set is attributed to the
instruction fomlats. data formats, addressing modes. general-purpose registers, opcode specifications, and
flow control mechanisms used. Based on past cxpcricn-oc in processor design, two schools of thought on
instnrction-set architectures have evolvccL namely, CISC and RISC.

Complex Instruction S-ct: In the early days of computer history, most computer families started with an
instnlction set which was rather simple. The main reason for being simple then was the high cost ofharrlware.
The hardware cost has dropped and the sofiware cost has gone up steadily in the past decades. Furtl1errnore,
thc semantic gap between HLL. features and computer architecture has widened.

The net result at one stage was that more and more firnctions were built into thc hardware, mal-ring thc
instnlction set large and complex. The growth of instruction sets was also encouraged by the popularity of
microprogrammcd control in the 1960:; and 1970s. Even user-defined instruction sets were implemented
using microcodes in some processors for special-purpose applications.

A typical CISC instruction set contains apprecrimatcly 120 to 3513 instnrctions using variable instnlction-"
data formats, uses a small set of S to 24 general-;.tur;Jo.se registers {_GPRs), and executes a large number
of memory reference operations based on more than a dozen addressing modes. Many HLL statements
are directly implemented in llardwarcffirniwarc in a CISC architecture. This may simplify the compiler
development, improve execution cfiicicncy, and allow an extension fiem scalar instructions to vector and
symbolic instructions.

Reduced Instruction Set: After two decades of using C ISC processors, computer designers began to
reevaluate thc performance relationship between instruction -set architecture and available hardwarefsoftware
technology.

Through many years ofprogram tracing, computer scicrltists realized that only 25"‘.-it of the instructions ofa
complex instnlction set are frequently used about 95% ofthe time. This implies that about T594» ofhardware-
supported instnlctions often are not used at all. A natural question then popped up: Why should we waste
valuable chip area for rarely used instructions‘?

With low-frequency clabo rate instntct ions demanding long microcodes to execute them, it might be more
advantageous to remove them completely from the hardware and rely on software to implement them. Even
if thc software implementation was slow, the net result would be still a plus due to their low frequency
of appearance. Pushing rarely used instructions into software would vacate chip areas for building more

-“Fuller diseussion of these basic architectural eottoepts can be tioutui in (.‘om-purer .5fi-stem (J:-grrnr'.-rarr'on, by Naresh
.lotwani. Tata Motlraw-lllll, 2t]ID"9.

Par MIGIITLH Hf" l'mt'JI||r_.u|n¢\ :

HI i Advanced Cmnpiroerhrehiteeture

powerful RISC or superscalar processors. even with on-chip caches or floating-point units, and lianzlwired
control would allow faster clock rates.

A RISE instruction set typically contains less than IDD instructions with a fixed instruction format
[32 hits). Only three to five simple addressing modes are used. Most instructions are register-based. Memory
access is done by loadlstore instructions only .A large register file (at least 32] is used to improve fast context
switching among multiple and most instructions execute in one cycle witl'| hardwired control.

The resulting benefits include a higher clock rate and a lower CPL which lead to higher processor
performance.

Jlrchitoctuml Distinction: Hardware features built imo CISC and RISC processors are compared below.
Figure 4.4 shows the architectural distinctions between traditional CISC and RISC. Some ofthe distinctions
have sinoe disappeared, however, because processors are now designed with features lirom both types.

Control Inshudion andas We57':ii

 i

. i
Microproga mm-ad ||'|3.i'|_[.figr.|

l Conid Memory l l Came l Cad'|Q

flnsiuetron) [D-313;Main Memory Mam Hamuy

~[a) The C1513 aehttectuo with mtcroprogram med {bl The R1513 arehtteetue with harelwroel control
coniol and unified eaeho and split instruction eadia and data cac-he

Flg.4.4 D-lsrzlnerlons beoucen typical RISC an-cl typical CISC processor archéeeerures (Cournesy oiGordon Bolt,
1989}

Conventional CISC architecture uses a unified cache for holding both instructions and data. Therefore,
they mu st share the same data.-‘instruction path. [n a RISC processor, separate irrsn-uetimr and dam caches are
used with different access paths. However, exceptions do esist. [n other words, CISC processors may also
use split cache.

The use ofmicroprogrammed control was found in traditional CISC, and hardwired control in most RISC.
Thus control memory (ROM) was needed in earlier CISC processors, which slowed down the instruction
cirecution. However, modern CIS-C also uses hardwired control. Therefore, split caches and hardwired control
are not today exclusive in RISE machines.

Using hardwired control reduces the CPI effectively to one instruction per cycle ifpipelining is carried out
perfectly. SomeClSC processors also use split caches and hardwired control, such as the MC6 51140 and i5El-ti.

ln Table 4.1, we compare the main features of typical RISC and CIS-C processors. The comparison
involves five areas: instruction sets, addressing modes. regisrerfile and cache design, expected C-‘Pl’, and
mono! rneehanisms. Clock rates of modern CISC and RISC processors are comparable.

The large number of instructions used in a CISC processor is the result of using variable-format
instruetions—integcr, floating-point, and vector data—und of using over a dozscn diliferent addressing modes.
Furthermore, with few GP Rs, many more instr1.|ctions access the memory for operands. The C Pl is thus high
as a result of the long microcodes used to control the execution of some comples instnlctiorts.

Processtrs and Memory Hiervalz! 1 H9

On the other hand, most RISC processors use 32-bit instnrctions which are prodominarrtly register-based.
With few simple addressing modes, the memory-access cycle is broken into pipclined access operations
involving the use of caches and working registers. Using a large register file and separate I-and D~e-aches
benefits internal data forwarding and eliminates unnecessary storage of intenpediate results. With hardwired
oontroL the CPI is reduced to l for most RISE instructions. Mo st recently introduced processor families have
infact been based on RISC architecture.

Table 4.1 Characteristics ofT]rplculClSC end Rl'SCAn:hlrcr:rurcs

.-'lrr.'hi.r rr-r_'.|' rrrui
If.'frr.rrtrr:‘.|'r.>r"i .n ic

Compfr-sr i'nsrn.rr.'rion Se!
Conrpurer f'Cl'SC')

Rr.'r.i'r.rer.-'d Ins!rr.rr.'rio.rr 5;-r
C-o.rr'rprr.|'er |“R.l'S(.'J

Inst ruction-set and
instruction fonnats

l..arge set ot"instr|1ctions with
variable fdurrnts (16-64 bits
per irertruetion}.

Small set of instructions with
fixed (32-bit} fonnat and most
registe r-hosed instruct ions.

.-ltddressirrg modes I2 --24. Lhnited to 3 -S.

General-purrmre registers
and cache design

B--24 GPRs, originally with rr
unified cache for instructions
and data, mutt designs aiso

Large numbers (32 I92} of
GPRs with mostly split data
cache and instruction cache.

use qrlit caches.

CPI CPI between 2 and I5. One cycle tor almost all instructions
and an average CPI -i l.5.

CPU Control Earlier rnicro-coded using control
memory (RON! 1|, but modern

Hardwired without control memory.

CISC also uses hardwired eontrol.

4.1.3 CISC. Scalar Processors
A scalar processor executes with scalardata The simplest scalar processor executes integer instructionsusing
fixed-point operands. More capable scalar processors execute both integer and floating-point operations.
A modern scalar processor may possess both an integer unit and a floating-point unit, or even multiple such
Lmits. Based on a complex instruction set, a CISC scrrlrrrpmeessor can also use pipclined design.

However, the processor is oficn underpipelincd as in the two cases shown in Figs. 4.2b and 4.2c. Major
causes ofthe underpipelinerl situations (Figs. -’l.2b] include data dependence among instructions, resource
conflicts. branch penalties, and logic hazards which will he studied in Chapter 6, and further in Chapter I2.

The case in Fig. 4.2c is caused by using a clock cycle which is greaterthan the simple operation latency. ln
subsequent sections, we will show how RISC and superscalar techniques can be applied to improve pipeline
performance.

Representative CISC Processor‘: ln Table-4.2, three early representative CISC scalar processors are listed.
The VAX B600 processor was built on a PC board. The i486 and M68046 were single-chip microprocessors.
These two processor families are still in use at present. We use these popular architectures to explain some
interesting features built into CISC processors. ln any processor design, the designer attempts to achieve
higher throughput in the processor pipelines.

Fr‘:-r Melirow Hl'lir'mr:-;|;1mn '
HI] i Advanced Compuoerfirrchiteettrre

Both hardware and software mechanisms have been developed to achieve these goals. Due to the
eornple-xiry involved in a CISC processor, the most difiieult raslc for a designer is to shorten the clock cycle to
match the simple operation latency. This problem is easier to overcome with a RISC architecture.

I»)
8] Example 4.1 The Digital EquipmentVAX B600 processor

architecture
The ‘v’.-‘\X S600 was introduced by Digital Equipment Corporation in 1985. This machine implemented a
typical CISC architecture with microprogrammedcontrol. The instruction set contained about 304] irtstructions
with 20 difierent addressing modes. As shown in Fig. 4.5, the VAX 8600 executed the same instruction set,
ran the same VMS operating system, and interfaced with the same l.~'D buses (such as SBI and Unibus] as the
‘v5°tX ll.-"TS{l.

The CPU in the ‘v’.-°tJ(B600 oonsistod oftwo functional units for concurrent execution of integer and
floating-point instructions. The unified cache was used for holding both instructions and data. There were
16 GPRs in the instruction unit. Instruction pipelining was built with six stages in the VAX S600, as in most
else machines. The instruction unit preietched and decoded instnrcfions, handled branching operations, and
supplied operands to the two functional units in a pipclined fashion.

M
Console Bus

E*e5‘-75°“ ' ' Vitud heldress
Unit

{lnhglii ALU)

Instruction Cache gfiglfg no
Unit {'l BK Conhd Sub-

{1B GPRs) Byte) ll-|-LB: systems

Flsgzgs Open nd Ihlemcly em Emmi
Ul'Ii‘l Bl-'5 Control Main Memory CPU = Cenid Processor Unit

P-191""? tT¥Pi°B"?~ '-ll?-i"B'='¢ no = Translation Looltaside Bulfel
write 51,5 GPR = Gerrard Purpose Register

Hj.4.5 Tl'|eV'.#lX Bl50DCPiJ.a typical ClSC pruossor an:l'|itecture {Courtesy offiigital Equipment Corpcmtelon. 1935}

A rrnrrrfofion l'0oIrn.s'iri:' buffer‘ [TLB) was used in the memory control unit for fast generation ofa physical
address fi'o1'n a virtual address. Both integer and ‘floating-point units were pipclined. The perforrnance of the
processor pipelines relied heavily on the cache hit ratio and on minimal branching tlamage to the pipeline flow.

The CPI ofa VAX S600 instruction varied within a wide range from 2 cycles to as high as 20 cycles. For
example, both narffipirr and o‘r"vr'n'e might tie up the execution unit for a large number of cycles. This was
caused by the use of long sequences oi'micminstr'|.|ctions to control hardware operations.

The general philosophy of designing a CISC pmoessor is to implement useful instructions in hardware.-"
firmware which may result in a shorter program length with a lower software overhead. However, this advantage
can only be obtained at the expense ofa lowerclock rate and a higher CPI, which may not pay oi'Tat all.

The VAX S600 was improved from the earlier VAX.-‘I 1 Series. The system was later further upgraded to
the VAX 9006 Series offering both vector hardware and multiprocessor options. All the ‘s-AX S-cries have
used a paging technique to allocate the physical memory to user programs.

Processcrs and Memory Hierolz! i 1 H|

CISC Microprocessor Families In l9?l_ the Intel 4004 iippcarfld as the first microprocessor based on a
4-bit.-°|.LU. Since then, Intel has produced the E-bit BOOB, HOBO, and SD35. Intel's 16-bit processors appeared
in I973 as the 81186, BOSE, E0186, and B6286. In 1985, the E0336 appeared as a32-bit machine. The E0486
and Pentium are the latest 32-bit processors in the lntel 30x86 family.

Motorola produced its first 8-hit microprocessor, the MCGBUIII, in 1974, then moved to the 16-hit 68000
in 1979, and then to the 32-bit 68020 in 1984. Then came the MC68'[l3»D and MC6B(l4'[l in tI1c Motorola
MC68'[htt"l family. National Semiconductor's 32-bit microprocessorNS32532 was introduced in I988. These
CISC microprocessor families have been widely used in thepersonn! eorrrpurer (PC) industry, with Intel x86
family dominating.

Over the last two decades, the parallel computer industry has built systems with a large number of open-
architecture microprocessors. Both CISC and RISC microprocessors have been employed in these systems.
One thing wort11y of mention is the compatibility of new models with the old ones in each of the families.
This makes it easier to port software along the series ofrnodels.

Table 4.2 lists three typical CISC processors of the year 199012].

Table 4.2 Rcprmcntotiie CISC Seder Processors ofyoor 1990

Feature’ Intel’ H86 ll-forrmifa ."l-ff.'|"i-ti'il4'l]| NS 32532

lnstruction~set size
and word length

I5? instructions,
32 bits

I I3 instzructioits,
32 hits.

63 instructions,
32 hits.

.-‘addressing modes I2 9

Integer unit
and GPRs
Cln-chip cachetsl
and M MUs

32-bit ALU
with B registers.
S-KB unified cache
for both code and data.
with separate lv'il‘vtUs.

32-hit ."tLU
with I6 rcgiste
4-KB code cache
4-KB data cache

32-bit ALU
with B registers.
512-B code cache
l-KB data cache.

Float ing-point
unit, registers,
and lilnetion units

(J-n-chip with
B FP registers
adder, muttiplier, shifter.

On-chip with 3
pipeline stages,
H BU-hit FP registers.

Off-chip FPU
NS 3238i, or
WTL 3 I64.

Pip-etine stages 5 6 4

P rotoct ion levels 4 2 2
Memory
organization and
TLBMTC entries

Segmented paging
with 4 KB.-‘page
and 32 entries in TLB.

Paging with 4 or B
KB.-’poge, 64 entries
in each ATC.

Paging with
4 KB.-‘page,
64 entries.

Technology,
clock rate,
packaging, and
year introduced

CIIMUE IV,
25 Mr-:1, 33 lv'[l~lz,
l.2M transistors,
I63 pins, I989.

0.3 pm IICMOS,
l.2 M transistors,
20 Ml{r__ 4D Ml [2,
I79 pins, I990.

l.25-pm CMOS
3?tll{ transistors,
30 lvll-lz,
I25 pire, I952.

(Jaimed
perfonnance

24 MIPS at 25 MI-h, 20 MIPS at2S Mlle
30 MIPS at 61] Mlle

I5 MIPS
at3D MI-I2.

.;z1 Motorola in i.croprocessors are at presentty built and marked by the divested company Freeseale

I41 i Admnced Cmnpuioerarchitcczure

gs
The MCtiBO-'-ICI is aU.E-‘um HCMCIS microproces sor containing monethan 1.2 million transistors,comparal:||c
to the i8'U4B6. Figure 4.-ti shows the MC-6BO4'[II architecture. The processor implements over IOU instructions
using 16 general-purpose registers, a 4-Kbyte data cache, and a 4-Kb)-'tc instruction cache, with separate
nrcmmj-' rrmrmgenrcnr units (MMLIs] supported by an address rrnmfrlriorr cache (_ATC_], equivalent to thc
TLB used in other systems. The data formats range from 8 to 80 bits, with provision for the IEEE floating-
point standard.

Example 4.2 The Motorola MC68040 microprocessor
architecture

Instruction Bus

Instruction Instruction
ATC Cache

_ ~u—u-
Instruction Address

'"5'““°"°" I'u1MUI'CacheJ'Snoop I
Fetch Controtlor IA iCarmen ‘i

1 Bacon Instructton Memory I..InIt
IQ!

Bus

Emwm Cafiiae

(32 bits]

Fetch 'Wrlt-aback ‘<H-r1i
Eroecutr

FI°~*"'"fl- Wrltobackpolnt .
UM Integer Unlt

Data Memory Unit
Data

I'uII'uIL:IfCacI1eJS noop
Controller

I it I I I
Data Data
ATC C

Dela B-us

BusControl

'I_

11-—b

<l—I-

B-us
Control
Slgnsls

Instr uct.Ion.I’
Data B us
[32 ohs]

IA = Instructbn Address
DA: Data Acldmss
EA = Effoctltre Address
ATG =AcId'ress Translation Cache
MMU = Memory Managerncnt Unlt

Fig. 4.6 Arc1I'd1:ec1:ur¢ ofthe MCGBD-10 processor {Courtesy offiononola Inc, 1991}

Eighteen addressing modes arc supported, including register direct and indirect, indexing, memory
indirect, program counter indirect, absolute, and immediate modes. The instruction set includes data
movement, integer, BCI), and floating point arithmetic, logical, shifling, bit-field manipulation, cache
maintenance, and multiprocessor communications, in addition to program and system control and memory
management instructions.

Prucesscrs and Memory Hirsute! E H3

The integer unit is organized in a six-stage instruction pipeline. The floating-point unit consists of three
pipeline stages (details to be studied in Section 6.4.1]. All instructions are decoded by the integer unit.
Floating-point instructions are forwarded to the floating-point unit for execution.

Separate instruction and data buses are used to and from the instruction and data memory units,
respectively. Dual MMUs allow interleaved ibtch of instructions and data from the mai11 memory. Both the
address bus and the data bus are 32 bits wide.

Three simultaneous memory requests can he generated by the dual MMUs, including data operand read
and write and instruction pipeline refill. Snooping logic is built into the memory units for monitoring bus
events for cache invalidation.

The complete memory management is provided with support for virtual demand paged operating system.
Each ofthe two AT-Es has 64 entries providing fast translation from virtual address to physical address. With
the EISE complexity involved, the M68040 does not provide delayed branch hardware support, which is
often iiiund in RISE processors like Motorola's own M88100 microprocessor

4.1.4 RISC Scalar Fmoess-ors

Generic RISE processors are called scalar RISE because they are designed to issue one instruction per
cycle, similar to the base scalar processor shown in Fig. 4.11. in theory, both RISE and CISC scalar
processors should perform about the same if they rrrn with the same clock rate and with equal program
length. However, these two assumptions are not always valid, as the architecture affects the quality and
density ofcode generated by compilers.

The RISE design gains its power by pushing some of the less frequently used operations into sofiware.
The reliance on a good compiler is much more demanding in a RISE processor than in a CISE processor.
instruction-level parallelism is exploited by pipelining in both processor architectures.

Without a high clock rate, a low CPI, and good compilation support, neither EISE nor RISE can perform
well as designed. The simplicity introduced with a RISE processor may lead to the ideal performance ofthe
base scalar machine modeled i11 Fig. 4.2a.

Representative RISE Pro:-user: Four representative RISC-based processors from the year 1990, the
Sun SPARE, lntel i860, Motorola M88100, and AMD 29000, are summarized in Table 4.3. All of these
processors use 32-bit instructions. The instruction sets consist of 51 to 124 basic instructions. On-chip
floating-point units are built into the i860 and M88100, while the SPARE and AMD use off-chip floating-
poim units. We consider these four proccs sors as generic scalar RISE, issuing essentially only one instruction
per pipeline cycle.

Among the four scalar RISE processors, we choose to examine the Sun SPARE and i860 architectures
below. SPARE stands for scafrrbie pmcessor rrrehirecrrrre. The scalability of the SPARE architecture refers
to the use ofa different number of rt-gisrer rt-'r'm:.fo'n'.s in different SPARE implementations.

This is different from the M88100, where scalability rcicrs to the numbcroisrxrcfcdjirncrion rrm'!.s' (SFUsi
implementable on different versions ofthe M88000 processor The Sim SPARE is derived fiom the original
Berkeley RISE design.

I44 i Advanced CempucerA.reIiitectu.re

Table 4.3 Hcprcscnrorhe .FlI‘SC Scniur Processors ofyeur 1990

Feature Sun SPARE CWC60! Intel E860 Mommin M 881'00 AND 2.0000
Instruction
set forrmats,
addressing

69 instructions,
32-bit ti:-1-mat, T data
types, -‘I-stage instr.
pipeline.

82 instructions,
32-bit torrrrat 4
addressing modes.

SI inst1'trctions, 7
data types. 3 irartr.
IiJ‘l‘i‘i:IlIl€c, 4 addressing
modes.

I I2 instructions,
32-bit t'onrurL all
registers indirect
addrersing.

Integer unit__
GPRs.

32-bit RISCIIU, I36
registers divided into
8 windows.

32-hit RISC core, 32 32-bit IU with 32
(iPRs arid
scorelmarding.

32-bit IU with I92
registers without
windows.

Caciie.s|[s}_.
l-r‘[I'vl U, and
memory
organization.

Gfi‘-chip ca|:hcr'lv'llirlU
on CY YCBD4 with
64-entry TLB.

4-KB co-dc, B-KB
data, on-chip‘ MMU,
paging with 4
KB.-‘page.

Off-cliip M88200
mixes.-'lir‘llv1’Us,
segmented paging,
I6-KB cache.

On-citip IIrlMlJ with
32-entry TL I3, with
4-word prciictch
butler and 5 I2-I3
branch target cache.

Floating-
point unit
registers and
Iitnctions

Ufi‘-chip FPU on
CYTCGD2. 32
registers. 15-=1-bit
pipeline (equiv. to
T|8848_]|.

On-chip 64-bit FP
multiplier and FP
adder with 32 FP
registers, 3-D
graphic". tuiit.

On-cl-rip FPU adder.
multiplier with 32
FP registe rs and
64-I:-it arithmetic.

(J ii"-chip FPU on
AMD 2902 1'. on-chip
FPU witlt.-'sMD
29050.

Operation
modes

Concurrent IU and
FPU operations.

Allow dual
instructions and dual
FPopcrations.

Concurrent IU, FPU
and memory access
with delayed branch.

4-stage pipeline
processor.

Teciutoiogy,
clock rate,
packaging,
and year

I18-,u:rn crnos n/,3:
Mlle, 20? pins, rare.

I-pm CIIMOS Iv‘,
over Ih-ltrmuristors,
=14] Millz, I6-8 pins,
I989

I-urn I-lCI'vlOS, I.2M
traits istors, 20 MH2,
I80 pins, I988.

l.2-,u1n (IMUS, 31]
Mllz, 40 Mile, I69
pins, I988.

C Iaimed
performance

24 MIPS tar 33 MHZ
version, 50 MIPS for
B0 MR: ECL
version. Up to 32
register windows can
be built.

40 MIPS and 60
lvlilops for 40 ll-[I-Iz,
i860.-‘KP announced
in I992 with 2.Sl\-‘l
transistors.

IT MIPS and 6
hilflops at 20 MI-Iz,
up to 2 special
function units could
be corrfigrrred.

2? MIPS at=I-0 MIIZ,
new versionAMD
29050 at 55 MIIZ in
I990.

I/)
lg Example 4.3 The Sun Microsystems SFARC architecture
The SPARE has been implemented by a number of licensed manufacturers as summarized in Table 4.4.
Difierent technologies and window numbers are used by difierent SPARE rnanufacurrcrs. Data presented is
from around the year 1990.

Pruccsscrs and Memory Hicrolz! 1

Table 4.4 SPARC Implcme.n1:c|tlo.ns by Ucensed Mmufucmrers f 1990}

H5

SPARC
Cllllp

Tecfmology Clock Clahned
Rare (MHz) VAXMIPS

Remarks

Cypress
CYTC601

ospm 33 24
CMOS TV.

C‘t"i'Cl5-D2 FPU Witlt
4.5 Mfiops DP Linpack
CYTC6-ll-=l Cael1e."MI‘\-IC,
CYYC I 5? Cache.

IU 201 pm.

Fujitsu MB I2-pm 25 |5
H6-'9Dl IU ClVlG$, IT? andTl BB4? FPP,

plus. IN-{B36920 M M U, 2.7
Mflorps DP Linpack by
FPU.

L6-=lBl-4 FPU, L6-'-ISIS
l'v1]'vttJ.

l'\-'[B Rt-'|-*3'll FPC FPC

LSI Logic l.D-pm 33 20
L6-4B I I HCMIGS, Ii"?

Y - **********
Tl SE46 D.B-pm CMDS 33 iii 42 Mflops DP Linpack

on Tl-BB4? FPP.

I5 Mflops DP Linpack
on FPUs: B-3 I20.-‘tLlJ,
B-36-ll FP

BIT IU ECL family. S0 50
B-3 I DU

Multtply."Dtvtde.

At the time, all ofthesc manufacturers implemented thefioafing-point unit {FPU} on a separate coprocessor
chip. The SPARC processor architecture contains essentially a RISC integer uni! (IUJ implemented with Z
to 32 register windows.

We choose to study the SPARC family chips produced b_y Cypress Semiconductors, lnc. Figure 4.7 shows
the architecture of the Cypress C‘!|'"i"C6tll SPARC processor and ofthe C"|’7C-tiOZ FPU. The Sun SPARC
mtruction set contains 69 basic instructions, a significant increase from the 39 instructions in the original
Berkeley RISCII instruction set.

The SP.-"LRC runs each procedure with a set ofthirty-two 32-bit IU registers. Eight of these registers are
global registers shared by all procedures, and the remaining 2-'1 are u-'r'n-don-' regr's1ter.s' associated with only
each procedure. The concept ofusing overlapped register windows is the most important feature introduced
by the Berkeley RISC architecture.

The concept is illustrated in Fig. 4.8 for eight overlapping windows {formed with 64 local registers and
64 overlapped registers) and eight globals with a total of 136 registers, as implemented in the Cypress 1501.

Each register window is divided into three eight-reg ister sections, labeled Ins, Locals, and Gum. The local
registers are only locally addressable by each procedure. The Ins and Outs are shared among procedures.

The calling procedure passes parameters to the called procedure via its Outsfrtt to r1 5] registers, which are
the Ins registers of the called procedure. The window of the currently running procedure is called the active
window pointed to by a current window pointer. A window invalid mask is used to indicate which window is
invalid. The trap base register serves as a pointer to a trap handler.

Hi i Adwmced Cnmjauiterfitrchitecturc

I
Register FIIes[136>=.32{|

So-uroe 1 Source 2

-

Arlthmotle St
Logic um: 5"" I-‘""

Program -- I --
Counters

Prooassor Stats Align
Window Invalid

Tran Base Instruction
Address M UMP‘? Step Deon-do

Instr uetlons

[a] The Cypress CYTCEO1 S-PARC processor

F"-d<1I"B‘~'=‘-5 D313 Fl Static Register

FPPRasuIts \

Instn.u::tIonJAd-drtsss
Buffer [2 x 64)

64-bitFioatIng-polrl Plpeuned
Ftoatlng polntfltusua Data Register Fbaung_pom3,5,, Flto (32132) pmflw
Address InstruetlonIa FP Operands

is
cmrmq FF Instr uetlons

PP
In-struetlonfeontrot FPGontro

Un

3lg

E 4'-— .I

we

mg.

{I1-j|TI1o Cypress CYTCED2 floatlng-polnt unit

Fig.4.? The SPARE arehtuenra whh the processor and ti-in floating-point: unlt: on two soparace chips {Courmsy
of Cypress Semlcondttemr Co., 1991}

A special register is used to create a 64-bit product in multiple step instructions. Procedures can also be
called without changing the window. The overlapping windows can significantly save the time required for
interprocedure oommunications, resulting in much faster context switching among cooperative procedures.

H‘-r Melinrw HJ'lIr'|-rr.-;n_.-.-I-rt _
fiueessws endflrlcmerry Hier ..i- H1

The FPU featunes 32 single-precision (32-hit) or 16 douhle—preeision (5-1-bit} floating-point registers
(Fig. 4.'i"h). Fourteen ofthe 69 SPARC i.nstructions are for floating-point operations. The SPARC architochire
implements three basic instruction formats, all using a single word length of 32 bits.

1‘[§1} I‘l%3l f‘l1_5l
Protrlous Wlndow . "I5 . I-B-63$ -01115

1‘I24l 11151 113}
1311 H23] H15]Acting wtmw ; Ins ; Locals :Du1.s
124] fI1'3I 13]

I I
[:7-Globals

r[0}

[at Three overlappl ng register windows and the glohats rog Istors

P1311 r1231 r{15]
Nest Window I "ta I I-0-'=&*= '0'-"1512¢} :11 c1 rill] g

CWP

as
g ‘rsOutsW

W3 OUTS w‘, W 4 W4 Ins

4 N
 9|-15 Locals

[Is] Elght mglstcr windows formlng a circular stack

WIM
w? Locats

5- $5is:4
Fig.-lll The ocmcqrn: ofoverlapplng rqlscor windows in cho9‘ARC ardilcocnn-c(Co|.|=r1:esy of5un Me:-osyscerns.

Inc, 1937]

Table 4.-'-I shows the MIPS rate relative to that of the VAX 1].~"7B0, which has been used as a reference
machine with 1 MIPS. The SO-MIPS rate is the result ofECL implementation with a BO-Ml-Iz clock. A Ga.-its
SPARC was reported to yield a BUG-MIPS peak at 200-MHZ clock rate.

I45 i Advanced Cmnplioerfirchitceture

I»)
F5 Example 4.4 The lntel i860 processor architecture
ln I989, lntel Corporation introduced the itifitl microprocessor. [t was a 64-bit RISC processor fabricated on
a single chip containing more than l million transistors. The peak performance ofthe iBti'[l was designed to
reach BI] Mfiops single-precision or 60 Mflops double-precision, or 40 MIPS in 32-bit integer operations at
a 40-MHz clocli: rate.

A schematic block diagram of major components in the iB6[l is shown in Fig. 4.9. There were nine
fi.|nctional units {shown in nine boxes] interconnected by multiple data paths with widths ranging from 32 to
I28 bits.

Extemalaodress 32
is /

Instruction C-ache ""'“""'="Y Data Cache
[41-t Bytes] Mmifimmt [as Bytes]

Address Address $136

FF" Instruction 123
E4 C

ore
Instruction 32 3 32

RISC Floating point
E"l‘B'"3' Bus Control Integer Unit control unit
Dam Unit54 Core Registers FF Registers

64 64 B4

De“ —
Sm1Src2

E
Gra phlcs Unit Pipe fined Fipollnod

. Munlplflf
hhrge Amfll Unit

Fig.4.! Functional l.H'tll'5 and data pants ofthe Intel i8-ED RISC mlerqarocessor (Courtesy of Intel Corporadon.
1990}

Prucesscrs and Memory Hi'El'0lZ! i 1 H9

All -nlrternal or internal address buses were 32-bit wide, and the cxtemal data path or imemal data bus was
64 bits wide. However, the internal FLISC integerALU was only 32 bits wide. The instruction cache had
4 Kbytes organized as a two-way set-associative memory with 32 bytes per cache block. lt transferred -64 bits
per clock cycle, equivalent to 311] Mbytes-"s at 41] M]-Iz.

The data cachc was a two-way set -a_ssociative memory of B Kbytes. lt trans ferred 128 bits per clock cycle
(640 Mbytcsfs) at 40 MHZ. Awritc-back policy was used. Cacheing could be inhibited by software, ifneeded.
The bus control unit coordinated the 64-bit data transier between the chip and the outside world.

The MMU implemented protected 4 Kbyre paged virtual memory of 232 bytes via a TLB. The paging and
MMU structure ofthe i8-I50 was identical to that implemented in the i486. An i860 and an i486 could be used
jointly in a heterogeneous multiprncessorsystem, permitting the development ofcompatible OS kernels. The
RISC integer unit exccuted form’. store. integer; bit, and comm! instructions and fetched instructions for the
floating-point control unit as well.

There wcrc two floating-point units, namely, the nulfrfpfier unit and the adder iiflif, which could be used
separately or simultaneously under thc coordination of the floating-point control unit. Special dual-operation
floating-point instructions such as fllilrfifld-HilJ.lfl']J.{}-' and submicmrnri-n1rli'tip!__v used both the multiplier and
adder units in parallel (Fig. 4. 10).

So-urcnl 1_=.,...n.2 “°t“:*‘*°"

Q01 OPE
Multiply Unit [SP]

Result
I i I Kr :<Source2

Op1 Op2
Addnr Unit

Result
1

Kr xS-onion 2 + Sour-:21

Fig. 4.1!] Dual floating-point DPQ1"I.l'jOi'tlil‘i the I860 processor

Ftuthcr-n1ore, both the integer unit and the floating-point control unit could execute concurrently. In this
sense, thc i860 was also a superscalar RISC processor capable ofexccuting two instructions, one integer
and one floating-point, at thc same tirnc. Thc floating-point unit conformod to the IEEE ‘I54 floating-point
standard, operating with single-precision (:32-bit] and double-precision (64-bit] operands.

The graphics unit cxccuted integer operations corresponding to 8-, 16-, or 32-bit pixel data types. This
unit supported throe-dimensional drawing in a graphics frame buffer, with color intcrt'-tit].-', shading, and
hidden surface elimination. The merge register was used only by vector integer instructions. This register
accumulated the results ofmultiple addition operations.

F?» Mtfiruw Hillr'n.-rqiwrn-r

I50 i Advnlrrced Cmnpunerfirehitecture

The i-SE-(l executed 82 instructions. including 42 RISC integer, 24 floating-point, ll] graphics, and
6 assembler pseudo-operations. All the instmctions executed in one cycle, i.e. 25 ns for a 40-Ml-Iz clock
rate. The ilifiil and its successor, the i86llXP, were used in floating-point accelerators, graphics subsystems,
workstations, multiproccssors, and multicomputers. However, due to the market dominance of Intel's own
x86 family, the i360 was subsequently withdrawn from production.

The RISC Impact: The debate between RISC and CISC designers lasted ibrmorc than a decade. Based on
Eq. l .3, it seems that RISC will outperiorm CISC ifthe program length docs not increase dramatically. Based
on one reported experimem, converting from a CISC program to an equivalent RISC program increases the
code length {instruction count] by only 40%.

Of course, the increase depends on program behavior, and the 40'!-"it increase may not be typical of all
programs. Nevertheless, thc increase in code length is much smaller than the increase in clodr rate and the
reduction in CPI. Thus the intuitive reasoning in Eq. 1.3 prevails in both cases, and in fact the RISC approach
has proved its merit.

Further processor improvements include full 64-bit architecture, multiprocessor support such as snoopy
logic for cache coherence control, faster interprocessor synchronization or hardware support for message
passing, and special-function units for l.-"O interfaces and graphics support.

The boundary between RISC and CISC architectures has become blurred because both are now imple-
mented with the same hardware tech nolegy. For example, starting with the VAX 9000, Motorola 88100, and
lntel Pentium, CISC processors are also built with mixed features taken from both the RISC and CISC camps.

Further discussion ofrclevant issues in processor design will be continued in Chapter 13.

SUPERSCALARAND VECTOR PROCESSORS

1 AC ISC or a RISC scalar processor can be imp rovcd with a .s'uper.sr-afrrr or vector architecture.
Scalar proccs sors are those exec uting one instruction per cycle. Only one instruction is issued

per cycle, and only one completion of instruction is expected from the pipeline percyclc.
In asuperscalarproccsser, multiple instructions are is sued per cycle and multiple results are generated per

cycle. A vector processor executes vector instructions on arrays of data; each vector instruction involves a
string of repeated operations, which are ideal for pipelining with one result per cycle.

4.1.1 Superscalar Processors
Supcrscalar processors are designed to exploit more instruction-level parallelism in user programs. Only
independent instructions can be executed in parallel without causing a wait slate. The amount of instruction-
level parallelism varies widely depend ing on the type ofcode being exec utcd.

[t has been observed that the average value is aroundl for code without loop unrolling. Therefore, tor these
codes there is not much benefit gained from building a machine that can issue more then three instructions
per cycle. The in.s'IrrreIi0n-is.s'ue rlirgretr in a superscalar processor has thus been limited to Z to S in practice.

Prucesscrs and Memory Hierolz! 1 |5|

Pipelining in Superscolor Processor: The fundamental stn.|cture of a three-issue superscalar pipeline
is illustrated in Fig. 4.l I. Superscalar processors were originally developed as an altemative to vector
processors, with a view to ertploit higherdegree of instruction level parallelism.

I I I I I
Ifeteh Deoode Erneeute Write

back

Q _L._ pg- w_ _|,,__ |-_n_ Q-,_ -q._
‘I’

B 9 Tlrne In Base Cycles

Fig.-1.11 A superscalar processor efdegree rn = 3

A superscalar processor ofdegree m can issue m instructions per cycle. ln this sense, the base scalar
processor, implemented either in RISC orClSC, has m = l. ln order to fully utilize a superscalarprocessoroi
degree m, m instructions must be executable ir| parallel. This situation may not be true in all clock cycles. In
that case, sortie ofthe pipelines may be stalling in a wait state.

In a supcrscalarprocessor; the simple operation latency should require only one cycle, as in the base scalar
processor. Due to the desire for a higher degree of instruction-level parallelism in programs, the superscalar
processor depends more on an optimizing compiler to exploit parallelism. Table 4.5 lists some landmark
examples of superscalar ptoces from the early 1990s.

A typical superscalar architecture tor a RISC processor is shown in Fig. 4. 12.
The instruction cache supplies multiple instructions per fetch. However, the actual number oi'instructions

issued to various functional units may vary in each cycle. The number is constrained by data dependences
and resource conflicts among instructions that are simultaneously decoded. Multiple fitnetiortal units are built
into the integer unit and into the floating-point unit.

Multiple data buses exist among the functional units. In theory, all functional units can be simultaneously
used if conflicts and dependences do not exist anrong them during a given cycle.
Representative Super-scalar Processor: A number of comrnercially available processors have been
implemented with the superscalar architecture. Notable early ones include the IBM RS.-"6000, DEC Alpha
21064, and lntel i9fi'UCA processors as summarized in Table 4.5. Due to the reduced CPI and higher clock
rates used, generally supcrscalarptocessors outperibrrn scalar processors.

The maximum number of instructions issued per cycle ranges from two to five in these superscalar
processors. Typically. the register files in the lLI and FPU each have 32 registers. Most superscalar processors
implement both the [U and the FPU on the same chip. The superscalardcgree is low due to limited instruction
parallelism that can be exploited in ordinary programs.

Besides the register files, reserwrrr'0n srnrr'0ns and reorder br{,i'_}@rs can be used to establish instruction
\~t-'r'rml'Jws. The purpose is to support instruction lookahead and internal data forwarding, which are needed

to schedule multiple instructions simultaneously. We will discuss the use of these mechanisms in Chapter 6

I51 T Advanced Compmerfinrchitecture

where advanced pipelining techniques are studied, and further in Chapter 12.

Table 4.5 Reprmenrnthe Super-scalar Pmcrssors [circa 1990]

Feature Intel
r96tiCA

IBM
R.':i-"60£}£l

cac Apia
2:064

Technology,
clock rate,
year

25 Ml-I2 I93-I5. I-pm CM05
technology, 31] MI £2,
I990.

DJT5-}.i.t't'| CMCI5, I50
lvfl-I1 431 pm», 1992.

Functional
Lutits and
multiple
instruction
issu-at

Issue up to 3
izrattructions (register,
memory, and
control) per cycle,
seven functional
units availzble for
eoncturcut use.

POWER
architecttuc, issue 4
instructions {I FXU,
I FPU, and 2 ICU
operations} per cycle.

Alpha architecture,
issue 2 instruct ions per
cyclc , 64-bit IU and
FPU, I25-bit data bus,
and 34-hit address bus
implemented in initial
version.

Registers,

achdress space
cacltezs, MMU,

HU3 I-cache, l.5~lLl3
RAB-1, 4-channel HO
with DM.-‘X, parallel
decode, multiported
registers

32 32-1:-it(]PRs,
E-KB l-cache, 6-=H{l3
D-cache 1-v ith
scparatc TLBs.

32 64-bit GPRs, S-KB
I-cache, B-KB D~cachc,
64-bit virmal space
desigrled, 43-bit
address space
implemented in initial
version.

F Ioat ing-
point unit
and Iiutctimis

Gn-chip FPU. fast
multimode interrupt,
ntultitask control.

On-cltip FPU 6-=1-bit
multiply, add, divide,
subtract, IEEE T54
standard.

On-chip FPU, 32
64-bit FF registers,
ID-stage pipeline.
IEEE and VAX FP
staridarfe.

Claimed per-
formance and
remarks

3o vsxmtirs peak
at 25 MI-Iz, real-time
embedded system
control, and
multiprocessor
applications.

34 MIPS and
1l Mfiops at 25 MI-Iz
on P(l\\'ER station 531].

3[IID MIPS peak and
150 Mflops peak at 150
M]-I2, muitiproeessor
and cache coltcrence
support.

Note: KB = Khytes, FF = floating point.

rr.-.- Mcfiruw Hl"l'r>¢r.q|r_.u||r\ _ '
Rruoessrzrs and Memory Hirer 7

\\%\’a\\&Z%\‘&§‘&\\‘{<&$\}\\.‘%-$‘&.‘\.‘§&£*&\‘\Y;3.\Wz.\.%.\.\&§'-?R*§&*x\W>§.\%.\“&2&-\‘%2\\X~.\W:b\}.\“&-‘:&».\‘§‘<\‘§K\\\.€

‘~=~.

5%.
D

Memory

I

' dlG'Z-:- //JP’/I-9'/B9‘? I -' /Kl!’/A4?‘/.»99'.v99'.-‘AG §Q1R€~\\\“¢\\%\%\%\">.\\'Q

Register Reorder
Flie Buffer

//.-6*‘/.-06’.-56'.-’.0G’/.»5"///)?Z-9'/.6O'.&@'/$7.41?‘//J9‘.49‘/.66'30"/A'7.41‘//4“/»96".-".6'I-".06'/-:1-///YA-V/r061’.-f-0*’.-’.6rG’.»irG’/A¢9‘z.W/.»0G"

T M M A M itH T H W; ll M H
Integer Unit [RISC mm]

A/xI-."/.<’/)‘rf-;?r'/>9‘/'-2”/.61!/1W/X121-’///M1-5'?‘/‘.6!-'idIVr'.%'i12>’/¢:!'£-'72‘//.6-I/.<’/.>’rk='2*'./-‘)‘./‘->‘*//W.4-:7.-"KIA-6/"'r'.69f-if)’./.4'Z-ii!/r'.M'i12>’//Z'>W/.6-I-'i<’A>'r'.4'2*'.-7)‘//5'//if/.4-:7/.6!/ri-?r' .

F loatl ng-point UnIt

Register Reorder
File Btfiar

Add Convert Multip-fgr Divide Load Store

{Q {Q {Q Q {gt Q

\';

%¥$\.}.\3&-‘?&.\%3LQ%K\\%\\§.\"e-\‘&.“'&k€§~.*:k\%.\%.\%%.‘§~.‘-.‘€%.‘§&\\‘£bt\‘&.\%bIfik~\€§§€§\\\¥%.\¥h{<e\.‘%\W\‘{%\i:-\\&S:¥.\\%\'5>\Q}\\3.§\\£

§*:\‘¥2\‘?%\
ap.

§l2%\“R\‘§§~\//?’.'fl"."‘T?/W".-‘F25’./'4%zIT//fiéi-':iV.-".r§§’.\#/.-(%7.V/.-d5t52i6§’.-"'.¢’I-¢l'§9"/44%’.-".»=<‘.3".-W’.-'21:I-37.66?’/1%4éi-'-T7./.»§&'.fl/%iW/.-a$6Fl§§’./.é€-:69/Q.F6v?/.-K .-",$‘:?'.ét?'AT:'»'. AV-.’

Addr Data

Memory

Flg.1l.12 A typical superscalar RISC pracusor archlnctrrxe consisting of an integer unit an-cl : fieaflng-point
uni: {Cour-raesy of M.jehnson. 1991:reprin1:ed wi1:l1 perrnisslon frorn Prentice-Hal. In-L]

I»)
Cg Example 4.5 The IBM R5!6000 architecture
[n early 1990, IBM announced the RISC System 6000. It was a superscalar processor as illustrated in
Fig. 4.13, with three functional units called the bmneh proeessor,_jfixed-pain: unit, and floafing-paint unit,
which coulcl operate in parallel.

Thur Ml.'I;Ifllb' HI" l'n¢r.q|r_.u|»rs -

I54 i Admnced Cornpuioerfirehiteczure

The branch processor could arrange the execution ofup to five instructions per cycle. These included one
brand: instruction in the branch processor, one fixed-point instruction in the FXU, one corrdirion-register
instruction in the branch processor, and onefl0a|'r'ng—poirrt muitrpiy-mid instruction in the FPU, which could
be counted as two floating-point operations.

Instruction Cache

Imstructbnc

FIxied-point Flflfliflfi-*I9°|"T
Processor Processor

32
32 B4 B4 X 32

ProgrammedIro 4--1 storaga3 HO Date Cache
.,_,,‘: Interface {MK Bytes:

Dilflfi Dam
Memory

123 Access 128

I Main Memory [8 to 128 MByteej| I

Fig. 4.13 The POWER arrchiraecrure cf the IBM RISC 5ys:emi‘6flII]ID supersca.Izr- processor {Ccurcesy cf
lnmmaoimai Business Maduncs Corp-orari-on. 1990}

As any RISC pr-ocessor, RS.-‘6000 us-ed hardwired rather than mierocoded control logic. The system used a
number ofwide buses ranging fiorn one word (32 bits] for the FXU to two words (64 bits) tbr the FPU, and
ibur words ibrthe I-cache and D-cache, respectively. These wide buses provided the high instruction and data
bamlwiclths required ibr superscalar implementation.

The RSIBODO design was optimized to perform well in numerically intensive scientific and engineering
applications, as well as in multiuscr commercial environments. A number of RS.-"6000-based workstations
and sewers were produced by IBM. For example, the POWERstaIion 530 had a clock rate oi'25 MHZ with
performance |JBl1Ci'll'l13I]iI3 reported as 34.5 MIPS and 10.9 Mflops. In subsequent years, these systems were
developed into a series of RISC-based sewer products. See also Chapter 13.

4.1.1 TheVLIWArchitecture

The VLIW architecture is generalized from two well-established concepts: horizontal mierocoding and
superscalar processing. A typical VLIW {_'t’£"!:_\’ long irrsrrrrcrion word) machine has instruction words
hundreds of bits in length. As illustrated in Fig. 4.l4a, multiple iimctional units are used concurrently in

Rruoessrzrs and Memory Hierarz! F. |55

a VLIW processor. All functional units share the use of a common large register file. The operations to be
simultaneously executed by the functional tmits are synchronized in a VLIW instruction, say, 256 or 1024
bits per instruction word, an early example being the Multiflow computer models.

Different fields of the long instruction word carry the opcodes to be dispatched to different functional
units. Programs written in conventional short instruction words { say 32 bits} must be compacted together to
form the VLIW instnrctions. This code compaction must be done by a compiler which can predict branch
outcomes using elaborate heuristics or run-time statistics.

Main -Regrsterf-'IIe

Load! anM ‘res’ B52?“um Unit

I Load.i5tore I FP'Add IFP Mumps‘ Branch --- Ifltenerhl-U‘

[a] Atypical ‘JLIW’ processor with degree m = 3

 |

lle'Jd'| Doocrdr: En:ou'.I: 'flki'.Ir:
3r:|:|s:r1'|:rrB hadt

I I I I I I I I I ,
D 1 2 3 4 5 6 I" 6 9 Tlme in Erase Cycles

[lit] VLIW' execution with degree m = 3

Flg. 4.14 The arrdflceccmc of a very long Irrsrrucrion word {VLIW] processor and tr: pipciinc operations
[Courtesy of Muiriflow Compur.or;|nr_.19IB7]

Pipelining in FLIW Processor: The execution of instructions by an ideal VLIW processor is shown in
Fig. 4.14b. Each instruction specifies multiple operations. The effective CPI becomes 0.33 in this particular
example. VL [W machines behave much like superscalar machines with three diiferenccs: First, the decoding
of VLIW instructions is easier than that of superscalar instructions.

Second, the code density ofthe superscalarmacb inc is betterwhcn the available instruction -lc"vel paral lel ism
is less tharr that exploitable by the VLTW machine. This is because thc fixed VLIW format includes bits for
non-executable operations, while the superscalar processor is sues only executable instructions.

re» Mtfiruw um =-...=-mam. '
I55 i _ Admrrced Cempurnerfirehiteeture

Third, a superscalar machine can be object-code-compatible with a large family ofno n-parallel machines.
On the contrary, a 'v'LlW machine exploiting difi'erent amounts of parallelism would require different
instruction sets.

lnstruetion parallelism and data movement in a VLIW architecture are completely specified at compile
time. Run-time resource scheduling and synchronization are in theory completely eliminated. One can view
a ‘v’LlW processor as an extreme example ofa superscalar processor in which all independent or Lmrelated
operations are already synchronously compacted togetl1er in advance. The CPI of a VLIW processor can
be even lower than that of a superscalar processor. For example, the Multiflow trace computer allows up to
seven operations to be executed concurrently with 35-6 hits per ‘I-'LlW instruction.

VLIW Opportunities ln a VLIW architecture, random parallelism among scalar operations is exploited
instead of regular or synchronous parallelism as in a vectorized supercomputer or in an SIMD computer.
The sueeess of a VLl"W processor depends heavily on the effieieney in code compaction. The architecture is
totally incompatible with that of any conventional general-purpose processor.

Furthermore, the instruction parallelism embedded in the compacted code may require a difierent latency
to be executed by different firnctional units even though the instructions are issued at the same time. Therelbre,
difierem implementations ofthe same 'v'Ll'W architecture may not he binary-compatible with each other.

By explicitly encoding parallelism in the long instruction, a VLIW processor can in theory eliminate the
hardware or sofiwarc needed to detect parallelism. The main advantage ol"v'Ll W architecture is its simplicity
in hardware structure and instruction set. The VLIW processor can potentially perform well in scientific
applications where thc program behavior is more predictable.

ln general-purpose applications, the architecture may not be able to perform well. Due to its lack of
compatibility with conventional hardware and software, the\-‘Ll W architecture has not entered the mainstream
ofcomputers. Although the idea seems sound in theory, the dependence on trace-scheduling compiling and
code compaction has prevented it from gaining acoeptance in the commercial world. Further discussion of
this concept will be found in Chapter 12.

4.1.3 Vector and Symbolic Processors
By definition, a vector proees.ror is specially designed to perform vector computations. A vector instruction
involves a large array of operands. In other words, the same operation will be performed over an array or a
string of data. Specialized vector processors are generally used in supercomputers.

A vector processor can assume either a regi.srer-In-register architecture or a mem0rj1-'-to-mem0r_t-'
architecture. The former usea shorter instructions and vector register files. The latter uses memory-based
instructions which are longer in length, including memory addresses.

'|'ecto.r Instruction Register-based vector instructions appear in most register-to-reg ister vector processors
like Cray supercomputers. Denote a vector register of length n as VI, a scalar rqgr'.rIt'r as s,-, and a memory
arrqv of length n as Ml] : nj. Typical register-based vector operations are listed below, where a vector
operator is denoted by a small circle “o”:

‘V; o ‘V1 —> V3 {binary vector)
s1 o ‘V1 —> ‘Iv’; {sealing}
V1 o V1 —> s| {binary reduction)

Prucesscrs and Memory Hierolz! 1 | 51

M['l :nj {vector load] |[_4.l'j
M{_l : rt) {vector store]
V; {unary vector]
s| {tmary reduction)OS! $55 till

.5

lt should be noted that the vector length should be equal in the two operands used in a binary vector
instruction. The reduction is an operation on one or two vector operands, and the result is a scalar——such as
the dot proahrcr between two vectors and the maximum ofall components in a vector

In all cases, these vector operations are per'f'ormed by dedicated pipeline units, including _,fimerio.rm!
pr'per’r'm:s and mensory-access pipeir'rs:s. Long vectors exceeding the register length n must be segmented to
fit the vector registers n elements at a time.

Memory-based vector operations are found in memory-to-memory vector processors such as those in the
early supercomputer CDC Cyber 205. Listed below are a few examples:

M|(l:n] o My-[il :n) M{1:n]
s, o M|(1:n) .M3(1 In)

o ll-=t'|{l :n'] .-1-13(l :n) (4.21
M,-[1 :n] o ll-»f3{l :n) M {kltilt

where M,-[il :n_l and M;-[il :n) are two vectors of length n and M{'lrj denotes ascalarquantity stored in memory
location 15:. Note that the vector length is not restricted by register length. Long vectors are handled in a
streaming fashion using super tennis‘ cascaded from many shorter memory words.

Hrctor Pipeline: Vector processors take advantage ofunrolled- loop-level parallelism. The vector pipelines
can be attached to any scalar or superscalarprocessor.

Dedicated vector pipelines eliminate some software overhead in looping control. Of course, the
effectiveness ofa vector processor relies on the capability ofan optimizing compiler that vectorizes sequential
code for vector pipelining. Typically, applications in science and engineering can make good use of vector
processing capabilities.

The pipclined execution in a vector proeessor is compared with that in a scalar processor in Fig. 4.15.
Figure 4.15:1 is a redrawing of Fig. 4.2a in which each scalar instruction executes only one operation over
one data element. For clarity, only serial issue and parallel execution ofvector instructions are illustrated i11
Fig. 4_2b. Each vector instnrction executes a string ofoperations, one for each clement in the vectoc

We will study vector processors and SIMD architectures in Chapter B. ‘sfarious functional pipelines and
their chaining or networking schemes will be introduced tbr the execution of compound vector functions.
Many of the above vector instructions also have equivalent counterparts in an SIMD computer. Vector
processing is achieved through ellleient pipelining in vector supercomputers and through spatial or data
parallelism in an SIMD computer.

Symbolic Pmcenor: Symbolic processing has been applied in many a.rca_s, including theorem proving,
pattern recognition, expert systems, knowledge engineering, text retrievaL cognitive science, and machine
intelligence. ln these applications, data and knowledge representations, primitive operations, algorithmic
behavior, memory, I.-"0 and communications, and special architectural features are different than in numerical
computing. Symbolic processors have also been called pmfog processors, Lisp pr0ee.ss'0r.s, or symbofie
rrrrrniprrfrirors. Table 4.6 summarizes these characteristics.

H‘-r Mclinrw Hill l'||rr.q|r_.I.I||r\ _

S uooeeeiue
Instructions

I55 i Advanced Compurterfirchitecture

I:I:lil:I
ll:!¢| Decade Emeuule ‘M'i§: End.

I I I _I I_ _I I I I I _I I_ _I ,,
012 3 4 5 6 1" B 910111213-1'|meinSaseCyoloe

Ia} Seaiar pipeline emeeution {F ig. 4.2a redmwn]

Successive
Instructions ‘fime in Base Cy-oloe

I I I I I I I I I I I I ,1 I ,I,,,
D123-45fi?3910111213-1415

lb] ‘uhcbr pipeline emcution

Fig. 4.15 Plpellned exec1.r|:lon in a base scalar processor and ln a vector processor. respecdvdy (Courltesy of
_|-D1-tppl and\Nall: reprinted frorn Proc.A5PLCI'5.HCM Pres. 1989]

Table 4.6 Characteristic of Syrnbolc Pmoesslng

.-'1 .r.rribul‘e.r Charo-crerlriir.-s

Knowledge Representations Lists, relational databases, scripts, semantic nets, fiarnes, blackh-oarcki,
objects, pro-ct|.tction systerns.

Common Operations Sea1'cl1._-—n snarl;__pattern________mate______hing,-Ifiltenng.' contexts. partitions, huusitive
cluaurw. unification. text retrieval. act opcrttlioni. manning.

Memory Requirements Large memory with intensive access pattern. .fl»ddt'e:$i-tag is often ocmtent
-based. Locality ofretererice may not hold.

Communication Patterns Mm1§SEi¥iE_€&i§§1Eé'=_£d1I=ti£.Tim; granularity and forum! of
mmage units change with application-s.

Propert let ofhlgoritltms Noodeterrnirtlstlc, possibly parallel and distrkruted eornputations. Data
depertderiees may be global and irregular in pattern arid granularity.

lnput:'(Jutp-ut requirements uellgum 1,1-.;.g5.I..T;I-YEtié§e1£}E§.T1lE§E1-TIE E};-rlefl I-I1_:1=~'11:'5 can
be grapltkal and audio an well IE from keyboard; acoms to very large
o1t~line databases.

.-trcltitecture Features Parallel update of large knowledge bans, dynamic load I:|alm:cl1tg;dy1\an1lc
memory allocation; hardware-supported garbage collection; stack proeemor
archttecture;s}rn1bolic pro-cemors.

Prucessrzrs and Memory Hiermz! _ 1 |59

For example, a Lisp program can be viewcd as a set of functions in which data are passed from fiunetion
to function. The concurrent execution of these functions forms the basis for parallelism. The applicative and
recursive nature of Lisp requires an environment that efliciently supports stack computations and function
calling. The useoflinkcd lists as the basic data structure makes it possible to implement an automatic garbage
collection mechanism.

Instead of dealing with numerical data, symbolic processing deals with logic programs, symbolic lists,
objects, scripts, blackb-cards, production systems, semantic networks, frames, and artificial neural networks.

Pritnitive operations for artificial intelligence include scorch. compare. logic injirrenee. pattern nrnrc-hing.
rurrjicarion. filtering; context. retrieval, set operariorrs. n'an.sr'rr've closure, and reasoning operarions. These
operations demand a special in stn.|c tion set containing cornprtrtr. monrhirrg. logic, and sji-'nll1'Ji'ie nmni,rJu)'ntion
operations. Floating point operations are not often Ltsod in these machines.

Ir)
g Example 4.6 The Symbolics 3600 Lisp processorm

The processor architecture ofthe Symbolics 3600 is shown in Fig. 4. rs. This was a stack-oriented machine.
The division of the overall mar:h.ine architecture into layers allowed the use of a simplified instruction-set
design, while implementation was carriod out with a stack-oriented machine. Since most operands were
fetched from the stack, the smelt buffer and scratch-pad memories were implemented as fast caches to main
memory.

 i'Romacg rs Tag
5-GrH'ld'IlJ-fld—I"I 5"" Processor

Stack " Fbceel-point
Buffer --’---- Processor

FloatingC u rrentin —h- in pointInstruction Pr or

Main Garbage
' Memory ' ' Collector

g B Bus

3 Operancl
i $856101‘

Flg.4.16 The arehleeenrre of the Syrnboiles 3600 Lisp processor {Courtesy of Syrnb-ollrs. Inc. 1985}

-31 The company Symb-olies has since gone out ol'bu.slness, but the .-‘ll concepts it ernployed and detelop-ed are still tnlld.
On a general-purp-one computer, these concepts would be implemented in soltwa re.

PM‘ MIGIELH HI" l'|>rrIq|r_.\.I|n*\ ‘I _

I60 i Advanced Cmnpmerfirchiteemre

The Symbolics 3-500 executed most Lisp instructions in one machine cyele. integer instructions fetched
operands form the stack buH'er and the duplicate top of the stack in the scratch-pad memory. Floating-point
addition, garbage collection, data type checking by the tag processor, and fixed-point addition could be
carried out in parallel.

MEMORY HIERARCHYTECHNOLDGY

— 1n a typical computer configuration, the cost of memory, disks. printers, and other peripherals
often exceeds that of the processors. We briefly introduce below the memory hierarchy and

peripheral technology.

4.3.1 Hierarchical l"Iemc|ryTechnology
Storage devices such as regr'sIer.s', caches, main memor_\-', disk detrrlres, and brrehrp smroge areofien organized
as a hierarchy as depicted in Fig. 4.1T. The memory technology and storage organization at each level are
characterized by five parameters: the access time (I,-1, mcmmj-' Sift.’ {sl-1, ms! per fJ__t-'I£' (cl-1, mrmsfer brerdwidrh
(_b,-), and uni! qf'n'¢m.g,r"er -['_x,f|.

The access time 1] refers to the round-trip time from the CPU to the ith-level memory. The memory sin: s,-
is the number ofbytes or words in level r‘. The cost ofthe ith-level memory is estimated by the product -:-ls,-.
The bandwidth bi refers to the rate at which information is transferred between adjacent levels. The unit of
tran!-rfcr.1'; refers to the grain size for data transfer bctwoen levels i and r' + 1.

StemRag
'-‘W ° m cau

ncreaseIncapacityandaccesstme

ncreaaencostpa-rbtt

Cache
'-°"’“‘ 1 [sRAI'u'lsf|

Mr-in Memory
LN‘ 2 rename; -

Dlsk Storage
'-°“*' 3 [Sorta-state, Magnetic]

Backup Storage
[Magmtlc Tap-as, Optical Disks]

r-— has —-4
FIg.4.1'i' A four-ietrel memory hierardgv with increasing capacity and decreasing speed and cost from law to

high tenets

Levant

I

Prucesscrs and Memory HiB'l.'NZ! T |g|

Memory devices at a lower level are faster to access, smaller in size, and more expensive per byte, having
a higher bandwidth and using a smaller unit oftransfer as compared with those at a higher lcvel. ln other
words, we have r,- I <1 I,-, s,- , *1 s,-, e, | > r,-, fr, , Ir b,-, and x,- | fix,-, for r‘ = l, 2, 3,and 4, in the hierarchy where
r'= O corresponds to the CPU register level. The cache is at level 1, main memory at level 2, the disks at level
3, and backup storage at level 4. The physical memory design and operations of these levels are studied in
subsequent sections and in Chapter S.

Register: and Cache: The registers are parts ofthe processor: multi-level caches are built either on the
processor chip or on tl1e processor board. Register assignment is made by the compiler. Register transfer
operations are directly controlled by the processor after instr|.|ctions are decoded. Register transfer is
conducted at procr:-'.-sor speed, in one clock cycle.

Therefore, many designers would not consider registers a level of memory. We list them here for
comparison purposes. The cache is controlled by the MMU and is programmer-transparent. The cache can
also be implemented at one or multiple levels, depending on the speed and application requirements. Over
the last two or three deca|:les, processor speeds have increased at a much faster rate than memory speeds.
Therefore multi-level cache systems have become essential to deal with memory access latency.

Nloin Memory The main memory is sometimes callod the primary memory ofa computer system. It is
usually much larger than the cache and oflcn implemented by the most cost-effective RAM chips, such as
DDR SDR.-‘\Ms, i.e. dual data rate synchronous dynamic RAMs. The main memory is managed by a MMU
in cooperation with the operating system.

Disk Drive: oar-d Boclrup Storage The disk storage is considered the highest level of on-line memory.
lt holds the system programs such as the OS and compilers, and user programs and their daia sets. Optical
disks and magnetic tape units are off-line memory for use as archival and backup storage. They hold copies
of present and past user programs and processed results and files. Disk drives are also available in the form
of R.-‘KID arrays.

A typical workstation computer has the cache and main memory on a processor board and hard disks
in an attached disk drive. Table 4.? presents representative values of memory parameters for a typical
33-bit mainframe computer built in 1993. Since the time, there has been one or two orders of magnitude
improvement in most parameters, as we shall see in Chapter 13.

Pcripfieml Technology Besides disk drives and backup storage, peripheral devices include printers,
plotters, terminals, monitors, graphics displays, optical scanners, image digitizers, output microfilm devices,
etc. Some l-“O devices are tied to special-purpose or multimedia applications.

The technology of peripheral devices has improved rapidly in recent years. For example, we used dot-
matrix primers in the past. Now, as laser printers become affordable and popular, in-house publishing
becomes a reality. The high demand for multimedia HO such as image, speech, video, and music has resulted
in further advances in IIO technology.

4.3.1 Inclusion, Coherence, and Locality
Information stored in a memory hierarchy |[’_M|, M3,..., M") satisfies three important properties: r'ne!rrsr7r;-rr,
mlrererrce, and !oem'r"r__\'as illustrated in Fig. 4.18. We consider cache memory the innermost level M|,which
directly communicates with the CPU registers. The outermost level .-id" contains all the information words
stored. In fact, the collection ofall addressable words in rid” forms the virtual address space of a computer.
Program and data locality is characterized below as the foundation for using a memory hierarchy effect ively.

rm‘ MIGIELH Hf" l'm'rIq|r_.\.I|n*\ ‘I _

I61 i Advanced Cmnptmerfirchiteetum

Table 4.7 Memory Characteristic of'eTyptcuJH|ain]"mme Computer tn 1993

Memory level Level U Level I Lew: 2 Level 3 Level 4
Characteristics CPU Cache Main Dirk Tyne

Registers tl-femu.r}' Storage Storage

Devtee ECL 256K-bit 4M~hit I-(II:-yte 5-Gbyte
technology SR.-\ M DRAM magnetic magnetic

disk unit tape unit
Access ttme,t, lflns 25- 40115 at-tun its 1' I2 20 ms Q 2--20 mitt

{smreh time}
Capaei1y,.r, 5t2 bytes I28 Khytes 5l2 Mbytes 60- 228 SI2 Gbytes--
(_i11l:|ytes} (lb-ytes 2 Tbytes
Cost, e, lB,tH]ID 72 5.15 0.23 t]I.t]Il
{i11eents.PKB)
llandwidflt, 40-n-sen 250 400 so- |33 3 5 0.1 s 41.23
s, rm Mn.-st

' um of titan.-.t 32 bytes o.§- | Kbyresu 5 5 |2 Khytes Backup
transfer, x, per word per block per page per file storage
.-‘slid-cation Compiler Hardware Operating Operating Operating
management amigra-nertt control system system.-‘user systermttser

Inclusion Property The indusion pmperttj-' is stated as M, -1: .-‘L-fl <: M3 -1: -1: .-‘L-f,,. The inclusion
relationship implies that all information items are originally stored in the outermost level M". During the
processing, subsets ofM,, are copied into M" |. Similarly, subsets of.-ii, | are copied into .-l£,.;, and so on.

ln other words, ifan inlbrmation word is found in M,-, then eopies ofthe same word can also be found in
all upper levels .'l:|',-H, ll-f,-+3, ..., .'l:|',, However, a word stored in ilt’,-+| may not be fotmd in M,-. A word miss
in M; implies that it is also missing from all lower levels .-id} |, .-l-f,- 1, ..., M]. The highest level is the backup
storage, where everything can be fotmd.

Information transfer between the CPU and cache is in terms of it'om’s (4 or B bytes each depending on
the word length of a machine). The eache (Ml) is divided into eache bIoe.l:.s', also called eache Hmrs by some
authors. Each block may be typically 32 bytes {B words]. Blocks (such as ‘“'a“ and ‘“b“ in Fig. 4.18} are thc
units ofdata trans fer between the cac he and main memory, or between L| and L3 eache, etc.

The main memory (M3) is divided into pages, say, -1 Kbytes each. Each page contains 128 blocks for the
esample in Fig. 4.18. Pages are the Lmits of information trartsterred between disk and main memory.

Scattered pages are organized as a segment in the disk memory, for example, segment F contains page.-it,
page B, and other pages. The size ofa segment varies depending on the u.ser‘s needs. Data transfer between
the disk and backup storage is handled at the file level, such as segments F and G illustrated in Fig. 4.18.
Collatrence Property The r-ohemnee propert__\-' requires that copies of the information item at
sueeessive memory levels be consistent. lfa word is modified in the cache, copies ofthat word must be updated
immediately or eventually at all higher levels. The hierarchy should be maintained as such. Frequently used
information is often fbtmd in the lower levels in order to minimize thc effective access time ofthe memory
hierarchy. ln general, there are two strategies tor maintaining the coherence in a memory hierarchy.

H‘-r Meliruw HJ'lIr'|-rr.-pr.-.-|-rt _
Ptueesscrs endfldemoty Hier ..i- N3

CPU

Registers 1.Aeeees by word [4 Bytes}
from a cache Mock of
32 Bytes, sueh as block a.

IIII
M1: IIE

(Cache) I'll 2. Aeeees by block
- [32 Bytes] from a memory

page of 32 bio-ekzs or
1 KBytee, sueh as block it
from pagefl.

HIIIEI %I U U

[Main Mernory] 1 I
a Iii

Page!‘ 3-.Aecessby-page
[1 Kflytesi from a file
consisting of many

' pages, sueh as page
M. .__ _ _ _ _ _ __ Aandpagefi-in

3' Segment 5°'Q~m'9“t G segment F.[Diek5te1age] qfl

V
4. Segment transfer

with different
. . . number of pages.

_ _ _ _ _ _ _ _ _ _. M4: Magnetic Tape Unit
sarlfi: [Baczltup Stoe]

,6
Fig. -L18 The tnelttslon property an-cl chra cransfers between acljacent levels ofa memory hlerardsy

The first method is called write-through (WT), which demands immediate update in M,-+| if a word is
modified in.-‘vi,-,fori= 1,2, , n— 1.

The second method is write-bodr (WE), which delays the update in M,-+| until the word being modified in
M} is replaced or removed from M,-. Memory replacement policies are studied in Section 4.4.3.

Locality of Reference: The memory hierarchy was developed based on a program behavior known as
)'oeal'iI_1-'ofrefi.’rener's. Memory references are generated by the CPU for either instruction or data access.
These accesses tend to be clustered in certain regions in time, space, and ordering.

In other words, most programs act in favor ofa certain portion of their address space during any time
window. l-Iennessy and Patterson {199[l_) have pointed out a 90-lll rule which states that a typical program
may spend 90% ofits execution time on only 10% ofthe code such as the innermo st loop ofartested looping
operation .

FM Mefiruw Hill r‘ m Z. | .q|r_.u||rs V

I64 i Adu\wrcadCmr1pmerA.rehiteczure

There are three dimerts ions ofthe locality property: rerrlpomf. spatial, anrl sr.'qIuenrfnI. During the lifetime
of a sofhvare process, a n|.|mber ofpages are used dynamically. The references to these pages vary from time
to time; however, thcy follow certain access pattems as illustrated in Fig. 4.19. These memory reference
patterns are caused by the following locality properties:

I Vllttld
aclchas‘moo
{P199 number)Fa t
F% "A. 9%

[raj ._-=.j;':--'"-=;.; -2-_._j-=.j :' 1- .-j ' "-4.5: .j -"I

' ' I-

_ ‘Hm:

1
J"

-1-
Hg.-1.1! Memory reference patterns In typical pro-grarn trace experlm-u11:s. wlu-e rqlons ta]. {ta}. and {c} are

genuaued with the execution ofchree sofnuare processes

-['1] Rmrpomi Iaeafirt-'—Rocently' referenced items 1' instructions or dataj are lilrely to be referenced again
in the near future. This is ofien caused by special program constructs such as iterative loops, process
stacks, temporary variables, or subroutines. Clncc a loop is entered or a subroutine is called, a small
oode segment will be referenced repeatedly n1any times. Thus temporal locality tends to cluster the
access in the reoently used areas.

(2) Sparta! faeafn}-—This refers to the tendency for a process to access items whose addresses are near
one another. For example, operations on tables or arrays involve accesses ofa certain clustered area
in the address space. Program segments, such as routines and macros, tend to be stored in the same
neighborhood ofthe memory space.

('3) .'5-'eqr.1-enniaf E0eaIr'r_v—ln typical programs, the execution of instructions follows a sequential order (or
the program order] unless branch instructions create out-of-order executions. The ratio of in-order
rxecution to out-of-order eltecution is roughly 5 to I in ordinary programs. Besides, the access ofa
large data array also follows a sequential order.

Memory Design Implications The sequentiality in program behavior also contributes to the spatial
locality because sequentially coded instructions and array elements are often stored in adjacent locations.
Each type of locality affects the design of the memory hierarchy.

Prucesscrs end Memory HiB'l.'NZ! i N5

The temporal locality leads to the popularity ofthe lens‘! recenr{*1rsed{'LRU] replacement algorithm, to be
defined in Section 4.4.3. The spatial locality assists us in d-r:tcrrn.i.n.ir1g the size of unit data transfers between
adjacent memory levels. The temporal locality also helps determine the size of memory at successive levels.

The sequential locality affects the determination of grain size for optimal scheduling (grain packing].
Preferch techniques are heavily afiected by the locality properties. The principle of localities guides the
design ofcache, main memory, and even virtual memory organization.

The Working Sets Figure 4.19 shows the memory reference patterns of three running programs or three
software processes. As a fianctien of time, the virtual address space (identified by page numbers) is clustered
into regions due to the locality of references. The subset of addresses {or pages) referenced within a given
time window (I, I + air) is called the n-writing set by Denning -[1968].

During the execution of a program, the working set changes slowly and maintains a certain degree
of continuity as demonstrated in Fig. 4.19. This implies that the working set is oficn accumulated at the
innermost [lowest] level such as the cache in the memory hierarchy. This will reduce the effective memory-
access time with a higher hit ratio at the lowest memory level. The time window Ar is a critical parameter set
by the CIS kemel which affects the size ofthe working set and thus the desired cache size.

4.3.3 Memory Capacity Planning
The performance of a memory hierarchy is determined by the eflecllve access .Ir'.me I';_.y;;- to any level in the
hierarchy. lt depends on the hit ratios and rrr-c-ess_,ri'eqrrerreitr~r at successive levels. We formally define these
terms below. Then we discuss the issue of how to optimize the capacity of a memory hierarchy subject to a
eost constraint.

Hit Ratios Hit ratio is a concept defined for any two adjacent levels of a memory hierarchy. When an
information item is found in M,-, we call it a hit, otherwise,a rrris'.s'. Consider memory levels .-'lf,- and .-'lf,- | in a
hierarchy, r'= 1, 2,. . ., rr. The hit ratio fr; at M; is the probability that an information item will be found i11 M,
lt is a firnction ofthe characteristics ofthe two adjacent levels 114,- | and The mi.s'.s' ratio at .-‘H, is defined
as 1 — fr,-.

The hit ratios at successive levels are a function ofmemory capacities, management policies, and program
behavior. Successive hit ratios are independent random variables with values between D and 1. To simplify
the firture derivation, we assume fry = ll and Fr" = 1, which means the C PU always accesses lid, first and the
access to the outermost memory .~'ld,, is always a hit.

The ar;'ees.s'_frz'quene_\-' to i'l»:!,- is defined as]? = (1 — it |]{'] — .373). ..{_ 1- fr; ljfr,-. This is indeed the probability of

successfully aecessing 114,- when there are i — 1 misses at the lower levels and a hit at M-. Note that zit I = 1

and _,f| = hl.
Due to the locality property, the access frequencies dccrea_se very rapidly from low to high levels; that is,

fl I"-b_,fg ‘:9-jy 28> . . . I-l>_;{,. This implies that the inner levels of memory are accessed more often than the outer
levels.

Effective Access 'l"r.rn-r: ln practice, we wish to achieve as high a hit ratio as possible at .-‘I-1|. Every time a
miss occurs, a penalty must be paid to access the next higher level ofmemory. The misses have been called
bieert rrrisses in the cache and prrgefnrrfrs in the main memory because bkrcks and pages are the units of
transfer between these levels.

Par MIGIITLH Hf" l'mrJI||r_.u|n¢\ :

Iii i Advanced Cmnpiioerfirchitscture

The time penalty for a page fault is much longer than that forr a block miss due to the fact that rl <1 1'; <1 I3.
Stone (1990] pointed out that a cache miss is 2 to 4 times as costly as a cache hit, but a page fault is 1000 to
10,000 times as costly as a page hit; but in modem systems a cache miss has a greater co st relative to a cache
hit, because main memory speeds have not increased as fast as processor speed

Using the access frequencies_,r‘} ibr i = 1, 2, n, We can formally define the effective access time of a
memory hierarchy as follows:

Q Z[vJ=
if" -.'."\

=h|I|"'l'1-iii]-l?:F2+{1'}?|ll1'*l72l-5373+ ---+

li]_'h|)(l—h]il---(1—'hrr lilrlf

The first several terms in Eq. 4.3 dominate. Still, the effective access time depends on the pro-grarn behavior
and memory design choices. Only aficrestensiye program trace studies can one estimate the hit ratios and the
value of T1,} more accurately.

Hierurdry Optimization The total cost ofa memory hierarchy is estimated as follows:

Cuial = Z 'r1"S1' 4-4]
1" |

This implies that the cost is distributed overn levels. Since c| '1= t-3 3* e3 11* . .. c,,, we have to ehoose sl <i s3
<1 s3 <1 . .. s,,. The optimal design ofa memory hierarchy should result in a Iii;-close to the I] of .~'l+:!| and a total
cost close to the cost of .-l.-f,,. In reality, this is ciiflicult to achieve due to the tradeoffs among n levels.

The optimization process can be formulated as a linear programming problem, given a ceiling Cu. on the
total oost— that is, a problem to minimize

‘ii :[_~4=3?" J1"= (4.51

subject to the iollowing constraints:

s,-Le 0,1,-P 0 forr'=1, 2,..., n

Cm-ml = E'Ci"5i ‘Q C0 (4-'6]
I I

As shown in Table 4.7, the unit cost c,- and capacity s,- at each level M, depend on the speed r, required.
Therefore, the above optimization int-ioli.-‘es tradeoifs among I,-, c,-, s,, andj} or h,- at all levels 2' = 1, 2, . . ., n.
The following illustrative example shows a typical such tradooff design.

iv)
g Example 4.1 The design of a memory hierarchy
Consider the design of a three-level memory hierarchy with the following specifications for memory
characteristics:

Processcrs and Memory Hi'El'lJ*l!! 9 my

Memcrjy level‘ Access time Capacitjr Cast/Tfbyte

Caelte :1 == 2511s s; " 5l2 Khytes c; =- S012
Main memory :3 -= unlniosvri S3 32 Mbytes ey > £0.02

Disk array :3 -=- 4 ms s3, uni-trtowit cl B 50.00002

The design goal is to achieve an effective memory-access time I = B50 ns with a cache hit ratio In = 0.93
and a hit ratio by = 0.99 in main memory. Also, the total cost of the memory hierarchy is upper-botmdcd by
$1,500. The memory hierarchy cost is calculated as

C:-C'|.S'| ‘hep Sg+£‘_1S3Sl,5'[l'[l {-'-L7]

The maximum capacity of the disk is thus obtained as .93 = 40 Gbytes without exceeding the budget.
Next, we want to choose the access tirne-['r;'j ofthe RAM to build the main memory. The effective memory-

access time is calculated as

f=.fl| f| ‘l"[l _hlHf:-F2 +{i —Pl3:If?3I]£B50

Substituting allknown parameters, we have R50 >< 10 9 = 0.9B>< 25 '>< i0 Q+ 0.02 >< 0.99 XI; +0.02 X 0.01
><1><4><10 3.Thu.sr;= 12501“.

Suppose one wants to double the main memory to 64 Mbytes at the expense ofreducing the disk capacity
under the same budget limit. This change will not affect the cache hit ratio. But it may increase the hit ratio
in the main memory, and thereby, the effective memory-access time will be reduced.

VIRTUAL MEMORYTECHNDLDGY

1 In this section, we introduce two modcls ofvirtual memory. We study address translation
mechanisms and page replacement policies for memory management. Physical memory such

as caches and main memory will be studied in Chapter 5.

4.4.1 Virtual Memory Models
The main memory is considered the ph_v.s'ien)' rrrcrrrorjy in which multiple running programs may reside.
However, the limited-size physical memory cannot load in all programs fully and simultaneously. The \-'r'rnr.n1
rrrcmrrry concept was introduced to alleviate this problem. The idea is to expand the use of the physical
memory among many programs with the help ofan auxiliary [backup] memory such as disk arrays.

Only active programs or portions of them become rcsidcnts ofthe physical memory at one time. Active
portions of programs can be loaded in and out from disk to physical memory dynamically under the
coordination of the operating system. To the users, virtual memory provides almost unbounded memory
space to work with. Without virtual memory, it would have been impossible to develop the multiprogrammcd
cr time-sharing computer systems that are in use today.

Address Space: Each word in the physical memory is identified by a unique]Jfl__lZ€‘ icat‘ ndn'r'ess. All memory
words in the main memory form a ph_vs'icni' ar'r'nt'css space. Firrurrl av-i'r:rtr'e.sse.s' are those usod by machine
instructions making up an exec utablc program.

Par MIGIITLH Hf" l'mrJI||r_.u|r¢\ :

I65 i Advanced Cmnprreerfirchitsctmre

The virtual addresses must be translated into physical addresses at run time. A system of translation tables
and mapping functions are used in this process. The address translation and memory management policies
are ai'Ter_'ted by thc virtual memory model used and by the organization ofthe disk and ofthe main memory.

The use of virtual memory facilitates sharing of the main memory by many software processes on a
dynamic basis. [t also iacilitatcs software portability and allows users to execute programs requiring much
more memory than the available physical memory.

Only the active portions of running programs are brought into the main memory. This permits the
relocation of code and data, makes it possible to implement protection in the OS kernel, and allows high-
level optimization ofmemory allocation and management.

Address Mapping Let l-" be the set of virtual addresses generated by a program rtrrrning on a processor.
Let M be the set of physical addresses allocated to n.|n this program. A virtual memory system demands an
automatic mechanism to implemem the following mapping:

f}: V-3 JHKJ fill} -['49]

This mapping isatime function which varies fromtime to time because thephysical memory isdy nam ically
allocated and deallocated. Consider any virtual address v E I-". The mapping jfl is formally defined as follows;

Im, if m E M has been allocated to store the
y;(;r) = { data identified by virtual address tr (4 1{]]

lei, if data 1| is missing in M

In other words, the mapping _f;(i-'1 uniquely translates the virtual address 1-' into aphys ical address m ifthere
is a memorj-' hi! in M. When there is a rnemory miss, tl1e value ret1rrrred,_f}(t-'] = ¢|, signals that the reiercnced
item {instruction or data] has not been brought into the main memory at the time of reference.

The efficiency of the address translation process affects the performance of the virtual memory. Vmual
memory is more diffieult to implement in a multiprocessor, where additional problems such as coherence,
protection, and consistency become more challenging. Two virtual memory models are discussed below.

Private Virtual Memory The first model uses 51 private virrrrnf .|'fl£".|'flt'll"].-‘ sprrrc associated with each
processor, as was seen in the ‘v'AX.-‘ll and in most UNIX systems (Fig. -tl.20aj. Each private virtual space is
divided into pages. Virtual pages from diifcrent virtual spaces are mapped into the same physical memory
shared by all processors.

The advantages of using private virtual memory include the use ofa small processor address space -[32
bits], protection on each page or on a per-process basis, and the use ofprivate memory maps, which require
no locking.

Tire shortcoming lies in the syrrorrrrrrr probierrr, in which diifcrent virtual addresses in different virtual
spaces point to the same physical page.

Shared Virtual Nlemory This model combines all the virtual address spaces into a single globally starred
virruni space (Fig. 4.20b). Each processor is given a portion of tl'|c shared virtual memory to declare their
addresses. Dificrent processors may use disjoint spaces. Some areas of virtual space can be also shared by
multiple processors.

Prucesstrs end Memory Hl'El'0lZ! i 1 my

Examp les ofmaehines using shared virtual memory includethe IB Mfitll, RT, RP3, System3B,the HP Spectrum,
the Stanford Dash, MIT Alewi fe_ Tera,etc. We will further study virtual memory in Chapter 9. Until then, all
virtual memory systems discussed are assumed private unless otherwise specified.

Virtual spam
Physical

Physical Memory Memory

. (P399 P1 . -Vrrtud spaoe frames] Virtual space spam ~a\\a\t~\\m~ra~
of processor 1 m\\“,m,m. of processor 2 &\\g._\\\\&_“

i- Sm,\aara.~us~as:~ ’m’*‘*‘~“*‘\“‘ '1 I shared s\\\\s\k~R\\‘&' gpagg _"ac W — “MW tmmmmmi at»\~a~aasm=- *~‘~*‘~““*** T ts“\'Q\‘@\\\\.'\\§\'
- ms‘-uaaxmsxu-'

E r__

[a] Private virtual memory space in different processors [tr] Globally shared virtual meme-ry space

Flg.4.20 Two virtual rnemnry mods-is for nurlrlruroeess-err systnerns {Courtesy of Dob-oi: and Briggs. tutorial.
A.r1rsraJS}v1'rp-uslrln on Cornpr.rterArcl1ltecture.1990]

The advantages in using shared virtual memory include the fact that all addresses are unique. However,
caeh processor must be allowed to generate addresses larger than 32 bits, such as 46 bits for a 64 Tbyte (2%
byte] address space. Synonyms are not allowed in a globally shared virtual memory.

The page table must allow shared accesses. Therefore, mrrnurl exdrrsion {locking} is needed to enibroe
protected access. Segmentation is built on top of the paging system to confine each process to its own address
space (segments). Global virtual memory make may the address translation process longer.

4.4.1 TLB, Paging, and Segmentation
Both the virtual memory and physical memory are partitioned into fixed-length pages as illustrated in
Fig. 4. IE. The purpose of memory allocation is to allocate pages ofvirtual memory to the pogejrrrrrres ofthe
physical memory.

Addren Translation Mechanism: The process demands the translation ofvirtual addresses into physical
addresses. Various schemes for virtual address translation are surnmarized in Fig. 4.21:1. The translation
demands the use ofrransferion maps which can be implemented in various ways.

Translation maps are stored in the eache, in associative memory, or in the main memory. To aeccss these
maps, a mapping function is applied to the virtual address. This firnetion generates a pointer to the desired
translation map. This mapping can be implemented with a hrrsffing oreongruenee firncfion.

Hashing is a simple computer technique for converting a long page number into a short one with fewer
bits. The hashing function should randomize the virtual page number and produce a unique bashed number
to be used as the pointer.

ITO P Admlrtcad Compuraerfirrrhitecmre

lllflliilfll PCil'lfiiB'l'
addrress Mails weal ms

l ect nvert ~
Maaping Mapping

Hashing Congruenoe
TLB

[,pq"(;] One luiu1ti- Assoclatiuelflvelifld
level PT level PT PT PT

la] Vinual addrress translation schemes [PT = page table]

 Page Fault

{hill . _ _ _l-;' E§{"§_ _ _ Page frame

Page frame

Virtualaddressl Page j Bio-clr | Word]

[Page | am i Word]Pi-ryscial address
[ti] Use of a TLB and PTs for address translation

r 2a
0 Phrasal address
1 5°“

15
Begum Regmers Segnent ID Virtual address

[cl inverted address mapping

Fig.1l.11 Address tr-arnsdarlon nndtmisns usingaTLBand variois for-rns cf page cabins

Translation Lookasidn Buffirr Translation maps appear in the form of a rrrirlslarion lookasride bufr‘2-r
(TLB) and page tables {PTs_). Based on the principle of locality in memory references, a parlieular tv0.r'll:ing
ser of pages referenced within a given context or time window.

The TLB is a high-speed lookup table which stores the most recently or likely referenced page entries.
Apnge errrrjv consists ofessentially a {virtual page number; page frame number] pair. It is hoped that pages
belonging to the same working set will be directly translated using the TLB entries.

The use of a TLB and P'T.s for address translation is shown in Fig 4.2 lb. Each virtual address is divided
into three fields: The leftmost field holds the virtual page number, the middle field identifies the eache block
number, and the rightmost field is the rvord ridrfress within the block.

Our purpose is to pr-oduee the physical address consisting of the page frame number, the block number,
and the word address. The first step of the translation is to use the virtual page number as a key to search

Prucesstrs and Memory HlB'l.'NZ! i |-H

through the TLB for a match. The TLB cart be implemented with a special associative memory (content-
addressable memory) or use part of the cache memory.

ln case of a match {a lair] in the TLB, the page frame number is retrieved from the matched page entry.
The cache block and word address are copied directly. ln case the match cannot be found (a miss] in the
TLB, a hashed pointer is used to identify one ofthe page tables where the desired page liame number can
be retrieved.

Paged Memory Paging isa technique for partitioning both the physical memory and virtual memory into
fixed-size pages. Exchange of infommtion between them is conducted at the page level as described before.
Page tables are used to map between pages and page frames. These tables are implemented in the main
memory upon creation of user processes. Since many userprocesses may be created dynamically, the number
of PTs maintained in the main memory can be very large. The page fable entries (PTE!-;] are similar to the
TLB entries, containing essentially {virtual page, page iramej address pairs.

Note that both TLB entries and PTEs need to be dynamically updated to reflect the latest memory reference
history. Only “snapshots” ofthe history are maintained in these translation maps.

lf the demanded page cannot be found in the FT, a page fiirrlr is declared. A page fault implies that
the referenced page is not resident in the main memory. When a page fault occurs, the running process is
suspended. A erJnrexr‘.s'n'iIeir is made to another ready-to-run process while the missing page is transferred
from the disk ortape unit to the physical memory.

With advances in processor design and VLSI technology, very sophisticated memory management
schemes can be provided on the processorchip, and even fi.|ll 64 bit address space can be provided. We shall
review some ofthesc recent advances in Chapter 13.

Segmented Memory A large number of pages can be shared by segmenting the virtual address space
among multiple userprograms simultaneous ly. Asegmem ofscattercd pages is formed logically in the virtual
memory space. Segrnents are defined by users in order to declare a portion of the virtual address space.

In a segmerrrea‘ rrrernorjl-' -s_t-‘stern, user programs can be logically structured as segrnerrrs. Segments can
invoke each other Unlike pages, segments cart have variable lengths. The management of a segmented
memory system is much more complex due to the nonuniform segment size.

Segments are a user-oriented concept, providing logical structures of programs and data in the virtual
address space. On the other hand, paging iiicilitates the management ofphysical memory. ln a paged system,
all page addresses form a linear address space within the virtual space.

The segmented memory is arranged as a two-dimensional address space. Each virtual address in this space
has a prefix. field called the se'gmerr! number and a postfix field called the offset within the segment. The afist-r
addresses within each segment ibrm one dimension ofthe contiguous addresses. The segment numbers, not
necessarily contiguous to each other, ibrm the second dimension ofthe address space.

Pager! Segment: The above two concepts of paging and segmentation can be combined to implement a
type of virtual memory with pager! segmems. W'itl'lin each segment, the addresses are divided into fixed-size
pages. Each virtual address is thus divided into three fields. The upper field is the segment‘ nrrmixrr, the middle
one is the page rrurrrber, and the lower one is the ojrser within each page.

Paged scgmems olfer the advantages ofboth paged memory and segmented memory. For users, program
files can be better logically structured. For the US, the virtual memory can be systematically managed with

re» Aleliruw um r-...t<-mtttm '
ITI i _ Advanced Cempuraerfirehiteeture

fixed-size pages within each segment. Tradeoffs do exist among the sizes of the segment field, the page field.
and the offset field. This sets lirnits on the number of segrnents that can be declared by users, the segment size
[the number ofpagcs within each segment), and the page size.

Inverted Paging The direct paging described above v.-irirlirs well with a small virtual address space such as
32 bits. ln modern computers, the virtual address is large, such as 52 bits in the IBM RS-‘-ISOOCI or even 6-'-1 bits
i11 some processors. A large virtual address space demands either large PTs or multilevel direct paging which
will slow down thc. address translation process and thus lower the performance.

Besides direct mapping, address translation maps cart also be implemented with inverted mapping (Fig.
4.2!c). An inverted page mhle is created tor each page frame that has been allocated to users. Any virtual
page number can be paired with a given physical page number.

Inverted page tables are accessed either by an associative search or by the use ofa hashing fitnetion. The
IBM 801 prototype and subsequently the IBM RTi"PC have implemented inverted mapping tbr page address
translation. ln using an inverted PT, only virtual pages that are currently resident in physical memory are
included. This provides a significant reduction in the size of the page tables.

The generation of a long virtual address from a short physical address is done with the help of segment
registers, as demonstrated in Fig. 4.21e. Thc leading 4 bits {denoted sreg) ot'a32-bit address name a segment
register. The register provides a segment id that replaces the -‘J-bit sreg to form a long virtt.|al address.

This effectively creates a single long virtual address space with segment boundaries at multiples of
E6 Mbytes {Z33 bytes). The IBM RT.-"PC had a 13-bit segment id (-'-‘l-O96 segments) and a4'[l-bit virtual address
space.

Either associative page tables or inverted page tables can he used to implemem inverted mapping. The
inverted page table can also be assisted with the use ofa TLB. An inverted PT avoids the use ofa large page
table or a sequence of page tables.

Given a virtual address to be translated, the hardware searches the inverted PT for that address and, ifit
is tbtmd, uses the table index ofthe matching entry as the address ofthe desired page ltame. A hashing table
is used to search through the inverted PT. Thc size of an inverted PT is governed by the size ofthe physical
space, while that oftraditional PTs is determined by tl'|e size ofthe virtual space. Because of limited physical
space, no multiple levels are needed for the inverted page table.

I»)
égl Example 4.8 Paging and segmentation in the Intel i486

processor
As with its predecessor in the 2:86 family, the i486 features both segmentation and paging capabilities.
Protected mode increases the linear address from -‘ll Gbytes {Z32 bytes) to 64 Tl'1ytes{2* bytes) with four
levels ofprtitection. The maximal memory size in real mode is 1 Mbyte {'23} bytes). Protected mode allows
the i486 to run all software from existing 8036, 80236, and S0386 processors. A segment can have arty length
from l byte to 4 Gbytes, the ITl.l:L‘tlI1'll.lITl physical memory size.

A segment can start at any base address, and storage overlapping between segments is allowed. The virtual
address (Fig. 4.22a) has a lti-bit segrnem selector to determine the base address ofthe Iinenr .r1rt‘dre.s'.s' .s'_p.r1ee
to be used with thc i4B-6 paging system.

Fr-r Mn: Grow Hi'lir'=>-mt.--t..»-. _
fiueessu'srmdMemeiryHier —.- "3

Virtual .Pttt!ldi'B'5S Phygicai iilqjdmgg

—
15 O

sitsn 435“ CPU
see‘ZAddress
_Merrnry Operand

Fag“ _Pastel Pram
Seqrnortt descriptor aeictress

[a] Segmentation to produce the linear address

J!
ss

Linear Address £32 flames:

o rn as M

—
Papdireetory

[bl The TLB

Physieat
emery

10

asCe o 1cs I— P”st“ pstwm
Control Registers Directory

Fig.4}! Paging and seg|'nert1a1:ie.n mechanilsrns brie intro the Intel H36 CPU {Cetrnssy ef Intel Corporation,
rm]

tjc) A two-level paging sehorne

operations

31 22 12 O Physlcm
LinearMm, 1, "maL I

“P” — °l3‘ ° — ° _ —

Fr‘:-r Meflruw rrrrir-...t<-,..t,t.¢. '
IT4 i Adverrrced Cnmprioerfitrehitnetore

The 32-bit offset specifics the internal address within a segment The segment descriptor is used to specify
aeeess rights and segrnent size besides selection of the address of thc first byte ofthe segment.

The paging feature is optional on the i486. lt can be enabled ordisabled by software eontrol. When paging
is enabled, the virtrral address is first translated into a linear address and then into the physical address.
When paging is disabled, the linear address and physical address are identical. When a 4-Gbyte segment is
selected, tl're entire physical memory becomes one large segment, which means the segmentation mechanism
is essentially disabled.

ln this sense, the i486 can be used with four different memory organizations, pure paging, pure
.segmenrnrrInn, segnrenredpnging, orprrre_rJIr_1rsr7r"ni rmhiressirrg without paging and segmentation.

.-R32-entry TLB (Fig 4.22b) is used to convert the linear address directly into the physical address without
resorting to the two -level paging scheme {Fig 4.22c). The standard page size on the i486 is 4 Kbytes =
In bytes. Fourcontrol registers are nsed to select between regular paging and page fault handling.

The page table directory {:4 Kbytes) allows 1024 page directory entries. Each page table at the second level
is 4 Kbytes and holds up to 1034 PTE s. The upper 20 linear address bits are compared to determine ifthere is
a hit. Tl:re hit ratios of the TLB and of the page tables depend on program behavior and the efiieicncy of the
update {page replacement) policies. A 98% hit ratio has been observed in TLB operations.

Advanced memory management functions. to support virtual memory implementation, were first
introduced in Intel's x86 processor family with the B0386 processor Key feattncs of the E0456 memory
management scheme described here were carried forward in the Pentium family of processors.

4.4.3 Memory Replacement Policies
Memory management policies include the allocation and deallocation of memory pages to active processes
and the replacement of memory pages. We will study allocation and deallocation problems in Section 5.3.3
after we discuss rnain memory organization in Section 5.3.1.

ln this section, we study page replacement schemes which are implemented with demand paging memory
systems. Page repineemeflt refers to the process in which a resident page in main memory is replaced by a
new page transferred from the disk.

Since the number of available page frames is much smaller than the number of pages, the frames will
eventually be fi.|lly occupied [n order to accommodate a new page, oneofthe resident pages mr.r.st be replaced.
Different policies have been suggested for page replacement "these policies are specified and compared
below.

The goal ofa page replacement policy is to minimize the number of possible page faults so that the
effective memory-access time can be reduced. The effectiveness of a replacement algorithm depends on the
program behavior and memory lraffic patterns encountered. A good policy should match the program locality
property. The policy is also affected by page size and by the number ofavailablc fi'ames.

Page Truce: To analyze the performance ofa paging memory system, page trace experiments are often
performed. Aprnge rrnee is a sequence ofpngefrnnre nunrbers { PFNs) generated during the execution of a
given program. To simplify thc analysis, we ignore the cache effect.

Each P1-'N corresponds to the prefix portion of a physical memory address. By tracing the successive PFNs
in a page trace against the resident page numbers in the page frames, one can determine the occurrence of

fiuoessws end Memory Hi'El'0lZ! .i. "5

page hits or of page faults. Clfcoursc, when all thc page frames are takcrr, a certain replacement policy must
bc applied to swap the pages. A page trace experiment can be performed to determine the hit ratio of the
paging memory system. A similar idea can also bc applied to perform block traces on cache behavior

Considerapagc trace Pin] = r(_l]r\(2] rtfn] consisting ofn PFNsrcque.sted in discrete time from 1 to rt,
where r(r] is the PFN requested at time r. We define two reference distances between the repeated occurrences
of thc same page in P{n_'].

Thcfom-'rrrn‘ rfistrrnccf, {xj for page x is the number oftime slots from time I to the first repeated reference
of pagcx in the future:

Ik, ifk is thc smallest integer such that
_f;(x)={ r{I+k)=r(I]=.1'inP{n] (4.11)

loo, if .1" docs not reappear in P(_n] beyond time I

Similarly, we define a btrcim-trrrr’ rfismnec b,{x) as the number oftimc slots from time I to thc most recent
reference ofpagcx in thc past:

Ir, if t is the smallest integer such that
b,{x'j= { r(_r—k)=r{I_]=xin P(n) (4.121

lw, if x never appeared in Pfn) in the past
Let RH) be the resident set of all pages residing in main memory at time I. Let q(.|!] be the page to be

replaced from R{_r) when a page fault occurs at time I.

Page Replacement Policies The following page replacement policies are specified in a demand paging
memory system fora page fault at time r.

-[1] Least recerrrft-' used {LRU l—This policy replaces thc page in RU] which has thc longest backward
distance:

4(1) =_1-. ifi" an-1= rem: (4.131
(Zj Qrrtirnal -['ClPTj r:rIgorr'rhm—This policy replaces the page in Rf!) with the longest forward distance:

an =_»-. re .15 to = _gg,g;, tn on <4. 141
{3} Firs!-r'n-_firsr-orrr (F[FCI'j—This policy replaces thc page in Rf!) which has been in memory for the

longest time.
{4} l.ecrsIji'r.*quent{1-' rrsed (LFU)—This policy replaoes thc page in R{r] which has been least referenced in

thc past.
{5} Cirerdar FIFO—This policy joins all thc page frame entries into a circular FIFO queue using a pointer

to indicate thc front ofthe queue. An afloerrrfion bit is associated with each page frame. This bit is set
upon initial allocation ofa page to thc frame.
‘When a page fault occurs, the queue is circularly scanned from the pointer position. The pointer skips
thc allocated page frames and replaces thc very first unallocated page frame. When all fi'amcs arc
allocated, the front ofthe queue is replaced, as in the FIFO policy.

{6} Random repr'aeemcnr—This is a triv ial algorithm which chooses any page for replacement randomly.

.
I75 i Advanced Cmnpmerfirrhitecmre

5*)
Consider apaged virtual memory system with a two-level hierarchy: main memory M, and disk memory 1143.
Forelarity ofillustration, assume a page sizeof four words. The number ofpage frames in .-itfl is 3, labeled .n,
in and e; and the number ofpages in .-‘H3 is 10, identified by t), 1, 2, . ,., 9, The ith page in EH2 consists ofword
addresses 4ito 4r'+ 3 ibrall i= 0,1, 2, ...,9.

A certain program generates thc following sequence of word addresses which are grouped {underlined}
together ifthey belong to the same page. The sequence of‘ page numbers so formed is the page rrnee:

Example 4.9 Page tracing experiments and interpretation
of results

W-nrdtrxg: 0,1 ,2,3, 4, 5,6,3, B, 16,13, 9,1C|__i1, 12, 2B,29,3{3, B,9,l{l, 4, 5, 12, 4,5
l i l i l i i L i l 1

Page trace: {II 1 2 4 Z 3 T Z 1 3 1

Page tracing experiments are described below for three page replacement policies: LRU, OPT, and FIFO,
respectively. The successive pages loaded in the page iiames {PFs) form the trace entries. Initially, all PFs
are empty.

PF D I 2 4 2 3 TI‘ 2 3 Hit Ratio

¢.r CI D D

B I I
LRU

e 2

Faults "' ' "' Ihltuhu

4

I

2

4

3

2
I

T

3

2
1

7

3

2

T

I

2
I II\J1LH

3

I

2
3

u G IS

ll\.'|—I=1

B I
OPT

e

_Fault _ ' A*_'__> II\JI—J-‘n

4

I

2

3

I

2
I

1‘
I

2
I

T

I

2

1'

I

2
II\.'lI—LaJ

3

I

2
4

a Ci D D

B I I
FIFO

r: 2

Fnuits ' ' ' Il'\JI—|F|

4

I

2

4

3

2
I

4

3

3'

2

I

T
I"--l—|\J ILA-lI—I\.'l

2

I

3
2

The above results indicate the superiority of the OPT policy over the others. I-Iowever, the OPT cannot
be implemented in practice. The LRU policy performs better than the FIFO due to the locality ofreferences.
From these results, we realize that the LRU is generally bctterthan the Fl FCI. However, exceptions still exist
due to the dependence on program behavior.

Relative Performance The performance of a page replacement algorithm depends on the page trace
(program behavior) encountered. The best policy is the CIPT algorithm. However, the CIPT replacement is
not realizable because no one can predict the fi.|ture page demand in a program.

Processors and Memory Hieraw! F "T

The LRU algorithm is a popularpolicy and ofien results in a high hit ratio. The FIFO and random policies
may peribrm badly bcoiuse of violation of the program locality.

The circular FIFO policy attempts to approximate the LRU with a simple circular queue implementation.
The LFU policy may perform between the LRU and the FIFO policies. liowever, there is no fixed superiority
ofany policy over the others because ofthe dependence on program behaviorand ru n-time status ofthe page
frames.

In general, the page fault rate is a monotonic decreasing fturction of the size ofthe resident set Riri at time
r because more resident pages result in a higher hit ratio in the main memory.

Bio-clr Replacement pofi-cie: The relationship between the cac he block frames and cache bloclts is similar
to that between page Frames and pages on a disk. Therefore, those page rcplaccmcnt policies can be modified
ibr bl'oe.lr repiocermrnr when a cache miss occurs.

Dilferent cache organizations [Section 5. I} may offer different fiexihilities in implementing some of the
block replacement algorithms. The cache memory is oilen associatively searched, while thc main memory is
randomly addressed.

Dueto thedificrcnce between page allocation in main memory and block allocation in the cache, the cache
hit ratio and memory page hit ratio are aflected by the rep lacemcnt policies differently. Cache rroees are often
needed to evaluate the cache performance. These considerations will be further discussed in Chapter 5.

Summary~ii\‘~
One way to define the design space of processors is in terms of the processor clock rate and the average
cycles per irtstruction {CPI}. Depending on the intended applications, different proce.ssors—which may
even be of the same procasor family—may occupy different positions within this design space.The
processor instruction set may be complex or reduced—and accordingly these two types ofprocasors
occupy diiierent regions of the design space of clock rate versus CPL

For higher periorntancmprocessor designs have evolved to supe rscalar processors in one directiomand
vector processors in the other. A superscalar processor can schedule two or more machine irstructiorrs
througi the instruction pipeline in a single clock cycle. Host sequential programs.vvhen translated into
machine langtage. do contain some level of instruction level parallelism. Superscalar processors aim to
exploit this parallelism through hardware techniques built into the processor.

Vector processors aim to exploit a common characteristic of most scientific and engineering
applications—processing of large amounts of numeric data in the form of vectors or arrays.The rliest
supercomputers—CDC and Cr'ay—emphasized vector processing whers modern applications
requirements span a much broader range. and as a result the scope of computer architecture is also
broader today.

‘very large instruction word [VLlW') proc-ssors were proposed on the premise that the compiler -can
sdtedule multiple independent operations per cycle and pad: them into long machine instructions—
relieving the hardware from the task of discovering instruction level parallelism. Symbolic processors
address the needs of artificial intelligence, W'l‘Ild1 may be contrastecl with the numb-er-crunching which
uvas the focus of earlier generations of supercomputers.

TM Illtfirmfl Hillfiurnpunnri .

ITB W flidmnced Compiuterflirchitecture

Memory elements provided within the processor operate at processor speed. but they are small
in site. limited by cost and power consumption. Farther away from the processor. memory elements
commonly provided are (one or more levels of) cache memory. main memory,and secondary storage.
The memory at each level is slower than the one at the previous lemel. but also much larger and less
expensive per bit.The aim behind providinga memory hierarchy is to ach ieye. as fir as possible.the speed
of fast memory at the cost of the slower memory.The properties of inclusion. coherence and locality
make it possible to achieve this complex objective in a computer system.

Virtual memory systems aim to free program size from the size limitations of main memory.\Norking
set. paging. segmentation. Tl_Bs. and memory neplacement policies make up the essential elements of a
virtual memory system. with locality of program references once again playing an important role.

g
Problem 4.1 Define the following basic terms Problem 4.3 Answer the following questions
related to modern processor technology: on designing scalar RISC or superscalar RISC

Exercises

{a} Processor dsign space. Pl"0€E-'5§0l“$i
(b) ||'1§_[|"|__|[[i.D]'1i§_-5ue|Q[.En[)r_ {a} Why do most RISC integer units use
{C} |nst.-uction issue I-are 32 general-purpose registers? Explain the

concept of register windows implemented in
ye} the SPARC architecture.
U} Gener,aj_Pm_PmE registem (b) What are flwe design tradeoffs between a
fig} large register file and a large D-cache?

(bl

(d]- Simple operation latency.
Resource conflicts.

Addressing modes.
Unified versus split caches.

{i} Hardwired yersus microcoded control.

Why are reservation stations or reorder
buffers needed in a superscalar processor?

{c} Eaqalain the relationship between the integer
Pl'D|J|Efl'1 4.1 Define lihfl following biiSlC terms unit and the flgqting-pgint unit; in mqgt

35$-Ofilflllfld With l‘l‘lElTi0i')" hlEF'3l'Ch}' d*E$lEI‘I! RISC processors with scalar or superscalar
{a} Virtual address space. qrganintjgn.
{b} Physical address space.
(c]- Address mapping.

Problem 4.4 Based on the discussion ofadvanced
procssors in Section 4.1. answer the following

ldl Cache blodis‘ questions on RISC. CISC. superscalar. and VLIW
(El lululfilevel PQEE '13bl5- architectures.
(fl Hit l'3l3l°- {a} Compare the instruction-set architecture
(El Page fill-lll in RISC and CISC processors in terms of
(l"I]- l‘l8Sl"Ilr‘Igfi-lr‘ICtl0r1- instruction formats. addressing modes. and
{i} Inverted page table, cycles per instruction (CPI).
{j} Hemqry replacement P-glici-5. (b]- Discuss the advantages and disadvantages in

Processors and Memory Hierox! W‘ "9

using a common cache or separate caches
for instructions and data. Explain the support
from data paths. MMU and TLB.and memory
bandwidth in the two cache architectures.

(c) Distinguish between scalar RISC and
superscalar RISC in terms of instruction
issue. pipeline architecture. and processor
performance.

(d} Explain the difference between superscalar
andVLlW architectures in terms of hardware
and software requirements.

Problem 4.5 Eaqalain the structures and
operational requirements of the instruction
pipelines used in ClS-C. scalar RISC. superscalar
RISC. andVLlW processors. Comment on the cycles
per instruction expected from these procmsor
architectures.

Problem 4.6 Study the lntel i486 instruction set
and the CPU architecture. and answer the following
questions:

(a) What are the instruction formats an-cl data
formats?

(b} What are the addressing modes?
(c) What are the instruction categories? Describe

one example instruction in chcategory.
(d} What are the HLL support instructions and

assembly directives?
(e} What are the intenupt. testing. and debug

features?
{f} Explain the difference between real and

virtual mode execution.
(g} Explain how to disable paging in the i486 and

what kind of application may benefit from this
option.

(h) Explain how to disable segmentation in the
i486 and what kind of application may use this
option.

{i} What kind of protection mechanisms are
built into d1ei486?

fj} Search for information on the Pentium and

explain the impovements made. compared
with the i486.

Problem 4.7 Answer the following questions
after studying Example 4.4. the i860 instuction set.
and the architecture of the i860 and its successor
the iB6OXP:

(a) Repeat parts {a}. (b). and |[c) in Problem 4.6
for the i860ii860XP.

(b) What multiprocessor. support instructions
are added in flwe iB6ClXP?

(c) Explain the dual-instrution mode and the dual-
operation instructions in i860 processors.

(d) Explain the address translation and paged
memory organisation of the i860.

Problem 4.B The SPARC arhitecture can be
implemented with two to eight register windows.
for a total of 40 to 132 GPRs in die integer unit.
Explain how the GPRs are organized into overlapping
windows in each of the following designs:

(a) Use 40 GPRs to construct two windows.
(b) Use T2 C-iPPts to construct four windows.
(c} In what sense is the SPARC considered a

scalable architecture?
(d) Explain how to use the overlapped windows

for parameter passing between t.he calling
procedure and the called procedure.

Problem 4.9 Study Bection 4.2 and also the paper
byjouppi and Wall [19-B9) and answer the following
questions:

(a) What causes a processor pipeline to be
underpipelined?

(b) What are the factors limiting the degree of
superscalar design?

Problem 4.10 Answer the following questions
related to vector processing:

(a) What are the differences between scalar
instructions and vector instructions?

(b) Compare the pipelined execution style in a
sector processor with that in a base scalar

TM Illtfirfilr Hilffiurnnannri .

processor [Fig 4.15}. Analyze the speedup
gain of the vector pipeline over the scalar
pipeline for long vectors.

(c) Suppose parallel issue is added to vector
pipeline execution .W'hatwould be the furdver
improvement in throughput. compared with
parallel issue in a superscalar pipeline of the
same degree?

Problem 4.11 Consider a two-level memory
hierarchy. M1 and M1. Denote the hit ratio ofM1. as
h. Let c. and c1 be the costs per kilobyte. s, and s2
the memory capacities.and t. and t1 the access times.
respectively.

(a} Under what conditions will the average cost
of the entire memory system approach cl?

(b) What is the effective memory-access time to
of this hierarchy?

(c) Let r = tzit. be dwe speed ratio of the two
memo rifi. Let E = tit. be the access efficiency
of the memory system. Express E in terms of
rand fr.

(d} Plot E against l1 for r = 5. 20. and 1C0.
respectively. on grid paper.

(e} What is the required hit ratio h to make
E > 0.95 ifr =10(i?

Problem 4.1 2 You are asked to perform capacity
planning for a two-level memory system. The first
level. M1. is a cadve with three capacity choices of
64 Kbytes. 128 l(byt5.and 256 K’.bytes.The second
level. M1. is a main memory with a 4-l"1byte capacity.
Let c1 and cl be the costs per byte and t1 and ti
the access times for M1 and M1. respectively Assume
c1 = 20:1 and t1 =1Ot1.The cache hit ratios for the
dvree capacities are assumed to be O.}'.D.9.and 0.98.
respectively.

(a) What is the average access time tn in terms of
ti = 20 ns in the three cache designs? (Note
that t1 is the time from CPU to M1 and ti is
that from CPU to M1. not from M1 to M1).

{b} Express the average byte cost of dve entire
memory hierarchy if C1 = $O.2!l(byte.

Adl'H1|‘|'CBd Computerilirchitectore

(c) Compare the three memory designs and
indicate the order of merit in terms of average
costs and average access times. respectively.
Choose the optimal design based on the
product of average cost and average access
time.

Problem 4.13 Compare the advantages and
shortcoming in implementing private virtual
memories and a globally shared virtual memory
in a multicomputer system. This comparative
study should consider the latency coherence.
page migration. protection. implementation. and
application problems in the context of building a
scalable multicomputer system with distributed
shared memories.

Problem 4.14 Explain the inclusion property and
memory coherence requirements in a multilevel
memory hierarchy. Distinguish between write-through
and write-back policies in maintaining the coherence
in adjacent levels.Also explain the basic concepts of
paging and segmentation in managing the physical and
virtual memories in a hierarchy.

Problem 4.15 A two-level memory system has
eight virtual pages on a disk to be mapped into four
page frames {PFs) in the main memory.A certain
program generated the following page trace:
1.0. 2. Z. 1.7.6.7.0.1.1.U.3.0.4.5.1.5.2.4.5.6.?.6.
7'. 2.4. 2. 2'. 3. 3. 2. 3

(a) Show the successive virtual pages residing
in the four page frames with respect to the
above page trace using the LRU replacement
policy. Compute the hit ratio in the main
memory.Assu|'ne the PFs are initially empty.

(b) Repeat part (a) for the circular FIFO page
replacement policy. Compute the hit ratio in
the main memory

(c) Compare dve hit ratio in parts (a) and {bj and
comment on the effectiveness of using the
circular FIFO policy to approximate the LRU
policy with respect to dais particular page
trace.

Processors ond Memory Hierorz! W |B|

Problem 4.16
(a) Explain the temporal locality spatial locality.

and sequential locality associated with
programfdata access in a memory hierarchy.

(b) What is the working set? Comment on the
sensitivity of the observation window size
to the size of the working set How will this
affect the main memory hit ratio?

(c) What is the 90-10 rule and its relationship to
the locality of references?

Problem 4.17 Consider a two-level memory
hierarchy. M1 and M1. with access times ti and t1.
costs per byte q and c1. and capacities 5| and s1.
respectively.The cache hit ratio h. = 0.95 at the first
level. (Note that t1 is the access time between the
CPU and M1. not between M1 and M1).

{a} Derive a formula showing the effective access
time tqry of this memory system.

(b) Derive a formula showing the total cost of
this memory system.

(c) Suppose t1 = 20 ns. t1 is unknown. S1 = 512
Kbytes.s1 is unknown.c1 = $0.01fbyte. and c1
= $0.0005.lbyte. The total cost of the cache
and main memory is upper-bounded by
$15.000.

{i} How large a capacity of My (s1 = ?} can you
acquire without exceeding the budget limit?

(ii) How fast a main memory {t1 = ?]- do you
need to achieve an effective access time of
teq = 40 ns in the entire memory system
under the above hit ratio assumptions?

Problem 4.1ll Distinguish between numeric
processing and symbolic processing computers in
terms of data objects. common operations. memory
requirements. communication palzerns. algorithmic
properties. li’O requirements. and processor
architectures.

TM Htffirtril-' Hllllfmminnm

— —

Bus, Cache, and Shared Memory
This chapter describes the design and operational principles of bus. cache. and shared-memory
organization. Backplane bus systems are studied. including fmtures of\"'l"'lE. Futurebt.s+ and other bus
specifications. Cache addressing models and implementation schemes are described.We study memory
interleaving. allocation schema. and the sequential and weak consistency models for shared-memory
systems. Other relaxed memory consistency models are given In Chapter 9'.

BUS SYSTEMS

1 Thc system bus ofa computer system op-crates on a contention basis. Scv-cral active devices
such as processors may rt-quest use ofthe bus at thc same timc. However, only one of tbcm

can bc granted access at a timc. Thc tjfirt-Iii-‘tr btrntfi1'i.r.ll'fr available to cach processor is invcrscly proportional
to thc numbcr ofproc-cssors contending for thc bus.

For this reason, most bus-based commercial multiproccssors have bccn small in size. Thc simplicity
and low cost ofa bus system made it attractive in building small multiproccssors ranging from 4 to lo
processors. We shall sec in Chapter 13 that advances in intcrconnoct tochnologics have had a major impact
on multiprocessor architcctutc.

In this section, we specify system buses which are confined to a single computer system. We concentrate
on logical specification instead of physical irnplcrncntation. Standard bus specifications should be both
tcchnokigy-indcpcndcnt and arcbitccttuc indcpcnd-cnt.

5.1.1 Bacltplane Bus Specification
A baclcplanc bus interconnects processors, data storage, and pcriphcral dcviocs in a tightly coupled hardware
configuration. The system bus must bc designed to allow communication between devices on the bus without
disturbing thc internal activities of all tbc dcviccs attached to thc bus. Timing protocols must bc established
to arbitrate among multiple requests. Operational rulcs must bc sct to cnsurc orderly data tran sf‘-crs on thc bus.

Signal lines on thc backplanc arc often func tio nally grouped into scvcral buses as dcp ictcd in Fig. 5. l. Thc
four groups shown hcrc are very similar lo those proposed in the 64-l:-it R-‘ME bus specification (VITA, I990).

Various functional boards arc plugged into slots on thc backplanc. Each slot is provided with one or more
connectors for inserting thc boartls as demonstrated by thc vertical arrows in Fig. 5.] . For cxamplc, one or
two 96-pin connectors are used per slot on the VME backplane.

l'h1'Ml.'I;Ifl\lI' HI" l'n¢r.q|r_.u||rs

Bu-s,Ceche,avid5ho|'ed.fi'leme-I)‘ Y |g3

CPU Board Memory Board Bus Controller
, V

Prooessor MEMO-r1|' 33,-stem crack
and Cache AW? driver, Daisy

I 0 0 Chain drhrer,
Powerdrlver,

{on-iar Boards Funetloml Bus timer.
' for CPU, Modules Arbiter
safes.) It i lll Ml i ll2s;55.5%."’8E3 .. ‘° L94“

Interface lntartaoe
I-on

sdotf S-lo-tK-1' Sin-tk

B-aekp-lanes {signal lines and eennoeto-rs]

Data T ransfer Bus [OTB]
(Data, Adore-ss, and Control Lines)

DTB Arbitration Bus

AAA \/\7\7

Interrupt and Synchronization B-us

‘L?’ Utlllty Bus

Fig. 5.1 Badqalam busm. system ininerfaemarid slot connections to various fr.s1-eel-or1alboarclsin a miflrlprocess-or
sysrem

Data Transfer Bus Data, address, and eontrol lines form the dam n'.rm.sjfer bus (UTE) in a \"M.l'L bus.
The addressing lines are used to broadcast the data and deviee address. The number of address lines is
proportional to the logarithm of the size of the address space. Address modifier lines can be used to define
special addressing modes. The data lines are oflen proportional to the memory word length.

For example, the revised VM1-"-. bus specification has 32 address lines and 32 [er 64) data lines. Besides
being used in addressing, the 32 address lines can be multiplexed to serve as the lower halfof the 64-bit data
during data transfer cycles. The DTB control lines are used to indicate read.~'write, timing control, and bus
error-conditions.

Bus Jlrbinr-union and Control The process of assigning control of the DTB to a requester is ealled
arbirrnrrimr. Dedicated lines are reserved to coordinate the arbitration process among several requesters. The
requester is ealled a mrrsrer, and the reoeiving end is ealled a slave.

re» Mfliruw um =-...=-mam '

l B1 Z1 Advanced Cornputar Architecture

Inrerrrrpr lures are used to handle intcrnrpts, which are ofien prioritized. Dedicated lines may be used
to synchronize parallel activities among the processor modules. Utility lines include signals that provide
periodic timing (clocking) and ooordinatc the power-up and power-down sequences of the system.

The backplane is made ofsignal lines, power lines, and connectors. A special bus controller board is often
used to house the baclcplanc control logic, such as the system clock driver, arbiter, bus timer, and power
driver

Functional Module: A _,r'imerion.n! module is a collcction of electronic circuitry that resides on one
functional hoard (Fig. 5.1] and works to achieve special bus control fimerions. Special functional modules
arc introduced below:

An arbiter is a functional module that accepts bus requests iiom die requester module and grants control
of the DTB to one requester at a time.

A bus rinrer measures the time each data transfer takes on the DTB and terminates the DTB cycle if a
transfer takes too long.

an interrupter module generates an interrupt request and provides status IID information when an
irrrcrrupr hrmdicr module req ucsts it

A ll0C‘flIiirJH nioniror is a functional module that monitors data transfers over the DTB. A power monimr
watches the status of thc power source and signals when powerbccomes unstable.

A s_vsrcm clock driver is a module that provides a clock timing signal on thc utility bus. ln addition, board
inrerjfirec logic is nccdod to match the signal line impedance, the propagation time, and termination values
between the backplanc and the plug-in boards.

Physical Limitations Due to electrical, mechanical, and packaging limitations, only a limited number
of boards can be plugged into a single bacltplane. Multiple backplane buses can be mounted on the same
baclcplane chassis.

For example, the VME chassis can house one to throc backplanc buses. Two can be used as a shared
bus among all processors and memory boards, and the third as a local bus connecting a host processor to
additional memory and IJO boards. Means of extending a single-bus system to build larger multiproccssors
will be studied in Section 7.1.1. The bus system is difficult to scale, mainly limited by contention and
pac ltaging constraints.

5.1 .2 Addressing and Timing Protocols
There are two types of IC chips or printed-circuit boards connected to a bus: aerit-‘e and ,r.1.ns.sit-'e. Active
devices like processors can act as bus masters or as slaves at difierent times. Passive devices like memories
can act only as slaves.

The master can initiate a bus cycle, and thc slaves respond to requests by a master. Only one master can
control the bus at a time. However, one ormorc slaves can respond to the master's request at the samc time.

Busllddressing The backplane bus is driven by a digital clock with a [ised cycle time called the bus c-_vr.-i'+.'.
The bus cycle is determined by the electrical, mechanical, and packaging characteristics ofthe backplane.

The backplane is designed to have a limited physical size which will not skew i1'|i'-nrmation with respect
to the associated strobe signals. To speed up the operations, cycles on parallel lines in difi'erent buses may
overlap in time. Factors al"Tecting the bus delay include the source's linc drivers, the destination‘s receivers,
slot capacitance, line length, and the bus loading effects (the number of hoards attached].

l'P.\r' Ml.'I;Ifllb' HI" l'n¢r.q|r_.u|»rs -

Bu-s,Coche,end5horedMemory L |g5

Not all the bus cycles are used for data transfers. To optimize performance, the bus shotrld be designed
to minimize the time required for request handling, arbitration, addressing, and interrupts so that most bus
cycles are used for useful data transfer operations.

Each device can he identified with a det-'r'ee nrmrber. ‘lll-“hen the device number matches the contents of
high-on:ler address litres, the device is selected as a slave. This addressing allows the allocation ofa logical
device address under software control, which increases the application flexibility.
Brcrnd-call and Broadcast Most bus transactions involve only one master and one slave. However, a
bronrieafi is a read operation involving multiple slaves placing their data on the bus lines. Special AND or
CIR operations over these data are performed on the bus from the selected slaves.

Broadcall opmntions an: used to dctcct multiplc interrupt sources. A broadcast is a write operation
involving multiple slaves. This operation is essential in implementing multicachc coherence on the bus.

Timing protocols are needed to synchronize master and sir-we operations. Figure 5.2 shows a typical timing
sequence when inibrmation istran sferrod ovcra bus fiom a source to adest ination. Most bus timing protocols
implement such a sequence.

Master ‘L Slave

1.3-endroquestnbus. 1
2. B-us allocated. l
3. Load adore-ssiclata on h-us.

; 4. Slave selected after signal
stabilized.

I B. Take stabilized data.
E 5. Signal data tra |"t§lBl'.
P_ .

1 7. Aeirnowlaclgo data taken.

8. Kn-owing data taken, remove 5
dataanctfroethetms. "

§ 9. Knowing data removed, signal
transfer corn plated and tree the
i]-US.

10. S-and nest bus request.

I‘

Fig. 5.2 Typical time sequence for irrforrrration transier between a ouster and a dame over a system bus

Syn-chmnuu: Timing All bus transaction steps take place at fixed clock edges as shown in Fig. 5.3a. The
clock signals are broadcast to all potential masters and slaves.

Once the data becomes stabilized on the data lines, the master uses a don:-re.nr2_‘_v pulse to initiate the
transfer. The slave uses a dam-accept pulse to signal completion ofthe information transfer.

PM‘ MIGIELH Hf" r'mr:q|r_.t-rim ‘I _

[B6 i‘ |i'l|d'WIHi'C£d Cornpmzar Arciritzecture

A synchronous bus is simple to control, requires less control circuitry, and thus costs less. lt is suitable
for connecting devices having relatively the speed. Otherwise, the slowest device will slow down the
entire bus operation.

Azyrr-chronou: Tirrrirrg .-ltsynchronous tinting is based on a handshalting or interlocking mechanism as
illustrated in Fig. 5.31:. No fixed clock cycle is needed. The rising edge {1} of the tiara-rmriv signal from the
master triggers the rising (2) of thc o'rrm-accept signal from the slave. The second signal triggers the falling
(3) oi‘ the drrrrr-rvrrrfi-' clock and the removal ofdata irom the bus. The third signal triggers the trailing edge
(4) of the d:1ra-accqrir e-lock. This four-edge handshaking iinterloclringl process is repeated until all the data
are transferred.

Data I 5 I

Master I 5 I
Data

Ready

l-qifiycia 1‘-lain?-rm2‘|-i-|_ Cycle 3

[at Synchronous one timing with fined-length clock signals for all devices

. I

Data 5 lL-M rm/'>—<. MMaster Data 1 ‘
Ready A
' =' I IData

Slave Aocam _

l-IiCycia1?I-l-nifiyeia-Zarl-I——Cyela3

{bl Asynchronous bus timing using a four-ad-go handshaking {lntorlo-cidrlg
with variable length signals for dliferant speed ciavloas.

M .i"

Fig. 5.3 Syrlehmnoua vcrsm asyndsmriom tins timing protocols

The advantage of using an asynchronous bus lies in the freedom of using variable length clock signals for
different speed devices. This does not impose any response-time restrictions on the source and destination.
It allows fast and slow devices to be connected on the same bus, and it is less prone to noise. Overall, an
asynchronous bus offers better application flexibility at the expense of increased complexity and costs.

5.1.3 Arbitration,Transaetion, and interrupt
The process of selecting the next bus master is called rrr'hi£r'o1'iorr. The duration ofa master's control of the
bus is called bus Iemire. This arbitration process is designed to restrict tenure ofthe bus to one master at a
time. Competing requests must be arbitrated on a faimcss or priority basis.

Arbitration competition and bus transactions may take place concurrently on a parallel bus with separate
lines ibr both purposes.

l'P.\i' Ml.'I;Ifllb' HI" l'n¢r.q|r_.u|»rs -

Bu-s,Cuche,end5huredMemmy L H"

Centalrlrbhmtiun As illustrated in Fig. 5.4a, a central arbitration scheme uses a central arbiter Potential
masters are daisy -chairred in a cascade. A special signal line is used to propagate a bus-gran! signal level from
the first master {at slut I) to the last master (at slot rt).

Each potential master can send a bus request. However, all requests share the same bus-request line. As
Shown in Fig. 5. 4b, the bus-request signals the rise of the bus-gram leveL which in t|.|m raises the bus-bus}-
level.

BusGram Mastert tu'|aster2 futastern

Central
Bus

Arbiter Bus --------Ree

Bus Busy iiiiiiiiii

< Data Transfer Bus >
[a] Ddsy-chained bus arbitration

Bus
Request
Bus
Grant

Bus Busy

[bl Bra tranmctbn tlmlng

Fl3- 5-4 Central bus arbiuatien using shared reqllesta and daisy-chained bus grants with a fitted priority

A fixed priority is set in a daisy chain from left to right. Only when the devices en the left do not request
bus control can a device be granted bus tenure. When the bus transaction is complete, the bus-b1rs'__v level is
lowered, which triggers the falling ofthe bus gram‘ signal and the subsequent rising ofthe bus-reqrre.~r1' signal.

The advantage of this arbitration scheme is its simplicity. Additional devices can be added anywhere in
the daisy chain by sharing the same set of arbitration lines. The disadvantage is a fixed-priority sequence
violating the fairness practice. Anotherdrawbaek is its slowness in propagating the bzrs-grrrm signal along
the daisy chain.

Whenever a higher-priority device fails, all the lower-priority devices on the right of the daisy chain
cannot use the bus. Bypassing a failing device or a removed device on the daisy chain is desirable. Some new
bus standards are specified with such a capability.

Independent Request: and Grant Instead ofusing shared request and grant lines as in Fig. 5.4, multiple
bus-reque.sI and bus‘-gram’ signal lines earl be independently provided for each potential master as in
Fig. 5.5-a. No daisy-chaining is used in this scheme, and the total numberof signal lines required is larger.

The arbitration among potential masters is still carried out by a central arbiter. However, any priority-

l'h1'Ml.'I;Ifl\lI' HI" l'n¢r.q|r_.u||rs

[Bl i‘ Advwreed Computer Ardsitzectura

based or faimess-based bus allocation policy can be implemented. A multiprocessor system usually uses a
p1'ierity-based policy for U0 transactions and a fairness-based policy among the processors.

in some asymmetric multiprocessor architectures, the processors may be assigned difiererrt firnctions,
such as serving as a frorlt-end host, an executive processor, or a back-end slave processor. [rt such cmes, a
priority policy can also be used among the processors.

The advantage of using independent requests and grants in bus arbitration is their flexibility and faster
arbitration time compared with the daisy-chained policy. The drawback is the large number of arbitration
lines used.

Distributed Jlrbitmtion The idea of using distributed arbiters is depicted in Fig. S.5b. Each potential
master is equipped with its own arbiter and a unique rrrbirrrrrion number. The arbitration number is used to
resolve the arbitration competition. When two or more devices compete for the bus, the winner is the one
whose arbitration number is the largest.

Master 1 Master?! '"

Centre!5,5 ni-
Arblten

BR“
_T — .

'I I
BusBusy'
' ataTraner Bus 'A _s

g
Vi

Legends: Bi-Ii [Bus request from master I] BGi {Bis grant to master 1]
[at Independent requests with a central arbiter

Id IN [M
BB BB BB

-1 A , , I-

< _ Data Tia nsferfius _ >

Legends: BG [Bus grant) BB [Bus busy) AN {Arbitration number]
[bi Using dstrlbuted arbltrrs

Fig. 5.5 Two bus arbitration seherrres using indepmdenr request: and disrrbured arbirers. respectively

re» Mcfiruw um =-...=-mom '
Bu-S,Coch=e,end Shared Memory i |gg

Parallel contention arbitration is used to determine which device has the highest arbitration number All
potential masters can send their arbitration numbers to the shared-bus requestfgrant (SBRG} lines on the
arbitration bus via their respective arbiters.

Each arbiter cornparcs the resulting number on the SHRG lines with its own arbitration nrnnber. If the
SBRG numb-er is greater, the requester is dismissed. Al the end, the winner’s arbitration number remains on
the arbitration bus. After the eurrem bus transaction is completed, the winner seizes control ofthe bus.

Clearly, the distributed arbitration policy is priority-based. Multibus ll and Futurebus+ adopted such a
distributed arbitration scheme. Besides distributed arbitcrs, Futurebus+ standard also provided options for a
separate central arbiter.

Transaction Mode: An rrrrt-ire.~rs-onrft-' rrrrnsfisr consists of an address transfer followed by no data. A
eompeihrd rilrlffl Irmsfirr consists ofan address transfer followed by a block of one or more data transfers to
one or more contiguous addresses. Aprrr-kc! danr rrrrnsfirr consists of an address transfer followed by a fixed-
length block of data transfers (,rmckeI) from a set of contiguous addresses.

Data transfers and priority interrupts handling are two classes of operations regularly performed on a bus.
A bus transaction consists of a request followed by a response. A eorrneered rrrrrrsrrr-rion is used to carry out
a master's request and a slave's response in a single bus transaction. A split rrrrrrsrrerion splits the request and
response into separate bus transactions. Three data transfer modes arc specified below.

Split transactions allow devices with a long data latency or access time to use the bus resources in a
more efficient way. A complete split transaction may require two or more connected bus transactions. Split
tran saet ionsacross multiple bus sequences are performed to ac hieve cache coherence in a large multiproccs sor
sy stem.

Interrupt Mechanism: An interrupt is a request from HO or other devices to a processor for service or
attention. A priority interrupt bus is used to pass the interrupt signals. The intermptcr must provide status and
identification information. A fimctional module can be used to serve as an intcrmpt handler.

Priority interrupts are handled at many levels. For example, the ‘~Jl'vIE bus uses seven interrupt-request
lines. Up to seven interrupt handlers can be used to handle multiple interrupts.

Interrupts can also be handled by message-passing using the data bus lines on a time-sharing basis. The
saving of dedicated interrupt lines is obtained at the expense of requiring some bus cycles for handling
message-based interrupts.

The use oftime-shared data bus lines to implement i11tern.|pts is called trirrrari irrrerrrqar. Futurebus+ was
proposed without dedicated interrupt lines because virtual interrupts can be effectively implemented with the
data trartsiier bus.

5.1.4 IEEE Futurebus+ and Other Standards
By the early 1990s, a large number oi" backplane bus standards were developed by various computer
manufacturers in cooperation with the relevant IEEE standards committees. Among the well-lrnown ones
have been those for the ‘K-'Tvl'E bus {VITA and IEEE Standard 1014-193?), the Multibus Tl (Intel and IEEE
Standard 1296-1987), the Nubus (Texas instruments, 1983], the Fastbus {Gustavasorn 12286), and the Nanobus
by Encore Computer Systems.

re» Mum-w not t'mt!-;|(1rtr¢\ '

I70 Z1 Advevtced Cernputar Architecture

Some ofthesc buses have been used in buildingmultiproeessors; however, each has had its own limitations.
Most of them support only a data path of 32 bits. and none of them support an efficient eache coherence
protocol or fast interprocessor synchronization.

The Futurebus+ standard was being developed under the cooperative effort ofthe \-'M.E lntemational Trade
Association, Multihus Manufacturers Group, U.S. Navy Nest Generation Computer Resources Program,
l EEE Microcomputer Standards Committee, and experts from companies and universities.

The objective was to develop a tnrly open bus standard that could support a 64-bit address space and the
throughput required by multi-RISC or future generations of multiprocessorarchitectures.

The standards must be expandable upward or scalable and be independent of particular arehitecture and
processor technologies. The key features of the IEEE Futurebus— Standard 896.1-1991 are presented below.
Standard Requirement: The majorobjectives oftl1e Futurebus+ standards comm ittec were to create a bus
standard that would provide a significant step forward in improving the facilities and performance available
to the designers -of multiprocessor sy stem s. The aim was to provide a stable plat form on which several
generations ofcomputer systems could be based. Summarized below are design requirements set by the [EEE
89tS.l-I99] Standards Committee:

{1} Architecture-, processor-, and technology-independent open standard available to all designers.
{2} A fully asynchronous (compelled) timing protocol fordata transfer with hand-shaking flow control.
-[3] An optional source-synchronized {packet} protocol for high-speed block data transfers.
-[4] Fully distributed parallel arbitration protocols to support a rich variety ofbus transactions including

broadcast, broadcall, and threc~party transactions.
{5} Support of high reliability and fault-tolerant applications with provisions for live card insertionf

removal, parity checks on all litres and feedback checking, and no daisy-chained signals to facilitate
dynamic system reconfiguration in the event of module failure.

{'6} Use ofmultilevel mechanisms for the locking of modules and avoidanee ofdeadlock or liveloek.
{7} Circuit-switched and split transaction protocols plus support for memory commands for implementing

remote lock and SIMD-like operations.
{B} Support of real-time mission-critical computations wit.h multiple priority levels and consistent priority

treatment, plus support ofa distributed clock synchronization protocol.
{9} Support of 32- or-5-it-bit addressing with dynamically sized data buses from 32 to 64, 128, and 256 bits

to satisfy different bandwidth demands.
{'10) Direct support of snoopy cache-based multiproccssors with recursive protocols to support large

systems interconnected by multiple buses.
(1 1 j Compatible messagcspassing protocols with multicomputer connections and special application

profiles and interface design guides provided.

Clvcr the last three decades, clock speeds and device densities of processor chips have increased
exponentially. Parallel and clustercomputing systems today employ a much larger numberofprocessors than
the systems oftwo decades ago. The net result ofthesc factors has been a huge i11crcase in bandwidtl'| demands
both within the computer system and in terms of communication with external devices and networks.

re» Mrfiruw not r-...=-mom '
BuS,Coch=e,ond5h-oredf-Ilemoly i |g|

The complex Fut|.|rebus+ arehitecture described above could not satisfy the rapidly increasing bandwidth
and efiieiency demands of newer systems, and thereby the basic performance limitations of bus-based
systems also became clear The need was to support high performance distributed and cluster computi ng with
high bandwidth, low latency, and a scalable architecture to allow building large systems using inexpensive
building blocks. To meet these requirements, Scalable Coherent Interface (SCI) and Infinifiand came up as
simpler and more efficient offshoots of t1'|c Futurebus+ standard.

Low latency is important for cflicient distributed computing, and therefore protocols must work with low
overheads. Every SCI and In.'[i.niBand node comes with its own links, so that aggregate bandwidth increases
with the number of nodes, and thus the system remains scalable. Single link bandwidths are in Gflytest‘

with switched interconnects, a variety of topologies and speeds is supported, and media-independent
protocols support a mix oi‘ copper and optical llber links.

SCI was developed to support the requirements oi‘ both internal system bus (between processor, memory
and HO subsystem), and the extemal network. The aim behind this initiative was to avoid the bottlenecks of
physical buses, scale up to supercomputer performance, and support efficient parallel processing software.

With the useofpoint-to-point links and packet switching, SCI protocols were kept simple, so that interface
chips could run fast, allowing scalable and distance-independent protocols. Phy sieal packaging is not
restricted to a bus backplanc, and performance degrades only slowly as distance increases.

SCI provides distributed directory based cache coherence for a global shared memory model, and provides
adcgrecoffault tolerance. For hig l1-performance computing, it is employed to build NLll'vl.-it computerclusters
and other parallel architectures. Sun Microsystcms has used SCI for all ofthcir high-performance systems.

Lnlinifland is another switched interconnect architecture which emerged from the Futurebus+ standard.
Serial point-to-point links are used, with simpler, less expensive, more reliable and scalable architecture.
Links cart carry multiple channels ofdata at the same time in a packet-multiplexed manner, with throughputs
ofup to 2.5 Gfiytesfsec.

Pacjret switching implies that control information determines the route a given packet or message follows
from source to destination. lnfiniBand uses Internet Protocol Version 6 (IPv6), allowing a vast range of
system expansion. Cine or more packets are combined to fbrm a message; a message can be a simple send or
receive operation, remote direct memory access operation, a transaction, or a multieast transmission.

Tedrnnlogylflrchireerure Independence Any bus standard should aim to achieve rec-hnoiogv
inr.lq-Jerrrfencc through basing the protocols on fundamental principles and optimizing them for maximum
communication efllciency rather than a particular generation or type of processor. Timing and handshake
protocols should be govemed by operational constraints rather than limitations of technology such as device
delays and capture windows.

The standard specification may he implemented with any logic family, provided that physical
implementation meets the signaling requirements.

Architecture inrfe,rJertdertc'c should provide a flexible general-purpose solution to cache consistency within
which other cache protocols operate eompatibly while at the same time providing an elegant unification
with the message-passing protocols used in a multicomputer environment. Such architecture independence
increases the application flexibility of a multiprocessor system built around the bus standard Other bus
standards PCI, PC l Express and HyperTransport are described in brief in Chapter 13.

I?! i‘ Adwmced Cmnputarfiichflzecturc

CACHE MEMORY ORGANIZATIONS

1 This section deals with physical address caches, virtual address caches, eache implementation
using direct, fi.|lly assoc iatit-tc, set-associatit-"e, and sector mapping. Finally, cache performance

issues are analyzed based on some report-ed trace results. Multicache coherence protocols will be studied in
Chapter '1".

5.1.1 Caehefltclclressing Models
Most multiprocessor systems use private caches associated with different processors as depicted in Fig. 5.6.
Caches can he addressed using either a physical address or a virtual address. This leads to the two ditierent
cache design models presented below.

Pm m m E

I Interconnection (Bus, crossbar, MIN] |

Md|'tM&|'|'|D llllE Q tit
I "0 mflflss-. _ I

E E - - - - E
Fig. 5.6 A memory hlerathy for a shared-mernory mute-lpmces-or

Pllysiculilddress Cache: When a eache is accessed with aphys ical memory address, it is called a ,rJh_v.sr'e.n!
tidzimss eache. Physical address cache models are illustrated in Fig. 5.1 ln Fig. S.?a, the model is based on
the experience of using a unified eache as in the VAX 8600 and the lntel i486.

In this case, the eache is indexed and tagged with the physical address. Cache lookup must occur after
address translation in the TLB or MMU.

A eache hit occurs when the addressed datafinstruefiuu is found in the cache. Otherwise, a eriehe miss‘
occurs. After a miss, the cache is loaded with the data from the memory. Since a whole cache block is loaded
at one time. unwanted data may also be loaded. Locality ofreferenoes will find most of the loaded data useful
in subsequent instruction cycles.

Data is written through the main memory immediately via a wn're-rhmugh (WT) cache, or delayed until block
replacement by using awri!e~I1¢Iek(lNB)tIBchIB.151'\7l"l' cache requires more bus or network cycles to acoess the main
momoty, while a WB eache allows the CPU to continue without wailing for the rnemoly to cycle.

Bu-s,Cociie,end5ho|"ed.F-Ilemory i |g3

1)é} Example 5.1 Cache design in a Silicon Graphics workstation
Figtlre 5.Tb demonstrates the split eache design using the MIPS R3000 CPU in the Silicon Graphics 4-D
Series workstation. Both data cac-he and instruction cachc arc accessed with a physical address issued from
the on-chip MMU. A two-level data eache is implemented in this design.

GMMU aptionsVA - PA HA 1
Cache Mam 'i.i'A- Virtual address

CPU D U [f|||1Q-mgfyl PA: IHGS

l or D l = Instructions
D = Data stream

[at A unified cache accessed by physical address

PA F S1 PIA d PA
rr S-noonI W lil M n

D-Cache D-Cache Mam

11
[b]Sp1it caches aooassad by physical address In the-Silicon Graphics workstation

Fig. 5.1 rm,-sor address models or unified and split. caches

The first level uses 54 Kbytes of WT D-cache. The second level uses 256 Khytes of WE D-cache. The
single-level 1-cache is 64 Kbytcs. By the inclusion property, thc first-lcvcl eache is always a subset of the
second-level cache.

The major advantages of physical address caches include no need to perform cache flushing, no aliasing
problems, and thus fewer cache bugs in the OS kernels. The shortcoming is the slowdown in accessing the
eache until the MMU ITLB finishes translating the address. This motivates the use of a virtual address cache.
lnteg ration ofthe MMU and caches on the same VLSI chip can alleviate some ofthesc problems.

Most conventional system designs use a physical address eache because of its simplicity and because it
requires little intccrvccntiorl fromthc 05 kcmcl. When physical address caches arc uscd in a LI"I'~II}(environment,
no flushing of data cac-hes is needed if bus watching is provided to monitor the system bus for DMA requests
from Iii} devices or fiom other CP'l.lS- (itlterwise, the cache must be flushed for every Lit) without proper bus
watching.

Virruolnddran Cache: When a cache is indexed or tagged with a virtual address as shown in Fig. 5.3, it
is called a t-‘from! adni're.s.s" cache. ln this model, both cache and MMU translation or validation are done ir|
parallel. The physical address generated by the MMLI can be saved in tags for later write-back but is not used

rho Mam-w Hilitllm-;|;m»¢\ '

I?! i‘ Advanced Computer Architecture

during the cache lookup operations. The virtual address cache is motivated with its enhanced efficiency to
aeeess the eache faster. overlapping with the lv[MU translation as exemplified below.

l»
63) Example 5.2 The virtual addressed split cache design in

Intel i860
Figure 5.8b shows the virtual address design in the Intel i860 using split caches for data and instructions.
Instnsetions arc 32 bits wide. ‘Virtual addresses generated by the integer unit [TU] are 32 bits wide, and so are
the physical addresses generated by the MMU. The data cache is 3 Kbytcs with a bloc-it size of 32 bytes. A
i"WO—\VEl}' set~associative cache organization (Sec. 5.2.3) is implemented with 128 sets in the D-cache and 64
sets in the I-cache.

PA Captions:
VA MM‘-i "JA= Vinual address

Mai" PA= Physical address
CPU Mammy I = Instructions

t or D D = Data streamD or I

{aj A unified cacheaccsrsssd by virtual address

32 I-Cache I 54
[4K Bytes] " ’

I 32 VA h— 32
H-| 2 MM“ HA Main

lulsm-dry
32

s2
123 W‘ D-Cache o 123

D ism Bytes]

[ls] A split cache accessed by virtual address as in the lntel iwfl processor

Fig. 5.8 Virtztial address models For unified and split. aches {Courtesy of lntel Co-rpora'tion,19B9}

The Ninsing Problem The major problem associated with a virtual address eache is niittsirrg, when
dilferent logically addressed data have the same indexitag in the cache. Multiple processes will in general
use the same range ofvirtual addres This aliasing problem may create confus ion if two or more processes
access the same physical cache location. One way to solve the aliasing problem is to flush the entire eache
when-evera contctt switch occurs.

Large amounts oijitrshing may result in a poor cache pcrforrnance, with a low hit ratio and too much time
wasted in flushing. ‘When a \rirt|.|al address eache is used with UNIX, flushing is Iteeded after each context

rs. Mtlirrru-l rrrrlr-...¢-,.,ar.¢. '
Bu-s,Cocir=s,end5irc\|"ed.F-Ilcmory i |g5

switching. Before U0 writes or after Lit) reads, the cache must be flushed. Furthermore, aliasing between the
UNIX kernel and user programs and data is a serious problem. All of these problems introduce additional
system overhead.

Flushing the cac he does not overcome the aliasing problem completely when usinga shared memory with
mapped files and copy-on-write as in UNLX systems. These UNIX operations may not benefit liom virtual
caches. in each entryfeltit to or from the UNIX kemel, the cache must be flushed upon every system call and
interr1.|pt.

The virtual space must be divided between itemel and user modes by tagging kernel and user data
separately. This implies that a virtual address cache may lead to a lower performance unless most processes
arc compute-bound.

With a frequently flushed cache. the debugging of programs is almost impossible to perform. Two
commonly used methods to get around the virtual address cache problems are to apply special tagging with a
process .ir_v or with a ph_i-'.s'r'eai' arit're.-rs. For example, the SUN 3r-“IUD Series has used a virtual address, write-
baclc cache with the capability of being noncaeheablc. Three-bit keys are used in the cache to distinguish
among eight simultaneous contexts.

The flushing can be done at the page, segment, or context level. In this ease, context switching docs not
need to llush the cache but needs to change the current process key. Thus cached shared memory must he
shared on fixed-size boundaries. Other memory can be shared with noncacheability. Flushing and special
tagging may bc traded for perfonnarrccicost reasons.

5.2.2 Direct Mapping and Associative Caches
The transfer of information from main memory to cache memory is conducted in units ofcache blocks or
cache lines. Four block placement schemes are presented below. Each placement scheme has its own merits
and shortcomings. The ultimate performance depends on the eache-access patterns, cache organization, and
management policy used.

Blocks in caches are ealled hi'oek_,r‘i'arns.s in order to distinguish them from the corresponding blocks in
main memory. Block frames are denoted as ibri - 0, 1. 2. m. Blocks are denoted as B, forj - fl, 1,
2, ..., n. Various mappings can be defined from set {By} to set [E]. 5. [t is also assumed that rr .5-3"‘ m, rr = 2",
and m = 2". D

Each block (or block Erame} is assumed to have in word s, where b = 2“. Thus the cache consists ofm - lb =
2"“ words. The main memory has n - b - 2”" words addressed by is + iv) bits. when the block frames are
divided into tr = 2' sets, Ir = m.-"tr = 1" I blocks are in each set.

Direct-Mapping Cache This cache organization is based on a direct mapping of n.|"m = 2"‘ ' memory
blocks. separated by equal distances, to one block frame in_tbe cache. The placement is defined below using
a modulo-m function. Block By is mapped to block frame

Bf,-—> , ifi =j(modulo m) (5.1)

There isa urriqmrblock itame B1. that each By can load irno. There isno way to implemem a block replacement
policy. This direct mapping is very rigid buthis the simplest cache organization to implement. Direct mapping
is illustrated in Fig. 5.9a for the case where each block contains four words {iv = 2 bits).

The mernory address is divided into three fields: The lower w bits specify the v.-am‘ qrfjfisr within each
block. The uppers bits specify the block rrrklress in main menmry, while the lefimost (s — r) bits specify the

Ti‘.-r Mcfiruw Hill |:'m.-;"_.u|-r~ '

IM i‘ Advwrced Conipmzer Arciniizediut

mg to hc matchcd. Thc block Iieid {r bits] is used to irnpicmcnl the (modulo-m) plaocmrmt, where m = 2”.
Onoc thc block E. is uniquely identified by this field, the tag associated with the addressed block is compared
with thc tag in thc mcmory ai:lclrr:ss.

mfimflfif iaddness 5+1; Tag Cache M

IIEE
Data —

o Data BO
s"r/ r Data

Esex»-i1:1[hit In cache] *1“
' [Bio-ck

[I11-iSS in cache] frames] ‘

H :-1,“, S
W41

"I5-"('1-i*1]
W{4j+2J Bi

W

{aj The cachelrrisrmory addmsslng

Cache
[Bin-ck frames] I

Tag A2 MB-& 'I
-.
_zflzq

X“Q

BO
B1

$$i'3$$
B?
B-B
B-9
B10
B-11
B-12
B-13
B-1-i
B-15

[bi Bio-ck B; can be mapped to block frame E,-if i'= j [moduio 4)

ain Mernuy
_E';

W1
W2 BO
W3

wi-may

/\'/ [Bin-cks)

Main Me=rnory

Fig. 5.9 Dire-cl:-napping cache orga-Marion and a napping exarnpie

A cache hit occurs whcn thc two tags match. Othcrwisc a cachc miss occurs. In -cas-c ofa cachc hit, thc
word offiuct is used to idcntiij thc d-csirod data word within thc a|:ldr1:.~¢'.o|:l block. Wh-crl :1 miss occurs, thc
entire memory address (s + w bits} is used to oooess the main memory. The first s hits locate thc addrcssod
block, and the lowcr w bits locarc thc word within thc block.

Bu-s,Cuch=c,end Shared Mammy i |g1

1)é} Example 5.3 Direct-mapping cache design and block
mapping l

An example mapping is given in Fig. 5.913, where rt = 16 blocks arc mappcd to m = 4 block frames, with four
possiblc soun:-cs mapping into onc dcstination using modulo-4 mapping.

Cache Design Parameter:

In practicc, thc two paramctcrs n and m diii'cr by at lcast two to throc ordcrs ofmagnitudc. A typical cachc
block has 32 bytes corresponding to eight 32-bit words. Thus w = 3 bits it" thc rnachinc is word-addrcssablc.
lfthc rnachinc is byte-addrcssablc, thcn w = S bins.

Consider a cache with 64 Kbytes. This implies m = 2' ' = 2043 block frarnes with r = 11 hits. Consider a
main memory with 32 Mbytes. Thus n = 22° blocks with s‘ = 20 hits, and the memory address needs s + it-' =
20 I 3 = 23 bits for word addressing and 25 bits for byte addressing. In this case, 2” ’ = 29 = 512 blocks are
possiblc candidatcs to bc mapped into a singlc block frame in a direct-mapping cachc.

Advantagcs oi'a dircct-mapping cachc includc simplicity in hardwatc, no associativc search nccdcd, no
page rcplaccmcnt algorithm nccdod, and thus lowcr cost and highcr spccd.

Howcvcr, thc rigid mapping may rcsult in a poorcr hit ratio than with thc associativc mappings to bc
introduced ncxt. Thc schcmc also prohibits parallcl virtual addrcss translation. Thchit ratio may drop sharply
ifmany address-cd blocks havc to map into thc samc block iiamc. For this reason, dircct-mappcd cachcs tcnd
to usc a largcr cachc sizc with morc block frames to avoid thc contcntion.

Fully Amscinrivc Cache Unlike direct mapping, this cache organization offers the most flexibility in
mapping cache blocks. As illustrated in Fig. 5. I01, each block in main memory can be placed in any of the
available bin-ck frames. Because of this flexibility, an s‘-bit tag is nccdcd in cach cachc block. As s := r , this
represents a significant increase in tag length.

Thc namc_,fiiI{r rissociiritit-‘c’ crichc is dcrivcd from thc fact that an m-way associativc scarch rcquircs thc tag
tn be compared with all block tags in the cache. This scheme offers the greatest flexibility in implementing
block rcplaccmcnt policics fora highcr hit ratio.

Thc m-way comparison ofall tags is t-‘cry timc-consuming if t:hc tags arc comparcd scqucntially using
RAMs. Thus an associnrit-‘c memory [content-addressable memory, CAM) is needed to achieve a parallel
comparison with all tags simu ltancou sly. This dcmandsa highcr implcmcnmtion co st forthc cachc. Thcrcforc,
a fully associativc cachc has bccn implcmcntcd only in modcratc si:n:.

Figure illllb shows a four-way mapping example using a fully associative search. The tag is 4 bits long
bccausc lti possiblc cachc blodrs can bc dcstinod for thc sarnc block framc. Thc major advantage of using
full associativity is to allow thc implcmcntation ofa bcttcr block rcplaccmcnt policy with rcduccd block
contcntion. Thc major drawback lics in the cxpcnsivc scarch proccss rcquiring a highcr hardwarc cost.

rr-.- Mcliruw Hill l'||rr.q|r_.I.I||r\ _

I?! i‘ Advwiced Cnvnjxnzer Arcintecturs

I

rn-nmor address s+w* T Cache Mam Memo‘-F,2g Data - we

Data. / 1
S

S J" W .
a w

‘/-

Q

Data
Data

[hit In eache] E
Data
Data

D
JD G

[miss in cachet

313

Data
Data
E

Tag Worn Data }_ E0

i-Bi '
S

l'l"l

-[Biocit 'frarnnsji /*" tame:

._‘*-'.1_
iws

W4i
W[4j+1]
Wi4i+-‘ii
W[¢j-+3]

[a] Assn-riiativo search with all i:i-in-ck tags

Cache B1
[am frames] ' Qir

Tag *

[hi Every Ho-c.k is mapped to any of the four bin-ck franee identified by the tag

Fig. 5.10 Fully associative cache orgariia-ation and a napping ea-tarripie

5.1.3 Set-Associative and Sector Caches
Sct-assoc iativc cach-cs arc thc most popular cachc designs built into commctcial computcrs Sector mapping
cachcs ofi'cr a design altcrnativc to sct-associativc caches. Thcsc two typos of cachc design arc dcscnbcd
bclow.

\

Main Memory

EififififiT
B-B
B9
B10T.

B12
B13
B14
B15

H‘.-r Mcfiruw Hill |:'m.-;|i_.i-i-r~ i

Bus, Cach=e,a\nd Shuinad Mammy E |§g

Set-Auociutive Cache This design nffers a e-nmpmmise between the two extreme eache designs based
cm direet mapping and full assoeiativity. If pmperly designed, this eache may offer the best performance-
eeist ratin. M-nst high-perfimnanee enmputer s].-"stems are based 011 this approach. The idea is illustrated in
Fig. 5.11.

memo | 5+-w’ Tag gmm Main Merrnry
W address Z ED

Eil _ E1 Sm
I

'— Em-13
S-Ci I F

: I-

Ir _.

chnlnc-=1che:{“‘i*'“ '
.i!"."_55*".°?¢?."3 '

0

B0
B1
B2
B3

s-0'!‘ '

am ,FaBIML Sm
B e= . ‘B

{aj A k-my associative snreh within each sm of keach bio-cks

Tag [2b|'l$] Cache
7 ‘II E0

_ +-
i Zi.S-MO-=

S-M1-1

BO
B1
B2
B3
B4
B5
B6

B
hi

ki

S-M2-1

S-913*

BT
B8
B9

B10
B11
B12
B13
B14
B15

Main Memory

[bi Mapping cache blocks in a mo-wqr associative cache wit four sets

Fig. 5.11 Set-assodatlve cache cvrgariizadon and a mmun} amoeiatiue mapping exarnpie

[n a k-miy ns.s-oi:-rhrive eache, the m eache blnek flames axe divided into tr = mfk sets, with .1: blocks per set.
Each sci is identified by a d-hit ser number. where 2J= 1-I. The eache hlnek tags are new reduced tn s — d bits.
In practice, the ser size k, or assac~r'ariviI__v. is chosen as 2, 4, 3, 16, or 64, depending on a tradeoff among block
size H-‘. eache size m, and other perf'Dm1&nee."eust feelers.

rt» Meliruw rrrttt-...¢-,.wt.¢. '

IUD i‘ Advanced Computer Architecture

Fully associative mapping can be visualized as having a single set (i.e. 1' = 1) or an m-way astsoeiativity.
ln a It-way associative search, the rag to be compared only with the It tags within thc identified set, as
shown in Fig. 5. l Ia. Since Ir is rathersmall in practic-1; the It-way associative search is much more economical
than the full associativity.

ln generaL ablodt By can be mapped into any one of thc available frames Bf in a set S,- defined below.
Thc matched tag identifies the ctn-rent block which resides in the frame.

B,-—> §,~e.S‘,- if jtmodulo t')=i (5.2)

Design Trad-eoff: The set size (associativity) k and the numberof sets tt are inversely related by

m = tl X It (5.3)

For a fixed eache size there exists a tradeoff between the set size and the number of sets.
The advantages of the set-associative cache include the following:
First, the block replacement algorithm needs to consider only a iew blocks in the same set. Thus the

rcplaccmcnt policy can be more economically implemented with limited choices, as compared with the iirlly
associative cache.

Second, the k-way associative search is easier to implement, as mentioned earlier. Third, many design
tradeoffs can be considered (Eq. 5.3] to yield a ltigher hit ratio in the eache. The cac-he operation is ofien used
together with TLB.

I»)
CS2] Example 5.4 Set-associative cache design and block mapping
An example is shown in Fig. 5.l]b for the mapping ofn = 15 blocks from main memory into a two-way
associative cache (k = 2} with rt = 4 sets over m = B block frames. For the i860 example in Fig. 5.81:, both
the D—cacl:te and l-cache are two-way associative (Ir = 2). There are 128 sets in the D-eache and 64 sets in the
I-eache, with 256 and 123 block frames, respectively.

Sector Nltlpping Cache This block placement scheme is generalized from the above schemes. The idea
is to partition both the cache and main memory into fixed-size sectors. Then a iiilly associative search is
applied. That is, each sector can be placed in any of the available sector frames.

The memory requests are destined for blocks, not for sectors. This can be filtered out by comparing the
sector tag in the memory address with all sector tags using a fully associative search. If a matched sector
fralne is found (a cache hit), the block field is used to locate the desired block within the sector fi'aIl1e.

lfa cache miss occurs, the missing block is fetched from the main memory and brought imo a congruent
block iramc in an available sector. That is, thc ith block in a sector must be placed imo the ith block frame
in a destined sector irame. A tctfirlbir is attached to each block irame to indicate whether the block is ttniid
or in t-'m'r'.rf.

‘When the contents of a block iramc arc replaced from a new sector, the remaining block frames in the
same sector are marked invalid. Only the block frames from the most recently referenced sector are marked
valid for reference. However, multiple valid bits can be used to record other block states. The sector mapping

Thur Ml.'I;Ifllb' HI" l'n¢r.q|r_.u|»rs -

Bus,Cochc,0nd5hu\|'edMemo1)' i - 1|"

just described can be modified to yield other designs, depending on the block replacement policy being
implemented.

Compared with l'ul|],r associative or set-associative caches, the sector mapp ing cache offers the advantages
ofbeing flexible to implcmesnt various block replacement algorithms and being economical to pezrforrn a fillly
associatit-'e search across a limited numherof sector tags.

The sector partitioning offers more freedom in grouping cache lines at both ends of the mapping. Making
design choice between set-associative and sector mapping caches requires more trace and simulation evidence.

P)
Cg Example 5.5 Sector mapping cache design
Figure 5.12 shows an example of sector mapping with a sector size of four blocks. Note that each sector can
be mapped to any ofthe sector frames with full associativity at the sector level.

Memory address
[aims] lama] (‘um Main memory S-actors

tit
BD '[T191 gr

} O

5-war Valid or in I‘
frames [3 bits] B4 '

T39 l 1. B6o -< i— I_ B7 t

Eii r ~ E *2
1 -t i— 4/ -it-‘I

/ < : > 35'il$E§BEES

Bi . >4
8

2 < iii_B p .
l Tao B12 _ '

B13 ' -» - r s 5
3 ‘t B14 ' .

B15L -as; I
4 I } E

I

sza Z
'- B29'_E,E—H

Fig. 5.12 A four-way soccer mapping cadte organlzadcm

rs» Mfliruw rrrttr-...¢-,.,st.¢. '

Z02 i‘ Advanced Computer Architecture

This scheme was first implemented in the LEIM Systentf3t5(} Model 85. 1n the Model 85, there were
I6 sectors. each having 16 t:-locks. Each block had 64 bytes, giving a total of 1024 bytes in each sector and a
total eache capacity of 16 Kbytes using a LRU block replacement policy.

5.2.4 Cache Performance Issues
The performance ofa cache design concerns two related aspects: the ctr-ic count‘ and the hr‘! ratio. The cycle
count refers to thc number of basic machine cycles needed for cache access, update, and coherence control.
The hit ratio determines how effectively the cac he can reduce the overall memory-access time. Tradcoffs do
exist between these two aspects. Key [actors affecting cache speed and hit ratio are discussed below.

Pregnant trrrcc-rztirit-‘en sinnrirrrion and rIH¢If__Fffc‘rIf nrodcfing are two complementary approaches to studying
cache performance. Ideally, both should be applied together in order to provide a credible peribrmance
asses smcnt.

Simulation stud ies present snapshots ofprogram behavior and cac he rcspon scs but they 2-atfier from having
a microscopic perspective.

Analytical models may deviate lrom reality under simplification. However, they provide some macroscopic
and intuitive insight into the underlying processes.

Agreement between results generated from the two approaches allows one to draw a more credible
conclusion. However, the generalization of any conclusion is limited by the finite-sized address traces and by
the assumptions about address trace pattems. Simulation results can be used to verify the theoretical results,
and analytical formulation can guide simulation experiments on a wider range of parameters.

Cycle Count: The cache speed is affected by the underlying static or dynamic RAM technology, the cache
organization, and the cache hit ratios. The total cycle count should be predicated with appropriate cache hit
ratios. This aifects various cache design decisions, as already seen ir| previous sections.

The cycle counts are not credible Lmless detailed simulation of all aspects ofa memory hierarchy is
performed. The write-through or write-back policies also affect the cycle count. Cache size, block size, set
number, and associativity all affect the cycle count as illustrated in Fig. 5.13.

The cycle count is directly related to the hit ratio, which decreases almost linearly with irtcreasing values
of the above eache parameters. But the decreasing trend becomes flat and after a certain point turns into an
increasing trend (the dashed line in Fig. 5.13:1). This is caused primarily by the effect of the block size on the
hit ratio, which will be discussed below.

Hit Ratios The cac he hit ratio is affected by the cache size and by the block size in different ways. These
effects are illustrated in Figs. 5.1311 and 5.13c, respectively. Generally, the hit ratio increases with respect to
increasing cache size {Fig 5. 13b).

When the eache size approaches infinity, a 100% hit ratio should be expected. However, this will never
happen because the cache size is always bounded by a limited budget. The initial cache loading and changes
in locality also prevent such an ideal perib rmancc. The curves ir| Fig. 5.] 3b can be approximated by l — C 0'5,
where C is the total cache size.

Effect of Block Size With a lined cache size, cache perfonnance is rather sensitive to bio-ck sine.
Figure 5.1 3c illustrates the rise and an ofthe hit ratio as the cache block varies from small to large. Initially,
we assume a block size {such as 32 bytes per block). This block sizc is determined mainly by the temporal
locality in typical programs.

PM‘ MIGIELH HI" t'|>rrIq|r_.\.I|n*\ ‘I _

Bus, Cache, and Shared Meme-Iy i 1|];

Cyeia emnt Hit ratio

1 ---------------------------------- --

--"___-r
___ - - J -“

Cache size [bytes]
D-

Cache size, set number, assu-ciativity, or bio-cit sizizi

[aj The total cycle count for cac he access [Courtesy of S. A. [bl H5 Patio ‘-’QF5I!$ fiflfihfl 5139
Przybytekl; reprinted with permission from C-‘ache and
Ma-nory H|'sra.rc.hy Design, Morgan Kaufmann Publishers,
1990)

Hit Ratio [with fixed cache size]

1 ---------------------------------- - -

Z’
E 8irnal

I-

B-iock size
[bites][c] Hit ratio were us bio-ck size

F5} 5-13 Cache performance venue design pararnetiers used

As the block size increases, the hit ratio improves because of spatial locality in referencing larger
insiructionfdata blocks. The increase reaches its peak at a certain rzprimum bind: size. After this point, the hit
ratio decreases with increasing block size. This is caused by the mismatch between program behavior and
block size.

As a matter of fact, as the block size becomes very large, many words fetched imo foe eache may never
be used. Also, the temporal locality efi'ccts are gradually lost with larger block size. Finally, the hit ratio
approaches zero when the block size equals the entire cache size.

For a bus-based system, Smith {I987} determined that the optimum block size should be chosen to
minimize the ei'Tee_tive memory-access time. This optimum size depends on the ratio of the access latency
and the bus cycle time (data transfer rate). He identified design targets for the hit ratio, bus traffic, and average
delay per reference based on an empirical model derived from a wide variety of benchmark simulations.

Efiacr: of Set Number In a set-associative cache, the effects of set number are obvious. For a fixed cache
capacity, the hit ratio may decrease as the number of sets increases. As the set number in-creases from 32 to
64, 123, and 256, the decrease in the hit ratio is rather small based on Smith’s 1982 report. When the set
number increases to 512 and beyond, the hit ratio decreases faster. Also, the tradeofifs between block size and
set number should not be ignored (Eq. 5.3).

rr» Mtflruw rrrrir-...¢-,.a,r.¢. '

Z01 i‘ Advanced Computer Architecture

Other Performance Factor: In a perlbrmance-directed design, tradcotfs exist among the cache size, sct
number, blodr: size, and memory speed. Independent blocks, fetch sizes, and fetch strategies also afiiect the
performance in various ways.

Multilevel cache hierarchies offer options for expanding the cache effects. ‘v'cry often, a write-through
policy is used in the first-level cache. and a write-back policy in the second-level cache. As in the memory
hierarchy, an optimal cache hierarchy design must match special program behavior in the target application
domain.

The distribution of cache references for instruction, loads, and writes of data will aifect the hierarchy
design. Based on some previous program traces, 63% instruction fetches, 25% loads, and l2% writes were
reported. This affects the decision to split the instr|.|ction cache from the data cache.

Note 5.1 Multi-level cache memories

Over the last two decades, processor speeds have risen much faster than memory speeds. ln fact, in
terms ofnumber of processor cycles—i.e. relative to processor clock speeds—main memory is much
slower today than it was twenty or thirty years ago, albeit it is also much less expensive and storage
densities are much greater.

\

Processor Three levels oi caste Main memory

Fig. 5.14 Three ievcisofcacbe b-crvveen processcrrand rmrio memory

To ‘bridge the divide‘ between processor speeds and main memory spccd.s—a divide which has
grown over the yesrs—multiple levels of cache memories are employed between processor[s) and
main memory, as sh-own schematically in Fig. 5.14.

To avoid pipeline stalls, level one cache Ll , closest to the processor, is divided between instruction
and data cacl1c{l—cache and D-cache). It is the Fastest and smallest of the three cac-hes, and uses faster
SRAM; ideally, its access time should equal one processor clock cycle. On multi-core chips, separate
Ll cache is provided with each processor core.

L2 cache may also be on the same chip but, on multi-core ehips, typically it is sllared between
processor cores; size goes up to a few megabytes, us ing slower and less expensive dynamic RAM. L3
cache, if provided, may be on-chip, off-chip or may even be integrated with the main memory.

In a system with multilevel cache, to find a required byte or word in memory, the processor can
initiate the access in parallel across two [or more) levels ofcache; when a cache hit occurs at a particular
level, access in the lower levels can be tcmtinated.

F?» Mtfiruw HIllr'».-rqtwrnw

Bus, Cache, and Shared Memory i 195

Over the last two decades, there have been huge advances in ‘v'L5-l technology in terms of both device
densities on a chip and clock speeds. Over this same period, due to lower system costs, the total number
of processors manufactured and sold arotnrd the world has also risen steadily. As a result, marry different
processors are produced in each processor family; as esamples, we need only to cite lntel Pentium, Sun
SPARC. MIPS, and the Power series of proces More than one manu iacturer usually produces processors
in each ofthesc iamilies.

Different members of each processor family are targeted at different applications (recall Fig. 4.1}, and
are built to different co st versus peribrmanee criteria. To bridge today's larger processor-memory speed gap,
multilevel eache systems are employed. Specific cache systems are designed based on specific processor
specifications. For each level of tl1e eache, processor designers must select the cache size, cache block size,
mapping scheme (direct or set associative}, write backiwrile through policy, etc.

As mentioned above, simulation studies and analytical modelscan be used for such designs. Also important
in this contest are past experience with earlicrprocessor models, chip area requirements for the cache, power
consumption, and ofien the intuitive decisions made by processor designers.

SHARED-MEMORY ORGANIZATIONS

1 Memory interleaving provides a higher bandwidth forpipelined access ofcontiguous memory
locations. Methods ihr allocating and dcalloeating main memory to multiple us-er programs

are considered for optimizing memory utilization. Memory bandwidth analysis and fault tolerance issues are
also discussed below.

5.3.1 Interleaved Memory Organization
Various organizations of the physical memory are studied in this section. In order to close up the speed gap
between the CPUr'cache and main memory built with RAM modules, an inrerferrving technique is presented
below which allows pipelined access ofthe parallel memory modules.

The memory design goal is to broaden the tjieerh-'r’ memory rmnst-mm so that more memory words can
be accessed per unit time. The ultimate purpose is to match the memory bandwidth with tl1c bus bandwidth
and with the processor bandwidth.

Memory interleaving The main memory is built with multiple modules. These memory modules are
cormected to a system bus or a switching network to which other resources sueh as processors or U0 devices
are also connected.

Once presented with a memory address, each memory module returns with one word per cycle. It is
possible to present dii'Tercnt addresses to difiierent memory modules so that parallel access ofmultiplc words
can he done simultaneously or in a pipclined fashion. Both parallel access and pipelined access are forms of
parallelism practiced in a parallel memory organization.

Cons idera main memory fo rrrred with m = 2“ memory modules, each containing it-' = El’ word.s of memory
cells. The total memory capacity is m - it-' = 1"“ worcls. These memory words are assigned linear addresses.
Diiierent ways ofassigning linear addresses result in difi'crent memory organizations.

Besides random access, the main memory is oflen block-accessed at consecutive addresses. Block access
is needed for fetehing a sequence ofirtstructions or for aeeessing a lineariy ordered data structure. Each block

Thu‘ Ml.'I;Ifllb' HI" l'n¢r.q|r_.u|»rs -

205 i‘ Advwrced Cenrpmzer Ardnitzedure

aocms may correspond le the size of a cache bl0ck{eacl1e line) or to that of several cache blocks. Therefore,
it is desirable to design the memory to facilitate block access ofcontiguous words.

Figure 5. 15a shows two address formats for memory interleaving. Lnnwrrder inrerferwfng spreads
contiguous memory locations across the ml modules horizontally (Fig. 5. l Sa]. This implies that the low-order
0 bits of the memory address are used to identify the memory module. The high-on:ler b hits are the word
addresses (displacement) within each module. Nate that the same word address is applied to all memory
m-odules simultaneously. A module address decoder is used to distribute module addresses.

High-order irrreriem-ing (Fig. 5.151;) uses the high-order n bits as the module address and the low-order
b bits as the word address within each module. Contiguous memory locations are thus assigned to the same
memory module. ln each memory cycle, only one word is accessed from each module. Thus the high-order
interleaving cannot support block access of contiguous locations.

Adelress
eon-tier

Memory 3
address

MAB MAB "°

Cl AE

wad.__
b

$3gt.2.

Maddie
address

W‘eufier

“*"“
_

Memory
WData buffer

ElE

W
we-rd add ress Q
butler < Data bus >

{a] Low-order m-way interleaving [the C-aeeess memory scheme)

I I I

em-d-er
3 Melnery

address

MAB MAB-

n M1

we_._
b HE EH

MDB MDB“TB ii“ It

Mo-due
address

IEEE] buffer
Mm-1

Memory
M Daa buffer

< Daia ms" >
Fig. 5.15 ‘firm lnee-rieaved memory organdzatlons mm m = 1" modules an-cl w = 1" words per module {word

addressushoww-h1bnms]

On the other hand, the low-order m-way interleaving does support block access in a pipelinod fashion
Unless otherwise specified, we consider only 10w-order memory interleaving in subsequent mseusmons

[ti] High-order m-way lnterleaving

|‘i‘-|- Mcliruw Hill l'||rr.q|r_.I.I||r\ _

Bi.rs,Cach-e,end Shuinad I-Iiemery :51

Pipefinad Munory Access Access ofthe m memory modules can be overlapped in a pipelined fashion.
For this purpose. the memory cycle (caiied the rmjor c__\=eie] is subdivided inte m miner i:-ycies.

Memory adcire-es Regfister i§lbitts)]

Word address L l J "4 Module address
M

"'1

9-P 5 . T
B 12 13 15
15 Zfl 21 23

34. F55 . 39' .. 3.1
32 33 34 3-B 3-T 3'9

41 42 44 45 4-T

. 49 ..5p52-. -53 .. . 55
6-D G1 B2 B3

Memory Data Register

see5 ae:»—§ _______4‘ eaea~§
reaeaee:~;

iM_mm_- -0 ______________ET"
r-_--_----_----_--_-

'E

messes»;

(at Eight-way iesvorder interleaving iabeeiute add-rees shown in each memory word]

I

- - Q - - - - Q - - - - Q - - - - - -

W1
we -B = Major eye ie
W t= Him = miner cycle
W5 m = degree of interteaving

4
we
W2
W1
we

l I I
- H I 1- Time

26

[hi Pipet ined aeeeee of eight eoneee utive words in a C-access memory

Fig. 5.16 Muitiwly lnurieaved memory erganizatien and the C-access timing chart

An eight»wey interleaved t‘net1101‘yi[vrith m = 8 and w = 8 and tl1u.s n = b = 3] is shown in Fig. 5.169.. Let B
be the major cycle and rthe minor cycle. These two cycle times are related as follows:

r = 3 (5.4)
HT

where m is the degme of interiem-'r'ng. The timing of the pipelined access of the eight contiguous memory
words is shown in Fig. 5. 16b. Th is type of ermeurnenr access ofcontiguous words has been ealled a C-access
memory scheme. The major cycle El is the total time required to complete the access ofa single word iiom

Par MIGIITLH Hi" l'mrJI|rr_.urr¢\ :

tort i‘ flrdwrvrced Cenrputer Architecture

a module. The minor cycle t is the actual time needed to produce one word, assuming overlapped access of
successive memory modules separated in every minor cycle r.

Note that thc pipelined access of the block of eight contiguous words is sandwiched between other
pipelined block accesses before and after the presrecrrt block. Even though the total block access time is 18',
the efi-erite recess time ofeach word is reduoed to t‘ as the memory is contiguously accessed in a pipelined
fashion.

5.3.7. Bandwidth and Fault:ToIerance
Hellerman ii 967) has derived an equation to estimate the effective increase in memory bandwidth through
multiway interleaving. A single memory module is assumed to deliver one word per memory cycle and thus
has a bandwidth of 1.

Memory Bandwidth The rrrrerrrrrr.-'__v hrmdwrkrirh B of‘ an m-way interleaved memory is upper-bounded by m
and lower-botmded by i. The Hellerm.an estimate of B is

B = mi‘-“‘ 2 \/E (5.5)
where m is the number of interleaved memory modules. This equation implies that if 145 memory modules are
us-ed, then the cit"-ective memory bandwidth is approximately four times that ofa single module.

This pessimistic estimate is due to the fact that block access of various lengths and access of single
words are randomly mixed in user programs. l-Iellerman's estimate was based on a single-processor system.
If mentory-access conflicts from multiple processors (such as the hot spot problem) are considered, the
cfiective memory bandwidth will be further reduced.

ln a vector processing computer, the access time of a long vector with n elements and stride distance i
has been estimated by Cragon (1992) as follows: It is assumed that the n elements are stored in contiguous
memory locations in an or-way interleaved memory system. Thc average time 1', required to acoess one
element in a vector is estimated by

r|= £(I+L1] (5.6)
HI‘ H‘

When rr —> we (very long vector), r, —> arm = ras derived in Eq. 5.4. As n —: 1 [scalar access), r, —> 6'.
Equation 5.6 conveys t1're message that interleaved memory appeals to pipclined access of long vectors; t1're
longer the better.

Fault Tolerance High- and low-order interleaving can be combined to yield marry dificrent interleaved
memory organizations. Sequential addresses arc assigned in thc high-order interleaved memory in each
memory module.

This makes it easier to isolate faulty memory modules in a rrrrerrrorjv bmrir ofm memory modules. When
one module failure is detected, the remaining modules can still be used by opening a window in the address
space. This fault isolation cannot be carried out in a low -order interleaved memory, in which a module failure
may paralyze the entire memory bank. Thus low-order interleaving memory is not iault-tolerant.

Bu-s,Cuch=e,end Shared Mammy i ggg

1)é} Example 5.6 Memory banks, fault tolerance, and bandwidth
tradeuffs

In Fig. 5.1T, twn alternative memnry addressing schemes are shnwn which combine the high- and lnw-nnzler
interleaving enneepts. These alternatives nffera better bandwidth in ease ofmndule failure. A fnur-way Inw-
mtler interleaving is organized in each nftwn memnry banks in Fig. 5.1']"a.

Mei'rnryaddrIn5sRa-yaiarffihlls}
B H, = I I IW W mum address

wan acldmss
M0 M, M, M§ M5
0 1 2 3 33

5 a 1 aw
9 1o 11 41 42
13 14 15 :15

“'7 17' 18 "19 vw 49" vi?
21 22 23 53
25 26 21 51
29 30 31 51

o an 1i, Q
{a}Fo¢r-ivayhlerleavtngiuqd-i\aad1manu:rytank

Merrioryacldx-amRagIsmr{BhIts)

I I I 1
Bank aclchuss

M M M
16 1? 33 49
18 19 35 51
20 21 3? 53
22 23 39 55

__ _ 24 Q5 41 _ 5?
1D 11 27 43 59
12 13 29 45 I51
14 15 31 4? B3

Bank D Bank 1 Bank 2 Bank 3

(b}Two-way Inmflamdrig wflhin nam mqrnoq but

8'3-’I§Eifi-\ SSIk'§$t3EBk3§ B8H|E$$5-‘iii’ Bfififlfibfifii-F

mm:-nag no-euro:->3

3H5 8§IGBfi‘§HH‘3FG: Bsflfiflflafi

Fig. 5.1 1' Bandwiclth analysis of cwoakemaflve lntcrieared mernory orgarvludons over eight rnerncmy modules
{Nnioiutne address shown in each memory bunk.)

rs» MIG:-|:|'u-' rrrrir-...¢-,.w..¢. '

I l'l'l i‘ Advanced Crunputar Architecture

Cln the other hand, two-way low-order interleaving is depicted in Fig. 5. 17b with the memory system
divided into four memory banks. The high-order bits are used to identify the memory banks. The low-order
bits are used to address the modules for memory interleaving.

In case ofsingle module failure, the maximum memory bandwidth of the eightway interleaved memory
(Fig. 5.16s) is reduced to zero because the entire in-emery bank must be abandoned. For the four-way two-
bank design (Fig. 5.179.), the maximum bandwidth is reduced to four words per memory cycle because only
one of the two faulty banks is abandoned.

In thetwo-way design i:n Fig. 5.1 "Eb, the gracefully degraded memory system may still have three working
memory banks; thus a maximum bandwidth of six words is expected. The higher the degree of interleaving,
the higher the potential memory bandwidth if the system is fault-free.

If fault tolerance is an issue which cannot be ignored, then tradcoifs do exist between the degree of
interleaving and the number of memory banks used. Each memory bank is essentially self-enclosed, is
independent of the conditions of other banks, and thus offers better fault isolation in case of failure.

5.3.3 Memory Allocation Schemes
The idea of virtual memory is to allow many software processes time-shared use ofthe main memo ry, which
is a precious resource with limited capacity. The portion ofthe OS kemel which handles the allocation and
deallocation of main memory to csecuting processes is called the memmft-' marmger. The memory manager
monitor".-r the amotlnt ofavailable main memory and decides which processes should reside in main memory
and which should be put back to disk if the main memory reaches its limit.

In this section, we study the basic concepts of memory swapping, either at the process level or at the
individual page level. Both swapping systems and demand paging systems are introduced, based on the
development of the memory management subsystem in UNIX. Possible extensions of these memory
allocation schemes are discussed along with some performanoe issues.

Allocation Fhliciel Mernorjv .sn'qrJpr'ng is the process of moving blocks of information between the levels
ofa memory hierarchy. For simplicity, we concentrate on swapping between the main memory and thc disk
memory. Several key concepts or design alternatives in implementing memory swapping are introduced
below.

First, the swapping policy can be made either nonpreemptive or preemptive. ln nonpreemprit-'0 rnliornrion,
the incoming block can be placed only in a free region ofthe main memory. Apreenr;Jr‘r've rrffoeation scheme
allows the placement of an incoming block in a region presently occupied by another process. In either case,
the memory manager should try to allocate thc free space first.

When the main memory space is fully allocated, the nonpreemptive scheme swaps out some of the
allocated processes {or pages) lo vacate space for the incoming block. Dn the other hand, a preemptive
scheme has the freedom to preempt an executing process. The nonpreemptive scheme is easicrto implement,
but it may not yield the best memory utilization.

The preemptive scheme ofibrs more flexibility, but it roquires mechanisms be established to determine
which pages or processes are to be swapped out and to avoid rfrrnshing caused by an excessive amount of
swapping between memory levels. This implies that preemptive allocation schemes are more complex and
more expensive to implement.

Thur Ml.'I;Ifllb' "I'll l'n¢r.q|r_.u|»rs -

Bu-s,Codr=e,0nd5lro|'ed.F-Ilemory L in

[n addition, an allocation policy can be made either local or global. A loeal allocation policy involves only
the resident working set ofthe faulty process. A global allocation policy considers the history ofthe working
sets ofall resident processes i11 making a swapping decision. Most computers use the local policy.

Swapping System: This refers to memory systems which allow swapping to occur only at the entire
process level. A .s"a'q|'J or-w‘:-e is a configurable section of a disk which is set aside for temporary storage of
information being swapped out of the main memory. The portion of the disk memory space set aside for a
swap device is called the swap space, as depicted in Fig. 5.13.

Main Memory Disk Memory

»< K
AFMK v41 SwapVh fififloe

sues Z~»r& B
1023K i _ H MI _

[a] Moving a pro-cess [or pages] onto the swap spa-oe on a disk

Main Memory Disk Memory
or [01 [U] — '

i
2

¢|< us to
n -I

4.1555 (sax; Swan

‘ WTDGK‘ ll? K]
.

- .

‘llil-EQK‘ [1 K] iI
U

1e2:.=.K _ _ . I‘ Ml
[b] Swapping in a process [or page-st to the memory

FiI- 5-13 The concept olmemory swapp-irrg in a virtual memory l1-ierarthy [virtual pageaddressec are identified
bynumbew-swid1lnparontl1eses.assrxningapageslzeof1Kw\ords}

The memory manager allocates disk space for program files one block at a time, but it allocates space
on the swap device in groups of contiguous blocks. For simplicity, we consider blocks as fixed-size pages.
The virtual address space ofa process may occupy a number of pages. The sin: of a process address space is
limited by the amount ofphysical memory available on a swapping system.

re» Meliruw rrrrr r-...=-“trim '

I [Z Z1 Advanced Cornputer Architecture

The swapping system was used in the PDP-1] and in early UNIX systems. It transfers the entire process
between main memory and the swap device. It does not transfer parts {pages} of a process separately. For
example, the PDP-l l allowed a maximum process size of only 64 Kbytcs. The entire process must reside in
main memory to execute.

A simple example is shown in Fig. 5.18 to illustrate the concepts oi‘ swapping our and Stt-‘fl]Jpli"ig in a
process consisting offive resident pages identified by virtual page addresses III, IK. 16K. l’lK. and 63141 with
an assumed page size of1K words (or 4 Kbytes for a 32-bit word length).

Figure 5. 18a shows the allocation ofphysical memory before the swapping. The main memory is assumed
to have 1024 page Erames, and the disk can accommodate 4M pages. The live resident pages, scattered around
the main memory, are swapped out to the swap device in contiguous pages as shown by the shaded boxes.

Later on, the entire process may be required to swap beck into the main memory, as depicted in Fig. 5. 18b.
Difiercnt page frames may be allocated to accommodate the returning pages. The reason why contiguous
blocks are mapped in the swap device is lo enable faster [l0 in one multibloclr data transfer rather than in
several single-block transfer operations.

lt should be noted that only the assigned pages are swapped out and in, not the entire process address
space. In the example process, the entire process address space is assumed to be 64K The unassigned pages
include the two gaps of virtual addresses between 2K and 16K and between 18K and 63K, respectively.

These ern,rJr__1-' spaces are not involved in the swapping process. ‘When the memory manager swaps the
process back into memory, the virtual address map should be able to identify the virtual addresses required
for the returning process.

Sumpping in UNIX Ln the early UNIXHJS, the kernel swaps out a process to create [roe memory space
under the following system calls:

{1} The allocation of space fora child process being created.
{Bi The increase in the size ofa process address space.
-[3-j The increased space demand by the stack ibr a process.
-[4] The demand for space by a returning process swapped out previously.

A special process U is reserved as a s‘ t1'a,'|'Jper. The swappcr must swap the process into main memory before
the kernel can schedule it for execution. In fact, process I) is the only process which can do so. Only when
there are processes to swap in and eligible processes to swap out can the swappcr do its work. Otherwise, the
swappcr goes to sleep.

However, the kernel periodically wakes the swappcr up when the situation demands. The swappcr should
be designed to avoid thrashing, especially in swapping out a process which has not been executed yet.

Demand Paging System: A paged memory system oflen uses a demana‘paging memory allocation policy.
This policy allows only pages (instead ofprocesses) to be transferred between the main memory and the swap
device. [n Fig. 5.18, individual pages of a process are allowed to be independently swapped out and in, and
we have a demand paging system.

The UNIX BSD 4.0 release was the first implementation of the demand paging policy. UNLX System ‘v’
also supported demand paging. ln a demand paging system, the entire process docs not have to move into
mai11 memory to execute. The pages are brought into main memory only upon demand.

FM Mtfiruw ,'["I_lNfJ|lfl|'lfl'\'

Bu-s,C,ache,end5ho|-edi'-Ilemory i 1|;

This allows the process address space to be larger than the physical address space. The major advantage
of demand paging is that it offers the flexibility to dynamically acconimo-date a large number of processes in
l.he physieal memory on a time-sharing or multiprogrammcd basis with significantly enlarged address spaces.

The id-ea of demand paging matches nicely with the working-set con-oept. Only the working sets ofactive
processes are resident in memory. Back (1986) has defined the it-orking ser ofa process as the set of pages
re fcrenced by the process during the last rr memory references, where n is the n'r'nr.fon-' sizeofthe working set.

I»)
lg Example 5.1 Worldng sets generated with a page trace
In the iollowing page lraoe, the successive contents of the working set ofa process are shown lor a window
of size n = 3:

Page trace 77 24 7 15 24 24 S l I 7 E 9 24 S l

9
Working set 7 7 7 T T 7 E ll 8 E ll 3 E E

24 24 24 24 24 24 24 24 24 9 9 1
l 5 I 5 1 5 I 5 l I l l 24 24 24

If the lremel keeps only the working sets with a suflieicrntly large window in the main memory, many
more active processes can concurrently reside in the memory than the swapping system can provide. This
potentially increases the system throughput and reduces the swapping traffic. In other words, undemanded
pages are not involved in the swapping process.

Hybrid Memory System: The VAXIVMS and UNIX System V had implemented in-'iJrid rrremori-'s_1-‘.srem.s
combining the advantages of both swapping and demand paging. When several processes simultaneously
are in the ready-to-run-but-swapped state, the swappcr may choose to swap out several processes entirely to
vacate tl'|e needed space. This scheme may lower the page fault rate and reduce thrashing.

Other virtual memory systems may use mrieflrirrrorj-';Jagfng, which preietches pages based on anticipation.
This scheme is rather diffieult to implement. Unless memory reference patterns ean be predicted at the time
when the compiler generates the addresses, this scheme cannot demon st rate its power. A short-range memory
reference pattem is a lot easier to predict due to the locality properties.

SEQUENTIALAND WEAK CONSISTEHCY MODELS
I This section studies shared-memory behavior in relation to program execution order and

memory-access order. The sequential consistency and weak consistency memory models are
eimraeteri;-:.ed and their potential for improving perforninnee is assessed. Ln Chapter 9, we will introduce the
processor consistency and release consistency models for building scalable multiprocessor systems.

5.4.1 Aeomieity and Event Ordering
The problem of memory inconsistency arises when the memory-access order differs from the program
execution order. As illustrated in Fig. 5.19:1, a uniprocessor system maps an SISD sequence into a similar

rr.-.- Mcfiruw Hill l'|>¢f.q|r_.u||r\ i

2 H i‘ |l'l|d'WIMC£d Conuxnzer Arcmteetlura

execution sequence. Thus memory accesses {for instructions and data) are consistent with the program
execution order. This properly has been called seqrrenrlinl e0n.si.srerrey [Lampom 1979].

In a shared-memory multiprocessor. there are multiple instruction sequences in different processors as
shown in Fig. 5. l9'b. Diliferent ways of interleaving the Ml'M'D instruction sequences into a global memory-
access sequence lead to different shared memory behaviors.

P P1 P2 P“

T -14:—"-
E is

[PO] 2 g1,,,, -
I

Swltoh

3

Illlllll
Memory Memory Shared memory system

{)1-dar system {A global memory order for all prooessors)

[aft Sequential eons latency ln an SISD system {bl Event ordorl ng ln art MIMD system

Pro-oo-ssor 1 Pro-oasoor 2 Pro-oesoor 3

Fl’? E?’ P-Ft RF .—-F‘ IQO5_.
'=f '=f '=f

nrB,C nrA_,C ran

Swlte h
Shared mernory

A_ B, C are shared wrltahta vatables ln memory
llnltlally, A= B = C = D]

[cl Aparallel program from Example 5.9

Fig. 5.19 The access ordering of memory events In a uniprocessor and In a mullrlplroeessor. respectively
(Courtesy of Dubflh and Briggs. Tutorld Natl: on Shmed-Memory Mtltlproeessors. lnr_Syrrq:r. Compuear
A.rd1..May 1990}

rs» Mflirpw Hl'lir'mr>:-;|;m»n '
Bu-s,Cadre,end5hor'ed.F-Ilemery i 1|;

How these two sequences are made consistent distinguishes the memory behavior in strong and weak
models. The quality of a memory model is indicated by hardwarefsoftwarc efliciecncy, simplicity, usefirlness,
and bandwidth peribrrnance.

Nlemory Consistenqr Issue: The behaviorofa shared- memory system as ob served by processors is called
a J'fle“J'flrJ!fF model. Specification ofthe memory model answers three fundamental questions: (1) What behavior
should a prograrrrrnerroompilrzr expect fiorrr a slrareri-nrenrory multiprocessor? (2) How can a definition of the
expected behavior guarantee coverage of all contingencies? [3] How must processors and the memory system
behave to en sure consistent adherence to the expected behavior of the multiprocessor?

ln general, choosing a memory model involves making a compromise between a strong model minimally
restricting software and a weak model offering eflicierrt iniplernentalion. The use ofpnrntri order in speciiying
memory events gives a formal description ofspecial memory behavior

Primitive memory operations for multiproccssors include l‘-mrl (rerrr-I’), store (strife), and one or more
synchronization operations such as sn-‘rip [atomic fouzrd-store’) oreonnirionrrf store. For simplicity, we consider
one representative synchronization operation .srr-‘qr. besides the loan‘ and More operations.

Evmt Ordering: On a multiprocessor, concurrent instruction streams (or threads) executing on different
processors are processes. Each process executes a code segment. The order in which shared memory
operations are performed by one process may be used by other processes. Merrrorfv events correspond to
shared -memory accesses. Consistency models specify the order by which the events from one process should
be observed by other processes in the machine.

The even! orrlering can be used to declare whether a memory event is legal or illegal, when several
processes are acoessing a common set ofmemory locatiorts. A program orrrirr is the order by which memory
accesses occur for the execution of a single process, provided that no program reordering has taken place.
Dubois et al. (1936) have defined three primitive rneniory operations for the purpose of specifi/ing memory
consistency models:

{ll A load by processor P, is considered ,rJr.'rfiJrrned' with respect to processor P; at a point of time when
the issuing ofa store to the same location by Pk cannot afiect the value returned by the load

{'2} A store by P, is considered pr.-'r'_,|iiJrrrrer:l' with respect to PA at one time when an issued toad’ to the same
address by Pg returns the value by this store.

{'3} A load is gfoboilr-';Jerj,forrnerf if it is performed with respect to all processors and ifthc store that is the
source ofthe retumed value has been performed with respect to all processors.

As illustrated in Fig. 5.19:1, a processor can execute instructions out of program order using a compiler to
resequcncc insmrctions in order to boost performance. A uniprocessor system allows these out-of-sequence
executions provided that hardware interlock mechanisms exist to check data and control dependences
between instmctions.

W'he:n a processor in a multiprocessor system executes a concurrent program as illustrated in Fig. 5.l9b,
local dependence checking is necessary but may not be sufficient to preserve the intended outcome of a
concurrent execution.

re» Mflirpw rrrrr =-...=-,.a,m. '

I Ii Z1 Advanced Cornputar Architecture

Maintaining the correctness and predictability of the execution results is rather complex on an MIMD
system for the following reasons:

{aj The order in which irtstructions belonging to different sn'earn_s are executed is not fixed in a parallel
program. lfno synchronization among the instruction streams exists, then a large number ofdifferent
insn'ue1ion interleavings is possible.

(bl If for performance reasons the order of execution of instr|.|ctions belonging to the sa.rne stream is
different from the program order, then an even larger number ofinstruction interleavings is po.ssiblc.

{cl lfaccesses are not atomic with multiple cop ies ofthe same data coexisting as in a cache-based system,
then different processors can individually observe different interleavings during the same execution.
In this case, the total number of possible execution instantiations ofa program becomes even larger.

I»)
CB Example 5.8 Event ordering in a three-processor system

(Dubois, Seheurich, and Briggs, 1988)

To illustrate the possible ways of interleaving concurrent program executions among multiple processors
updating the same memory, we examine the simultaneous and asynchronous executions of three program
segments on the three processors in Fig. 5. 19c.

The shared variables are initially set as zeros, and we assume a Print statement reads both variables
indivisibly during the same cycle to avoid confusion. If the outputs ofall three processors are concatenated
in the order P, , P2, and P3, then the output forms a 6-tuplc ofbinary vectors.

There are 26 = 64 possible output co mbinatiorn s. I fall proces sors execute instructioris in their own program
orders, then the execution interleaving rr, b, e, cl, e, f is possible, yielding the output 001011. Another
interleaving, tr, e, e, b, rl',_pf also preserves the program orders and yields the output 1 l l lll.

Ifprocessors are allowed to execute instructions out ofprog ram order, assuming that no data dependences
exist among reordered instructions, then the interleaving b, d,j, e, tr, e is possible, yielding the output 000000,

Out of 6! = 720 possible execution interleavings, 90 preserve the individual program order. From these
90 interleavings not all ti-tuple combinations can result For example, the outcome 000000 is not possible if
processors execute instructions in program order only. As another example, the outcome 011001 is possible
if different processors can observe events in different orders, as can be the case with replicated memories.

Atnmiciry From the above example, multiprocessor memory behavior can be desc ribed in three categories:

('1 'j Program order preserved and unifbrm observation sequence by all processors.
{2} Out-of"-program-order allowed and uniform observation sequence by all processors.
{3} Out-of-program-order allowed and nonuniform sequences observed by different processors.

This behavioral categorization leads to two classes of shared-memory systems for mtdtiprocessors: The
first allows rrromie memory rrc'ees.s'es, and the second allows nomrronrrr merrrorj-‘ neees.s'r.*s. A shared- memo ry
access is atomic ifthe memory updates are known to all processors at the same time. Thus a store is atomic
if the value stored becomes readable to all processors at the sarne time. Thus a necessary and sufficient

rs» Mam-w rrrrrr-...¢-,..i...¢. '
Bu-s,Coeh=e,end5ho|"ed.F-Iiemory i 1|‘;

condition foran atomic memory to be sequentially consistent is that all memory accesses must be performed
to preserve all individual program orders.

ln a multiprocessor w'ith nonatomic memory accesses, having individual program orders that conform is
not a sufficient condition for sequential consistency. In a cachefnetwork-based multiprocessor, the system ean
be nonato mic ifan invalidation signal does not reach all prooessors at the same time. Thus a store is inherently
nonatomic in such an architecture unless special hardware mechanisms are provided to assure atomicity.
Clnly in atomic systems can the ordering ofmemory events be strongly ordered to make the program order
consistent with the memory -access order.

With a nonatomic memory system, the multiprooessor cannot be strongly ordered. Thus weak ordering is
very much ksirod in a multiprocessor with nonatomic memory accesses. The above discussions lead to the
division between strong and weal»: consistency models to be described in the next two subsections.

5.4.2 Sequential Consistency Model
The sequcnrraf consisrenc__1= (SC) memory model is widely understood among multiprocessor designers.
In this modeL the Francis. smres. and swaps of all processors appear to execute serially in a single global
memory order that conforms to the individual program orders of the processors, as illustrated in Fig. 5.20.
Two definitions of SC model are given below.

Processors 6 6 , . , . 6

Shared i switch
Memory
System Single-Port Memory

Fig. 5.30 Sequential oonsislnency memory model {Courtesy of Sindhu, Frailong, and Celrleov; reprinted with
permission from Scdcbie Shomd'-1'dunoryMultlp|ocessors, Kiuworhcadornie Publishers. 1991}

Lnmpor-t’s Definition Lampo11(l9?9_) defined wqucrrria! eons r'srcm:-__ras follows: A multiprocessor system
is scqrrerrrrhifrr er;-rrsisrerr! if the result of any execution is the same as ifthe operations of all the processors
were exocuted in some sequential order, and the operations of each individual processor appear in this
sequence in the order specified by its program.

Dubois, Seheuric-11, and Briggs (1986) have provided the following two sufficient conditions to achieve
sequential consistency in shared-memory access:

(aj Before a food is allowed to perform with respect to any other prooessor, all previous food accesses
must be globally performed and all previous store accesses must be performed with respect to all
processors.

{bj Beibre a store is allowed to perform with respoct to any other processor, all previous food accesses
must be globally performed and all previous smre accesses must be performed with respect to all
processors.

re» Aleliruw irrri =-...=-mm. '

I ll Z1 Advanced Cornputar Architecture

Sindhu, Frailong, and Cekleov (I992) have specified the sequential consistency memory model with the
following five axioms:

(Ii j A fond by a processor always returns the value written by the latest store to the same location by other
processors.

-[2] The memory order conforms to a total binary order in which shared memory is accessed in rcal time
overall fonds and stores with respect to all processor pairs and location pairs.

{3} lftwo operations appear in a particular program order, then they appear in the same memory order.
-['4] The .s'n-‘op operation is atomic with respect to other srrmrs. No other smrc can intervene between the

load and smrc parts of a soup.
{Si All srrztres and so-'a;J.s must eventually terminate.

Lampn-rt's definition sets the basic spirit of sequential consistency. Thc memory access constraints
imposed by Dubois er al. are refined from Lamporifs definition with respect to atomicity. The conditions on
sequential consistency specified by Sindhu ct al. are further refined with respect to partial ordering relations.
implementation requirements ofthesc constraints are discussed below.

implemantafion Considerations Figure 5.20 shows that the shared memory consists of a single port
that is able to service exactly one operation at a time, and a switch that connects this memory to one of the
processors for the duration of each memory operation. The order in which the switch is thrown from one
processor to another determines the global order of memory-access operations.

The sequential consistency model implies total ordering of stoma.-’i'onris at the instruction level. This
should be transparent to all processors. ln other words, sequential consistency must hold for any processor
in the system.

A conservative multiprocessor designer may prefer the sequential consistency model, in which consistency
is enforced by hardware on-the-fly. Memory accesses are atomic and strongly ordered, and confusion can be
avoided by having all proecssorsfcachcs wait sufficiently long for unexpected events.

Strong ordering ofall shared-memory accesses in thc sequential consistency model preserves the program
order in all processors. A sequentially consistent multiprocessor cannot determine whether the system is
a multitasking uniproccssor or a multiprocessor. interprocessor commtnrication can be implemented with
simple i'orrds.-"stores, such as Dekkcr's algorithm for synchronized entry into a critical scction by multiple
processors. All memory accesses must be globally performed in program order.

A processor cannot issue another access until the most recendy shared writable memory access by a
processor has been globally peribrmcd. This may require the propagation ofall shared-memory accesses to
all processors, which is rathertime-consuming and cosdy.

Most multiproccssors have implemented the sequential consistency model because of its simplicity.
However, the model may lead to rather poor memory perfomrancc due to the imposed strong ordering oi
memory events. This is especially true when the system becomes very large. Thus sequential consistency
reduces the scalability ofa multiprocessor system.

5.4.3 Weak Consistency Models
The multiprocessor memory model may range anywhere fiom strong (or sequential) consistency to various
degrees of weak consistency. ln this section, we describe tl'|e twirl: erJnsisrcrre_t-' model introduced by Dubois
ct al. (1986) and a TS-O model introduced with the SPARC architecture.

F?» Mtfiruw Hlllr'n.-rqiwins

Bus,C,ache,end5hn\|-ed!-Ilemciy i my

‘l"l-ie DSB Model Dubois, Scheurich, and Briggs [198-6) have derived a weak consistency memory model
by relating memory request ordering to synchronization points in the program. We call this the DSB model
specified by the following three conditions:

{l 'j All previous st-'nr'hrorri':a£ion accesses must be performed, before a load ora store access is allowed to
perform with respect to any other processor.

('2) All previous fond and store acees scs must be performed, before a s_1-'rrc'irmni:ntion access is allowed to
perform with respect to any other processor

{3} S1-'m*hmnr1'arion accesses are sequentially consistent with respect to one another.

These conditions provide a weak ordering ofmemory-access events in a multiprocesso r. The dependence
conditions on shared variables are weaker in such a system because they are only limited to hardware
recognized synchronizing variables. Buf’l'eri.ng is allowed in write fZlil_{li’i"$‘ except foroperatiorts on hardware-
recognized synchronizing variables. Buifering memory accesses in multiproccssors can enhance the shared
memory peribrntance.

With diiicrent restrictions on the memory-access ordering, many different weak memory models can
be similarly defined. The following is another weak consistency model, ealled the TSD (total store order),
developed by the S-PARC architecture group at Sun Microsystems.

cg?) Example 5.9 The TSO weak consistency model used in
SPARC architecture (Sun Hicriosystems, lnc.,
19% and Sindhu et al.,1992)

Figure 5.2] shows the weak consistency TSO model developed by Sun Mierosysten1s' SPARC architecture
group { l 9'90}. Sindhu ct al. described that the stores and s mops issued by a processor are placed in a dedicated
store buffer for the processor, which is operated as first-in-first-out. Thus the order in which memory executes
these operations for a given processor is the same as the order in which the processor issued them (in program
order).

The memory order corresponds to the order in which the switch is thrown from one processor to another.
This was described by 5-indhu ct al. as follows: A loan‘ by a processor first eheeks its store buffer to see ifit
contains a stone to the same location. lf it does, then the loan‘ rerums the value ofthe most recent such store.
Otherwise, thc foodgoes directly to memory. Since notall foods go to memory immediately, iorrrir in general
do not appear in memory order. A processor is logically blocked from issuing further operations until the
fore! returns a value. A so-‘op behaves like a loan‘ and a store. lt is placed in thc store buffer like a store. and
it blocks the processor like a fond. In other words, the swap blocks until thc store bufier is empty and then
proceeds to thc memory.

.
I I'll i‘ Adwmced Compmzer Architecture

Processor

Stores, Stores, Stores,
Loads 5“fiP'5 Loads Swaps Loads swam

FIFO
armed ‘ ‘ StoreBuffors F

Memory
System

' switch

Single-Port Momoiy

Fig. 5.21 The T50 Wleak consistency memory model {Courtesy of Sindhu. Fnilong, and Celdeov; reprinted
with perrnission from Scalable Sharon‘-Memory multiprocessors. Kluyier Acadernie Pi.ii:iiishers. 1992)

A TSO Formal Specification Sindhu, Frailong, and Cekleov {I992} have specified thc TED weak
consistency model with six behavioral axioms. Only an intuitive description of their axioms is abstracted
below:

-[ll] A iir;-ad access is always returned with the latest store to the same memory location issued by any
processor in the system.

-[2] The memory order is a total binary relation over all pairs ofstore operations.
-['3] If two stores appear in a particular program order, then they must also appear in the same memory

order.
{4} lfa memory operation follows a food in program order, then it must also ibllow the Food’ in memory

order.
-['5'] A sn-'o,rJ operation is atomic with respect to other stores. No other store can interleave between the lined

and store parts of a nirrp.
-[6] All stores and .rn-'o;Js must eventually term inate.

Note that the above axioms (5) and (6) are identical to axioms (4) and (5) for the sequential consistency
model. Axiom (I) eovcrs the cffccts of both local and remote processors. Both axioms {2} and (3) are
weakened from the corresponding axioms (2) and (3) for the sequential consistency model. Axiom (4) states
that theiom1'opcrations do not have to be weakened, as far as ordering is concerned. Fora formal asiomatic
specification, thc reader is rcfcrrcd to thc original paper by Sindhu ct al. U992}.

Comparison ofMemory Model: In summary, the weak consistency model may offer better performance
than the sequential consistency model at the expense oi‘ more complex hardware /software support and more
programmer awareness of the imposed restrictions. The relative rrwrits of the strong and weak memory
models have been subjects ofdebate in the multiprocessor research community.

FM Illcfirm-H Hilllimnpenm

Bus, Cache, and Shared Memory i In

The DSB and the T30 are two different weak-consistency memory models. The DSB mode] is weakened
by enforcing sequential consistency at synchronization points. The TSCI model is wealcened by treating
re.nr'.l.t, stores‘, and s'rutrps diiiercntly using FIFO store huiiers. The TSCI model has been implemented in some
SPARC architectures, while the DSB model has not been implemented in real systems yet.

Sindhu et al. (1992] have identified four system-level issues which also affect the choice ofmemory model.
First, they suggest that one should consider extending the memory model from the processor level to the
process level. To do this, one must maintain a process switch sequence. The second issue is the incorporation
of H0 locations into the memory model. Lit) operations may introduce even more side effects in addition to
the normal semantics oi'Io.n.r.|‘s and s'ron:.s.

The third issue is code modification. In the SPARE arclritecture, synchronization of code modification
is accomplished through the use ofaflush instruction defined in the TSO model. Finally, they fee] that
the memory model should address the issue of how to incorporate pipelined processors and processors
with noncoherent intemal caches. The interested reader is rcierred to their original paper and the SPARE
Architecture Manual for details ofthesc issues.

Strong memory ordering introduces unnecessary proeessorieacbe waiting time and reduces the amount
of concurrency. Weak consistency has the potential to eliminate these shortcomings. Besides sequential
consistency, DSB and TSCI weak memory models, other memory consistency models, such as ,rJr=r:-t-r-ssor
eons rlsrcncjt-' and rt’r'e.t1~re er;-rr.sr'srerrt_1t_ will be treated in Chapter 9.

ii“‘T 1it Summary

In this chapter we studied the functions and technical requirements of the system bus and cache memory,
and also discussed some basic issues related to shaped rnain memory in a multiprocessor sysnern.'lNe
saw that the single system bus has performance limitations as processors become faster and the number
of processors in the system increases.With this baclqrtoundmro shall study other system interconnect
strategies in latter chapters.

The earliest multiprocmsor systems were built around a single system bus. We studied the basic
system requirements of the bus, i.e. addressing, timing, arbitration. transaction modes. interrupts. and
so on.As one specific example of a bus specification. we looked at Futurebus+. However. bus~l:a.sed
cornmunication of t.he earlier multiprocessors. usually based on a single baclcplane.has limited scalability.

Witli |-apidly increasing computing power, it became clear that communication between dilierent sub-
systems ofa computer system—and also between computer systems—is as important as the storage and
prto-cessing of data As demands on the system intenconnoctgrew mpidly.performance limitations in using
a single bus such as Futtirebus-+ became obvious. Scalable Coherent Interconnect {SCI} and lnfiniliand,
which grew out of the unsuccessful Futurebus+ effort. employ point-to-point links and packet-switdwing,
and can thenefore support highly scalable systems.

Cache memories are provided between the processor and main memory to bridge the huge speed
mismatch between these two sub-systcrns.Over the last two or three decades. this speed mismatch has
grown larger, because processor speeds have risen much faster than main memory speeds. Addressing
models. direct mapped versus set associative cache. block size, and other relevant cache performance

TM Illtfirfilt Hiilfiurnponnri .

ZZZ i‘ édvwrced Cernputer Aitii-itecture

issues were discussed. Multiple levels of cache are often employed; based on their design goals, different
models of the same processor family may employ different multi-level cache designs.

interleaving of memory modules is a technique for achieving higher aggregate memory bantiwidtl1 in
support of higher system performance. Different schemes for memory interleaving hase been considered.
along with related performance issues. Memory allocation sdnemes such as paging and swapping were
also considered.

For muitiprocasor systems with shaned memory apart from the strict sequential consistency model.
weaker consistency models are also considered—the aim bngto achieve a greater degree of parallelism.
and thereby higher system performance. Basic concepts of atornicity of memory accesses and event
ordering are used to define memory consistency models: two specific such models, DSB and T50. were
discussed.

gExercises

Problem 5.1 This is an illustrative example
of a design specification of a bacltplane bus for a
shared-memory multiprocessor widw 4 processor
boards and 16 memory boards under the following
assumptions:

' Bus clock rate = IUD MH1.
' Memory word length = 64 bits; processors

always request data in blocks of four words.
' Memory access time = 100 ns.
' Shared address space = 2“ words.
' Maximum number of signal lines available on

the backplane is 96.
' Synchronous timing protocol.
' Neglect buffer and propagation delays.

Specify the following in your design of the bus
system:

(a) Maximum bus bandwidth.
{b} Effective bus bandwidth {worst case).
(c) Arbitration scheme.
(d) Name and functionality of each of the signal

lines.
(re) Number of slors required on the backplane.
justify any additional assumptions you need to

make.

Problem 5.2 Describe the daisy-chaining
(Fig. 5.4} and the distributed orbiter [Fig. .5.5b) for
bus arbitration in a multiprocessor system. State
the advantages and shortcomings of each case from
both die impiementational and operational points of
view.

Problem 5.3 Read the paper by i"’ludge et al.
(198?) on multiple-bus systems and solve the
following problems:

(a) Find the maximum bandwidth for a
multiprocessor system using b buses. where
b > m and m is the number of memory
modules and the system has n processors.

{b} Prove that swb <3 np. where p I" D is the
probability that an arbitrary processor will
generate a request to access the shared
memory at die start ofa memory cycle.

Problem 5.4 Estimate the effective MIPS
rate of a bus-connected multiprocessor system
under the following assumptions. The system has
16 proc5sors.ead1 connected to an on-board
private cache which is connected to a common bus.
Globally shared memory is also connected to the
bus.The private cache and the shared memory form
a twio-level access hierarchy.

FM Illclirnflr Hfiilimnponm

Bus, Cache, and Sh-cued Memoiy

Each processor is rated 500 MIPS if a 100% cache
hit ratio is assumed. On the average.each instruction
needs 0.2 memory access.The read access and write
access are assumed equally probable.

For a crude approximation. consider only the
penalty caused by shared-memory access and ignore
all other over heads.The cache is targeted to maintain
a hit ratio of G.95.A cache access on a read-hit takes
1 ns; that on a write-hit taka 4 ns with a write-back
scheme. and with a write-through scheme it needs
100 ns.

When a cache block is to be replaced. the
probability that it is dirty is utimated as 0.1. An
average block transfer time between the cache and
shared memory via the bus is 1°C ns.

{a} Derive the effective memory-access times
per instruction for the write-through and
write-back caches separately.

{b} Calculate the effective MIPS rate for each
processor. Determine an upper bound on
the effective MIPS rate of the 16-processor
system. Discuss why dwe upper bound cannot
be achieved by considering the memory
penalty alone.

Problem 5.5 Explain the following terms
associated with mche and memory architectures.

fa} Low-order memory interleaving.
(b) Physical address cache versus virtual address

cache.
{c} Atomic versus nonatomic memory accesses.
{d} Memory bandwidth and fault tolerance.

Problem 5.6 Explain the following terms
associated with cache design:

(a) Write-through versus writebacir. caches.
{la} Cacheable versus noncacheable data.
{c} Private caches versus shared caches.
{d} Cache flushing policies.
(e) Factors affecting cache hit ratios.

Problem 5.1 Consider the simultaneous
execution of the three programs on the three

1 223

processors shown in Fig.5.1 9c. Answer the following
questions with reasoning or supported by computer
simulation results:

fa} list the 90 execution interleaving orders of
the six instructions {o. b. c. cl. e. f}which will
preserve the individual program orders. The
corresponding output patterns (6-tuples}
should be listed accordingly.

(b) Can all 6-tuple combinations be generated
out of the T10 non-program-order
interleavings? justify dwe answer with
reasoning and examples.

(c) We have assumed atomic memory access
in this example. Explain why the output
'D11ClU1 is not possible in an atomic memory
multiprocssor system if individual program
orders are preserved.

(d) Suppose nonatomic memory access is allowed
in the above multiprocessor. For example.
an invalidation does not reach all private
caches at the same time. Prove that 011001 is
possible even if all instructions were executed
in program order but other processors did
not observe them in program order.

Problem 5.8 The main memory of a computer
is organized as 64 blocks. with a block size of eight
words.The cache has eight bio-ck frames. In parts {a}
through {cl}. show the mappings from the numbered
blocks in main memory to the block frames in the
cache. Draw all lines showing the mappings as clearly
as possible.

{a} Show the direct mapping and the address bits
t:hat identify the tag field. the block number,
and the word number.

{b} Show die fully associative mapping and the
address bits that identify the tag field and the
word number.

{c} Show the two-way set-associative mapping
and the address bits that identify the mg field.
the set number. and the word number.

{d} Show the sector mapping with four blocks
per sector and the address bits that identify

FM Illcfirnl-H Hfilliumponm

mm!

the sector number.the block number. and the
word number.

Problem 5.9 Consider a cache [M1] and memory
(M1) hierarchy with the following characteristics:

M1: 64K. words. 5 ns access time
M1: 4M words, 40 ns access time

Assume eight-word cache blocics and a set size of
156 words with set-associative mapping.

la} Show the mapping between M1 and M. -
lb} Calculate the effective memory-access time

with a cache hit ratio of fr = 0.95.

Problem 5.10 Consider a main memory
consisting of four memory modules with 256 words
per module.Assume 16 words in eada cache block.
The cache has a total capacity of 156 words. Set-
associative mapping is used to allocate cache blocics
to biodt fr'ames.The cadte is divided into four sets.

(a} Show the address assignment for all 1024
words in a four-way low-order interleaved
organization of the main memory.

lb} How many blodcs are there in the main
memory? How many block frames are there
in the cache?

(c) Explain the bit fields needed for addressing
each word in the two-level memory system.
Show the mapping from the blocks in the
main memory to the sets in the cache and
explain how to use the tag field to locate a
block frame within each set.

{iii

Problem 5.11
fa} A uniprocessor system uses separate

instruction and data caches with hit ratios fr;
and fld. respectively.The access time from the
processor to either cache is c dock cycles.
and the block transfer time between the
caches and main memory is b clock cydes.
Among all memory references made by the
CPU. fi is the percentage of references to
instructions. Among blocks replaced in the
data cache. fig is the percentage ofdirty blocks.

Advanced Computer Architecture

(Dirty means that the cadae copy is different
from the memory copy.)
Assuming a write-back policy. determine the
effective memory-access time in terms of hy.
hd. c. b. 1‘; and fly, for this memorysystem.

lb} The processor memory system described
in part (a) is used to construct a bus-based
shared-memory multiprocessor. Assume that
the hit ratio and access times remain the
same as in part {a}. However. the effective
memory-access time will be different because
every processor must now handle cache
invalidation in addition to reads and writes.
Let fm, be the fraction of data references
that cause invalidation signals to be sent to
other caches. The processor sending the
invalidation signal requires i clock cycles to
complete the invalidation operation. Other
processors are not involved in the invalidation
process.A.ssuming a write-back policy again.
determine the effective memory-access time
for this multiprocessor

Problem 5.12 A computer system has a 115-byte
cache. it uses fou r-way set-ssociative mapping with B
bytes in chblock. The physical address size is 32
bits. and the smallat addressable unit is 1 byte.

la) Draw a diaglam showing the organization
of the cache and indicating how physical
addresses are related to cache addresses.

lb) To what block frames of the cache can the
address DCiUU1DAF1g be assigned!‘

{c} ifthe addresses 00001 IMF... and F F F F? illxy",
can be simultaneously assigned to the same
cache set. what values can the address digits x
and y have?

Problem 5.13 Consider a shared-memory
multiprocessor system with p processors. Let m be
the average number of global memory references
per instruction execution on a typical processor.

Let t be the average access time to the shared
memory and x be die MIPS rate of a uniprocessor

FM Illcfirm-H Hfifliomponm

Bus, Cache, and Shaved Memory

using local memory. Consider the execution of n
instructions on each processor of the multiprocesso r.

la} Determine the effective HIPS rate of the
multiprocessor in terms of the parameters m.
t. x. n. and p.

lb) Suppose a multiprocessor has p = 32 RISC
processors. m = 0.4. and t = 0.01 us. What
is the MIPS rate of each processor [i.e. x
= 3'} needed to achieve a multiprocessor
performance of .5600 MIPS effectively!

(c) Suppose P = 32 CISC processors with
at = III! MIPS each ar'e used in the above
multiprocessor system with m = 1.6 and t =
0.01 _usW'i-rat will be the effective MIPS rate?

Problem 5.14 Consider a R.l5C-based shared-
memory multiprocessor with p processors. ch
having its own instruction cache and data cache.
The peak performance rating of each processor
(assuming a 100% hit ratio in both caches) is x MIPS.
You are required to derive a performance formula.
taking into account cache misses. shared-memory
accesses. and synchroniaation overhead.

Assume mat on die average II‘ percent of the
instructions executed are for synchronization
purpose. and t.he penalty for each synchronization
operation is an additional t, ps. The number of
memory accesss per instruction is m. Among
all memory references made by die CPU. fi is the
percentage of references to instructions. Assume
that the instruction cache and data cache have hit
ratios h_. and hd. respectively after a long period of
program tracing on the machine. On cad'1e misses.
instructions and data are accessed from the shared
memory with an average access time rm ps.

{a} Derive an expression for approximating the
effective MIPS rate of this multiprocessor in
terms of p. x. m.fl. 11,. h,,.t,,.,. rz. and t, Note that
fl fr, hd. and rr are all fractions and tn, and ts
are measured in 1.15. ignore the cache-access
time and other system overheads in your
derivation.

{b} Suppose m = 0.4. fi = 0.5. h_. = 0.95. hd

1 225

= 0.3. rr = 0.02. x = 500. t... = 0.05 1.15. and
ts = 1].is. Determine the minimum number
of processors needed in the above
multiprocessor system in order to achieve an
effective MIPS rate of 2000.

(c) Suppose the total cost of all the caches and
shared-memory is upper-bounded by $15,000.
The cache memory costs $1.15fKbyte. and
the shared memory costs $0.1 ililbyte. With
p = 16 processors. each having an instruction
cache of capacity S. = 32 Kbyta and a data
cache of capacity S4 = 64 Kbytes. what is
the maximum shared-memory capacity Cm
[in Mbytes) that can be acquired within the
budget limit?

Problem 5.15 Consider the following three
interleaved memory designs for a main memory
system with 16 memory modules. Each module is
assumed to have a capacity of1 Mbyte.The machine
is byte-addrasable.
Design 1: 16-way interleaving with one memory banlt.
Design 2: B-vvay interleaving with two memory banks.
Design 3:4-way interleaving with four memory banlcs.

(a) Specify the address formats for each of the
aboye memory organizations.

{b} Determine tl'|e maximum memory bandwidth
obtained if only one memory module fails in
each of the above memory organizations.

{c} Comment on the relative merits of the three
interleaved memory organizations.

Problem 5.16 Consider a memory system for
the el'st'|vl'lile Cray 1 computer.There are m = 16
interleaved modula. The accas time of a module
is ta = 50 ns and the memory cycle time is t, =
115 ns.We know that for this memory system the
maximum memory bandwidth of SON words per
second is achieved for vector loadsistores except
when the stride is a multiple of 1-5 (bandwidth; IGM
words per second) or a multiple of 8 [but not 16}
(bandwidth: 4Cll“l words per second).

(a) Find the bandwidth for all strides for similar

('=)

FM MiG-I111-bi Hflfformlonm :

systems but with the following parameters:
t, = 12.5 ns.t.. = 50 l'is.m =17.

{b} Repeat part (al for the following parameters:
t,=12.5 ns,td= 5Gns.m = B.

Problem 5.17 Consider the concurrent
execution of two programs by two procasors
with a shared memory. Assume that A. B. C. D are
initialized to 0 and that a Prim statement prints both
arguments indivisibly at the same cycle. The output
forms a 4-tuple as either ADBC or BCAD.

Pu. Pt
a.A=1 d.C=1
b.B=1
c. Print A. D f. Printfl. C

{a} List all execution interleaving orders of six
statements which will preserve the individual
program order.

{b} Assume program orders are preserved and
all memory accesses are atomic: i.e.. a store
by one procasor is immediately seen by all
the remaining processors. List all the possible

Advanced Computer Arclritecture

organizations with iustification.
(b) With respect to flexibility in implementing

block replacement algorithms. rank the four
cache organizations and justify the ranking
order.

(c) With each cache organization. explain the
effects of bloclt mapping policies on the hit
ratio issues.

{d} Explain the effects of block size. set
number. associativity. and cache size on
the performance of a set-associative cache
organization.

ED:-| Problem 5.19 Explain the following terms
associated with memory management:

la) The role of a memory manager in an OS
kernel.

{b} Preemptive versus nonpreemptive memory
allocation policies.

(c) Swapping memory system and examples.
{d} Demand paging memory system and examples.
(e) Hybrid memory system and examples.

4-[UPlEflUlIPUllCOl'l1lJlf'i3tlOl"lS. Pfgflefn the memqry_a_cc§5

ifi-551-il1‘lE program OI‘?-I181‘! are Pl"E$Bl‘VE¢| bl-II constraints in the following memory consistency
memory accesses are norratomic; i.e.. a store models:
by one processor may be buffered so that
some other processors may not immediately
observe the update. List all possible 4-tuple
output combinations.

Problem 5.11! Compare the relative merits of
the four cache memory organintions:

{1} Direct-mapping cache
{1} Fully associative cache

Set-associative cache(3)
{4} Sector mapping cache

Answer the following questions with reasoning:
(a) In tem1s of hardware complexity and

implementation cost. ranlt the four cache

fa} Detennine the similarides and subtle
differences among the conditions on
sequential consistency imposed by Lamp-ort
(1979). by Dubois et al. (198-6}. and by Sindhu
et al. (1991). respectively.

(b) Repeat question la) between the DSB model
and the TSO model for vvmlt consistency
memory systems.

(c) A PSO (partial store order) model for weak
consistency has been refined from the T50
model. Study the PSG specification in the
paper by Sindhu et al. (1992) and compare the
relative merits between the TSO and the PSO
memory models.

PM !l|¢G-NH-‘ Hllffitvoponm

— —

Pipelining and Superscalar
Techniques

This chapter dis with pipelining and superscalar design in processor developn1ent.We begin with a
discussion of conventional linear pipelines and analyze their performance!-\ generalized pipeline model
is introduced to include nonlinear interstage connections. Collision-free scheduling techniques are
described for performing dynamic functions.

Specific techniques for building instruction pipelines. arithmetic pipelines. and memory-access
pipelines are presented. The discussion includes instruction pnefetching. internal data forwarding.
software interlocking. hardware scoreboardirrg. hazard avoidance. branch handling. and instruction-
issuing techniques. Both static and multifunctional arithmetic pipelines are designed. Superscalar design
techniques are studied along with performance analysis.

IJHEAR PIPEIJNE PROCESSORS

1 A linear pipcl'r'ne pro;-c.s.sor is a cascade of proccssing stages which arc lincatly connected to
perforrn a fixed function over a stream of data flowing from one end to the other. in modem

computers. linear pipelines arc applied for instruction execution, arithmetic computation, and mcrnory-access
operations.

6.1.1 Asynchronous and Synchronous Models
A linear pipeline processor is consiructecl with J1: processing stages. External inputs (operands) are fed into
the pipeline at the first stage 8|. The processed rcsulls are passed from stage S. to stage S.-+1. for all F = 1, 2,...
It - l. The final result emerges from thc pipeline at the last stage 3;,

Depending on the control of data flow along the pipeline. we model linear pipelines in two categories:
n.s_1-'rrc-in'ormn.s and s_i-'nc-rrrr;Irrons'.

Asynchronous Model As shown in Fig. 6.1a. data flow between adjacent stages in an asynchronous
pipeline is conlrolled by a handshaking protocol. When stage S; is ready to transmit, it sends a rt-mlr-' signal to
stage 5‘.-+|. Aflcr stage 5‘,., receives the incoming dala, it returns an tat-krron-'fc't'.igt= signal to 5‘.-.

Asynchronous pipelines are useful in designing communication channels in message-passing multicom-
pulers whore pipelinod wormhole routing is practiced [see Chapter 9). Asynchronous pipelines may have a
variable throughput rate. Different amounts of delay may be experienced in different stages.

WM MIT I lb‘ Hfiitim |r.\.m*\ _l c 0' - =- .- _
I Advwioed Computer Architecture

Input é Q Ijjjjjjf q Ou‘lp-u'l
File clReady 52 SI: Ready

Aek W; “Kain Ack

[a] An asynchronous pipeline moclel

L L L L L

|m;,u Output

O I

Ce H H nil H l_|
|- T + rm -l=*l~

(hi A synchronous plpellne model

115'i

in Tlrne [clo-cit cycles]
1 2 3 4

Qqitlons:III
L = LatchWe i=0-WM

S3 rm= Maxlimm stage delay
= Latch delay

54 =Ackno»wlnclge signal.

[cl Reseryatlorl table of a four-stage linear pipeline

El

Fig.-ii.1 ‘Mo models of linear pipeline mill: and she corresponding reserva1:lc.in table

Syn-ehmnuu: Model Synchronous pipelines are illustrated in Fig. l5.lb. Cloclced latches are used to
interface between stages. The latches are made with master-slave fiip-flops, which can isolate inputs from
outputs. Upon the arrival of a clock pulse, all latches transfer data to the next stage simultaneously.

The pipeline stages are combinational logic circuits. It is desired to have approximately equal delays
in all stages. These delays dctenriinc the clock period and thus the speed of the pipeline. Unless otherwise
specified, only synchronous pipelines are studied in this book.

The utilization pattern of successive stages in a synchronous pipeline is specified by a re'servafion rnbie.
For a linear pipeline, the utilization follows the diagonal streamline pattern shown in Fig. 6.lc. This table
is essentially :1 space-time diagram depicting the precedence relationship in using the pipeline stages. For a
ii-stage linear pipeline, it clock cycles are needed for data to flow through the pipeline.

Successive tasks or operations are initiated one per cycle to enter the pipeline. Once the pipeline is filled
up, one result emerges fi'om the pipeline for each additional cycle. This throughput is sustained only if the
successive tasks arc independent of each other.

,.,,,,-.,,,,,...,,.,,._.,,,_,,.,,,,,,,, _ m
6.1.1 Clocking a.ndTirnir|g Control
The c-Ind: r-_i-do r of a pipeline is determined below. Let r,- be the time delay of the circuitry in stage S, and d
the time delay ofa latch, as shown in Fig. 6.11:.
Clock Cycle and Throughput Denote the moxinmm stage r.lein__i-' as rm, and we can write tas

r=max{r,}f+n'= r,,,+n' (5.1)

At the rising edge of the clock pulse. the data is latched to the master flip-flops of each latch register. The
clock pulse has a width equal to o‘. In general, rm P-P of by one to two orders of magnitude. This implies that
the maximum stage delay r,,, dominates the clock period.

The ;Jipefim'_fi'eq1ienc__v is defined as the inverse of the clock period:
l

f ~ ? (*5-3)

Ifone result is expected to come out ofthe pipeline per cycle, _,r"r-cpresents the mrtrimum Ifirougfipult of the
pipeline. Depending on the initiation rate of successive tasks entering the pipeline, the arnml rhrmighpur of
the pipeline may be lower than _,l.' This is because more than one clock cycle has elapsed between successive
task initiations.

Clock Slmwing Ideally, we expect the clock pulses to arrive at all stages (latches) at the same time.
However. due to a problem known as dock .§‘.l1’l1--‘ing. the same clock pulse may arrive at different stages with
a time oi"Tset ofs. l..»t:tr,m,_, be the time delay of the longest logic path within a stage and rm that of the shortest
logic path within a stage.

To avoid a race in two successive stages. we must choose r,,, 2 rm, + s and n‘ 5 rm,-,, — .s. These constraints
translate into the following bounds on the clock period when clock skew takes effect:

51+ f.I:rr¢r.t + S S r S rm + -rnrin _ 5'

In the ideal case s = 0, r,,,,,_, = r,,,, and r,,,,-,, = d. Thus, we have r = rm + d, consistent with the definition in
Eq. 6.1 without the effect of clock skewing.

6.1 .3 Speedup, Efficiency, and Throughput
Ideally, a linear pipeline of it stages can process ri tasks in k — (n — 1) clock cycles, where It cycles are needed
to complete the execution of the very first task and the remaining H — 1 tasks require n — 1 cycles. Thus the
total time required is

r,, = [k + in - 1)] r (5.4)
where ris the clock Consideran equivalent-function nonpipelinetl processor which has aflow-through
deiqi-' of icr. The amount of time it takes to execute n tasks on this nonpipelin-ed processor is T| = nkr.
Speedup Factor The speedup factor of a ii"-stage pipeline over an equivalent non pipelined processor is
defined as

S‘: TL: nkr = nit (6.5)
11 It-r+(n—l]r k+[n—l]

I15 i Advanced Computer Architecture

Note 6.1‘ Pipelined versus non-pipelined pmceuor:
If each pipeline stage has a stage delay of T, then clearly an in5l'fl.l¢'tlon passing through .1: pipeline
stages in a processor secs a tonal latency ofkt. New suppose we also have a non-pipclined processor
for the same instruction set, using the same technology. This non-pipelined processor need not present
ti latency of kr to every instruction. because it does not have Ir separate stages for an instruction to
pass through. Since the non-pipclined processor would have a more compact hardware design, we can
expect that the average latency seen by instructions on this processor will be smaller than kr.

In other words, the advantage of a pipelined processor lies in its instruction throughput; in terms
of instmction latency, the non-pipelined version can in fact be expected do better. However. for the
comparative analysis here, we have assumed that the instruction latency on the non-pipelined version
is also kr. This is a simplification which does not change substantially the conclusion reached.

I»)
B Example 6.1 Pipeline speedup versus stream length
The maximurn speedup is .51 —> Jr as n —> =~=. This maximum speedup is very difficult to achieve because of
data dependences between successive tasks (instructions). program branches, interrupts. and other factors to
be studied in subsequent sections.

Figure 6.2a plots the speedup factor as a function of n, the number of tasks (operations or instructions]
performed by the pipeline. For small values ofn. the speedup can be very poor. The smallest value of 51 is 1
when H = 1.

The larger the number Ir of subdivided pipeline stages. the higher the potential speedup performance.
When n = 64, an eight-stage pipeline has a speedup value of ?.l and a four-stage pipeline has a speedup of
3.1 However, the number of pipeline stages cannot increase indefinitely due to practical constraints on costs,
control complexity. circuit implementation, and packaging limitations. Furthermore, the stream length n also
affects the speedup; the longer the better in using a pipeline.

Optirnal Number ofStage: In practice, most pipelining is staged at the functional level with 2 5 Ir 5 15.
Very few pipelines are designed to exceed I0 stages in real computers. The optimal choice of the number of
pipeline stages sht:-u.ld be able to maximize the perfomtancefeost ratio for the target processing load.

Let r be the total time required for a nonpipelined sequential program of a given function. To execute the
same prngrim on a Ir-stage pipeline with an equal flow-through delay r. one needs a clock period ofp = ril-
+ ti where if is the latch delay. Thus, the pipeline has a maximum throughput off= Up = 1.*{n'.t' + rt). The total
pipeline cost is roughly estimated by c + kh. whcrc c covers the cost of all logic stages and h represents thc
cost of each latch. A pipeline git-ijformrvir-eat-as! ratio [PCR] has been defined by Lemon {I 9T3):

PCR = _-L = ml (as)
c + Hi (Mk + d)(c + Ha)

_ __ H‘.-|-Mcliruw Hl'lI:'|>¢r.-moi-r~ I,;,,,.1,,,,,,W,5,,,,._,,,£_,,,,,T., _ m
Sn

10__

I: = 10 stages

k = 6 stages

2
1 I I I I I I I I ,.

1 2 4 B 6 128 n1 32 64
No. of operations

SpeedupFact-o4»cnon

[a] Speedup factor as a function of the number of oporatlms [Eq. 6.5]

— Peak

PerformanceCostRato

6"Q_____

- kNo. of stages.-
[Op-timaij

[b1 Dptl rral nurrbor of pip-oil no stages [Eqs. 6.6 and B.?j|

Fig. L2 Speedup factors and the optirml l'Il.lfi'lbEl‘ ofpdp-elm stages bra flnear ppeiine unit

Figure 6.21:: plots the PCR as a function ofk. The peak of ihe PCR nun-c corresponds to an optimal choice
for the number of desired pipeline stages:

I-CIr.-,= 5 (6-7)
when: r is the total fl0w—111r0ugh delay of lho pipeline. Thus the total stage cost c, thc latch delay d. and thc
latch cost fa must he considered to achieve the optimal value £1-,.
Efllcfency and Throughput Thc ejjficienqy Ek of a linear It-stage pipclinc is dcfilmd as

.5‘5k = _.£ = Z’; (53)
J: k +(n — 1] '

Obviously, the cfiicicncy approachcs I whcn n —> =-1, and a luwccr bound on E‘: is 1H: when n = 1. The
pi']'J€Hm.* rhrmighpur II,‘ is defined as the number oi" tasks {operations} performed per unit lime:

= n = nf
H‘ [k+{n—l)]t k+(n—l) (63)

F|'>r'MfGJ'|Ili' N“ I'm-tiqtrlrlitt

III N _ Advanced Comptrtetwfircititscture

The rrrrtrimrmi rhmrig!i;Jurf occurs when E; —> l as N —> W. This coincides with thc speedup definition
given in Chapter 3. Note that Iik = E; _f= E11 r= Silk r. Other rclcvant factors of instruction pipclincs will bc
discussed in Chapters 12 and 13.

NONLINEAR PIPELINE PROCESSORS
2 A uf_t-name‘: pipeiine can be reconfigured to perform variable functions at different times. The

traditional linear pipelines are static pipelines because they are used to perform fixed functions.
Adynamic pipeline allows fcedforward and feedback connections in addition to the streamline connections.

For this reason, some authors call such a structun: a rioriiinertr pipeline.

6.1.1 Reservation and Latency Analysis
In a static pipeline, it is relatively easy to partition a given function into s sequence of linearly ordered
subfunctions. However, function partitioning in a dynamic pipeline becomes quite involved because the
pipclinc stages arc intcrconncctcd with loops in addition to streamline cottncctions.

A multifimction dynamic pipclinc is shown in Fig. 6.3a. This pipclint: has three stages. Bcsidcs thc
srrernniine r-onriecrions from S| to S; and from S; to S3, there is a_fiv=d_fom'rtrrf cviriner-rion from S | to S3 and
two_fi*¢=r2’brtr-I: £‘t'J.li.flr_’£‘flit'J.ri.§‘ from S3 to S2 and from S3 to 5-'|.

These feodfortvard and feedback connections make the scheduling of successive events into the pipeline
a nontrivial task. With thcsc connections, thc output of thc pipclinc is not necessarily from thc last stage. In
fact, following different datallow patterns, one can use the same pipeline to evaluate different functions.

Output it I-1-I O|.lP'i-ItY
[a] A trree-stage pipeline

—r- —I- Time
1 2 3 4 5 6

51 III IIII
Sass 52IIIIII Sass S2 IIIII

-itIIIII asIII
[bi Fits-servation table for fun-ctien JC [cl Reservation table for function Y

_L I\J U3 »sI-"’Hen--tHm

FIg.6.3 A dynamic pipeline with feed forward and izeelbaeit connections fir two different functions

Reservation Table: The reservation table for a static linear pipeline is trivial in the sense that dataflow
follows a linear streamline. The rr'st'rvrn'ion mink’ for a dynamic pipeline becomes more interesting because
a nonlinear pattern is followed. Given a pipeline configuration, multiple reservation tables can be generated
for the evaluation of differmt functions.

Two reservation tables are given in Figs. 6.31:: and 6.3c-, corresponding to a function X and a function Y,
respectively. Each function evaluation is specified by one reservation table. A static pipeline is specified by a
single reservation table. A dynamic pipeline may be specified by more than one reservation table.

,.,,,e.-.,i,,g,,.,..5.,,._.,,,._,,.,,T...,~, _ m
Each reservation table displays the time~space flow ofdata through the pipeline for one function evaluation.

Different functions follow different paths through the pipeline.
The number of columns in a reservation table is ealled the evni'uorion rune of a given function. For

example, the function X requires eight clock cycles to evaluate, and function Y requires six cycles, as shown
in Figs. 6.3b and 6.3c, respectively.

A pipeline initiation table corresponds to each fisnction evaluation. All initiations to a static pipe-line use
the same reservation table. On the other han-ti, a dynatnie pipeline may allow different initiations to follow a
mix of reservation tables. The checltmarks in each row of the reservation table correspond to the time instants
(cycles) that a particular stage will be used.

There may be multiple checltmarks in a row, which means repeated usage of the same stage in diifenent
cycles. Contiguous cheelcrnarks in a row sirriply imply the extended usage of a stage over more than one
cycle. Multiple cheekmarks in a column mean that multiple stages need to he used in parallel during a
particular clock cycle.
Latency Analysis The number of time units [clock cycles] between two initiations of a pipeline is the
hireriey between them. Latency values must be nonnegative integers. A latency ofIt nieans that mo initiations
are separated by it clock cycles. Any attempt by two or more initiations to use the same pipeline stage at the
same time will eause a eol'1r'sion.

A collision implies resource conflicts between two initiations in the pipeline. Therefore, all collisions must
be avoided in scheduling a sequence of pipeline initiations. Some latencies will cause collisions, and some
will not. Latcncies that cause collisions are ealled_,forbi.dden latencies. In using the pipeline in Fig. 6.3 to
evaluate the function X, latencies 2 and 5 are forbidden, as illustrated in Fig. 6.4.

—I-Time
1 2 3 it 5 6 1' 3 9 10 11

51 X1 X2 Ks 9'11 X4 K1-*2 K213
SHQGS S2 X1 X1, X2 X2, X3 X3. X4 ill.‘ I I I

53 X1 x1- X2 x1- K2» Ks x2~ is K-it
[aj Collision with scheduling latency 2

—I-Tu-no
123456?BQ-1011

51 K1 K1-X2 X1
Seuss 52 X1 X1 K2 K2 ' ' '

53 *1 X1 K1 K2 K2
[ti-J Collision with eehoeluling latency 5

Fig.6.-1 Collisions with forbidden hteneies 1 and 5 in using the pipeline in Fig. 6.3 to evaluate the function X

The ith initiation is denoted as X; in Fig. 6.4. With latency 2, initiations X, and X; collide in stage 2 at time
4. At time T. these initiations collide in stage 3. Similarly, other collisions are shown at times 5. 6, 8. ..., etc.

I ' I Ifllli t'r>rrIq|r_.r.I|n*\ _

Z31 i Advwiced Computerflrrchitecture

The collisio.n patterns for latency 5 are shown in Fig. 6.4b, where X, and X2 are scheduled 5 clock cycles
apart. Their first collision occurs at time 6.

To detect a forbidden latency, one needs simply to cheek the distance between any two checkmarks in the
same row of the reservation table. l-‘or example, the distance between the first mark and the second mark in
row S, in Fig. 6.31:: is 5, implying that 5 is a forbidden latency.

Similarly, latencies 2, 4, S. and T are all seen to be forbidden from inspecting the same reservation table.
From the reservation table in Fig. 6.3c, we discover the iiirbirlden latencies 2 and 4 for function Y. A inrentjt-'
seqrieitce is a sequence ofpermissible nonforhidden latencies between successive task initiations.

A fflfs'HC_\-‘ ct-‘cit’ is a latency sequence which repeats the same suhsequence (cycle) indefinitely. l-"ig1.|ret:i.5
illustrates latency cycles in using the pipeline in Fig. 6.3 to evaluate the function X without causing acollision.
For example, the latency cycle l_'l, S] represents the infinite latency sequence 1, B, l, B, l, 8, This implies
that successive initiations ofnew tasks are separated by one cycle and eight cycles alternately.

]-ii Cycle repeats it-l-ii--~
123456T8Q-10111213-1415161?13192D21

513912 x'lx'2x1x’2x3)(4 Ksxttxsxrtxsxe

53 9"-1 9"-2 X1 ‘K1 K2 9'13 x-rt *3 is
[a] Latency cycle [1, B] = 1. 3. 1. B. 1. B. with anavorege latency of4.5

C terep-eatst- -11° + -+- -+~
123455T3‘Q‘ll]"l1‘l2‘l3‘l4‘l5‘l51i"1iB‘l'Q2D2‘l

S‘|x‘l x2 ‘K1‘K3x1x2xdx2x3x5X3‘K4x'6xdx5x?X5E
s2 it, if-r"12 Kzxs Xaxtt Xaxs Ksxe Xsxr "'
53 X1 X1x2x1x2xsX2’(3x4X3X4KsxaXs’(exsXs

{bj|Latencycyclo{3)=3,3,3,3,...,-withan average latency-of3

F Cyelerop-nets 1+‘ + _-

12 3 4 5 E T B‘Q1l]"l1‘l2‘l3‘l4—‘l5‘l51i"‘l3‘lQ'2D2‘l

5111 x'lx2x1 xzxsxz Xsxax
52 X1 3'11

3
x2 >12 x3 x3 x4 ...

53 it, x, Jt-1 x2 x2 X2 x3 x3 x3 X3
[c] Latency cycle {6} = E, 6, E, 6, with an average istency of 6

Fig.6.! Three valid latency cydes icr the evaluation offunerion X

The r'nr+:r¢rge i'nIcrr-t‘__t' of a latency cycle is obtained by dividing the sum of all latencies by the number of
latencies along the cycle. The latency cycle { I , 8) thus has an average latency of (1 + 3).f2 = 4.5. A consmnr
cjveie is a latency cycle which contains only one latency value. Cycles {3} and (6) in Figs. 6.5h and 6.5c are
both constant cycles. The average latency of a constant cycle is simply the latency itself. ln the next section,
we describe how to obtain these latency cycles systematically.

...,,,-,,-,,,,.,..,,,,,,,_,.,.,.,,,,, _ ,3,
6.2.1 Collision-Free Scheduling
When scheduling events in a nonlinear pipeline, the main objective is to obtain the shortest average latency
between initiations witliout causing collisions. In what follows, we present a systematic method for achieving
such collision-free scheduling.

We study below c0ii'r'.sion vectors. stare o’r'agrorns_ .sirig')'e c'_t-‘cf-es. growl:-' c_vc*!cs', and minimal at-'cragt>
interior {MAL}. This pipeline design theory was originally developed by Davidson [I97 I) and his students.

Collision ‘Factor: By examining the reservation table, one can distinguish the set of permissible latencies
from the set of forbidden latencies. For a reservation table with n cohnnns, the ninrimum_;‘orbiriricn inrency
in E n - 1. The pennissible latency p should be as small as possible. The choice is made in the range 1 E p 5
ml.

A permissible latency of p = I corresponds to the ideal case. In theory, a latency of I can always be
achieved in a static pipeline which follows a linear (diagonal or streamlined) reservation table as shown in
Fig. 6.lc.

The combined Set of permissible and forbidden latencies can be easily displayed by a collision vector,
which is an in-bit binary vector C = (C,,,t_".,,, | ...t_".3C|). The value of C, = 1 if laicncy ieauses a collision
and C, = 0 if latcncy i is permissible. Note that it is always true that C,,, — 1, corresponding to the maximum
forbidden latency.

For the two reservation tables in Fig. 6.3, the collision vector Cy = {101 I010) is obtained for fiinction X,
and Cy = [_llIIltl_] for function Y. From l:__\;', we can immediately tell that latencies T, S, 4, and 2 are forbidden
and latencies 6, 3. and l are permissible. Similarly, 4 and 2 are forbidden latencies and 3 and I are permissible
latencies for fimction Y.

State Diogmm: From the above collision vector, one can consn-uct a stoic .n‘ingr.nm spccifying thc
permissible state transitions among successive initiations. The collision vector, like Cy above, corresponds to
thc inirirti smrc of the pipeline at time 1 and thus is called an iflifititl c'oi'i"isi0n vector. Lerp be a permissible
latency within thc range lip E in — 1.

The nctr state ofthc pipclinc at time r + p is obtained with the assistance of an m-bit right shift register as
in Fig. 6.6a. The initial collision vector C is initially loaded into lite register. The register is then Shifted to the
right. Each l—bit shift corresponds to an increase in the latency by l. ‘When a CI bit emerges from the right end
aftcr ,o shifts, it means p is a permissible latency. Likewise, a 1 bit being shifted out means a collision, and
thus the corresponding latency should be forbidden.

Logical ll enters fiom the lei’: end of the shift register. 'I'he next state after p shifts is thus obtained by
bitwise-{llling the initial collision vector with the shifted register contents. For example, from thc initial
state Cy — (l0ll010}, the next state (l l I I l 1 1) is reached after one right shifi ofthe register, and the next state
(I01 10 I I} is reached after three shifts or six shifts.

Ir)
éjj Example 6.2 The state transition diagram for a pipeline unit
A snrrc ri‘ingr'arn is obtained in Fig. t'i.t'ib for function X. Frorn the initial state [101 lill 0}, only three outgoing
transitions are possible, corresponding to the three permissible latencies 6, 3, and I in the initial collision
vector. Similarly, from state (till I011], one reaches the same state afier either three shifts or six shifts.

I 1 I Ifllli l'm'rIq|r_.\.I|n*\ _

Z35 i Advwiced Computerhrdsitecture

When the number of shifts is m + i or gneater, all transitions are redirected back to the initial state. For
example, aficr eight or more (denoted as Bl] shifts, the neat state must be the initial state, regardless of which
state the transition starts from. in l-‘lg. 6.60, a state diagram is obtained for the reservation table in 1-"ig. 6.3c
using a 4-bit shift register. Once the initial collision vector is determined, the corresponding state diagram is
uniquely determined.

{Cm CD4, _ _ _ _ _ __ C1j|= lnltialeotilelon vector

I I I

in

"fl-" ‘ ‘ I I I I “D" safe
*1" collision

0 0 0

[aj State trans ltlen using an malt right shift register, where n is the rnaxirnurn forblddeniateney

— Bi

1n11n11

3 * 3+ 5+ 5+

at 1 s 1*
1111111 i 1 1 1 1Q) .. 0

(bi State diagram for function it [0] State diagram for function Y

Fig. 6.6 Two stane diagralns obtainecl from the two reservation table: in Fig. 6.3,relp-eetzively

_; $ _L _L Q‘ _L Q‘
-5. |= _|t ¢

_; ID _; _;

The ll’s and 1’s in the present state, say at time I, of a state diagram indicate the permissible and forbidden
latcneics, respectively, at time r. The hitwise Olling of the shifted versicn of the present state with thc initial
collision vector is meant to prevent collisions finrn future initiations starting at time r + l and onward.

Thus the state diagram covers all permissible state transitions that avoid collisions. All latencies equal to
or greater than m are permissible. This implies that collisions can always be avoided if evenm are scheduled
far apart (will! latencies ofm+). However, sueh long latencies are not tolerable from the viewpoint ofpipeline
throughput.
Greedy Cyeie: From the state diagram, we can determine optimal latency cycles which result in the MAL.
There are infinitely many latency eyeles one ean traee from the state diagram. For example, (I, S), (I, S,
6, ii), (3), (6), [3, ii), (3, 6, 3'] ..., are legitimate cycles traced fi'om the state diagram in Fig. 15.6b. Among these
cycles, only sim_rJ1'e .1:-__t-ales are of interest.

...,,,,-,,,-,,,,,.,,,,.,,,,,.,,.,,,,, _ ,3,
A simple cycle is a latency cycle in which each state appears only once. In the state diagram in Fig. tit‘-b.

only -[3], {G}, (8), (1, 3), (3, B}, and [6, E) are simple cycles. The cycle [1, S, I5, E) is not simple because it
travels through the state (ltll 1010') twice. Similarly, the cycle (3, 6, 3, 8, 15) is not simple because it repeats
the state (1 [ll I 01 ll three times.

Some ofthe simple rye let are grccdi-' r_lc!cs. A greedy cycle is one whose edges are all made with minimum
latencies from their respective starting states. For example, in Fig. 6.6b the cyelcs [1, 8) and (3) are greedy
cycles. Greedy cycles in Fig. 6.6c are (1, 5) and (3). Such cycles must first he simple, and their average
latencies must be lower than those of other simple cycles. The greedy cycle [1, 8) in Fig. 15.6b has an average
latency of(l + S]-'2 = 4.5, which is lower than that ofthe simple cycle [6, S) = (6 + 8}l'2 = T. The greedy cycle
(3) has a constant latency which equals the MAL for evaluating fimction X without causing a collision.

The i'viAL in l-‘lg. 6.6-c is 3, corresponding to either of the two greedy cycles. The minimum-latency edges
in the state diagrams are marked with asterisks.

At least one of the greedy cycles will lead to the MAL. The collision-free scheduling of pipeline events
is thus reduced to finding greedy cycles fi'om the set of simple cycles. The greedy cycle yielding the It-'LAI.. is
the final choice.

6.1.3 Pipeline Schedule Optimization
An optimization technique based on the MAL is given below. The idea is to insert noncompute delay stages
into the original pipeline. This will modify the reservation table, resulting in a new collision vector and an
improved state diagram. The purpose is to yield an optimal latency cycle, which is absolutely the shortest.
Bounds on the MAL in 1972, Shar determined the following bounds on the rnirrimol at-‘wag-e icrrencji-'
(MAL) achievable by any control strategy on a statically reconfigured pipeline executing a given reservation
table:

{l _| Thc MAL is lower-hounded by the maxirnum numhcr of chcclcrnarlrs in any row of thc reservation
table.

{2} Thc MAL is lower than or equal to thc average latency of any greedy cycle in the state diagram.
{3} Thc average latency ofany greedy cycle is upper-bountlctl by the number of] ‘s in the initial collision

vector plus l. This is also an upper botmtl on the MAL.

Interested readers may refer to Shar (I 972} or find proofs of these bounds in Kogge (I981). These results
suggest that thc optimal latency cycle must he selected firom one of the lowest greedy cycles. However,
a greedy cycle is not suflicient to guarantee the optimality of the MAL. The lower botmd guarantees the
optimality. For example, the MAL = 3 for both function "X and iiinction Y and has met the lower bound of
3 fiom their respective reservation iahlcs.

From Fig. 6.iSb, the upper hound on the ltll_A.L for function X is equal to 4 e l = 5, a rather loose bound.
On the other hand, 1-‘ ig. 6.6:: shows a rather tight upper bound of 2 + 1 = 3 on the MAL. Therefore, all greedy
cycles for function Y lead to the optimal latency value of 3, which cannot be lowered further.

To optimize the MAL, one needs to find the lower bound by modifying the reservation table. The approach
is to reduce the maximum number of chcckrnarks in any row. The modified reservation table must preserve
the original function being evaluated. Patel and Davidson ['19l'6) have suggested the use of noncompute
delay stages to increase pipeline performance with a shorter MAL. Their technique is described below.

Z15 i ' Advanced Computerhrdiitecture

Delay Insertion The purpose of delay insertion is to modify the reservation table, yielding a new collision
vector. This leads to a modified state diagram, which may produce greedy cycles meeting the lower hound
on the MAI...

Before delay insertion, the three-stage pipeline in Fig. 6.7a is Specified by the I‘BSe1'\'ntion table in Fig,
6.Tb. This table leads to :1 collision vector C = {lfil 1}, corresponding to forbidden latencies 1, 2, and 4. The
corresponding state diagram (Fig. 6.'.|'c] contains only one self-reflecting state with a greedy cycle of latency
3 equal to the MAL.

Based on the given reservation table, the maximum number of eheclcmarks in any row is 2. Therefore, the
MAL = 3 so obtained in Fig. 6.']"e is not optimal.

3?)
the MAL

To insert a noncompute stage D, afier stage S3 will delay both X, and X2 operations one cycle beyond time
4. To insert yet another noncomputc stage D; after the second usage of.S'| will delay the operation X2 by
another cycle.

These delay operations, as grouped in l-‘lg. 6.Tb, result in a new pipeline configuration in Fig. 6.8a. Both
delay elements Dl and D3 are inserted as extra stages. as shown in Fig. 6.Sb with an enlarged reservation table
haying3+2=5rowsund5+2='FcoIurnns.

Output

Example 6.3 Inserting noncompute delays to reduce

H I.-I- 52I 53

{a1 Athros-stage pipeline

—h "limo
1 2 3 4 5S» III» MM t» at
II!L. _ ,. _ _ _ _ . . , . _ . . _ _ _ _ - -

[h] Ftosoniation tah-lo and operations being delayed [c] State transition diagram with MAL = 3
2

Fig.8.?‘ Apipilne with a minimum areragc la1:eneyol'3

In total, the operation X, has been delayed one cycle fi'om time 4 to time 5 and the operation X’; has been
delayed two cycles from time 5 to time 1'. All remaining operations (marked as X in Fig. 6.3b) are unchanged.
This new tahle leads to a new collision vector (100010) and a modified state diagrain in Fig. 6.Se_

...,,,,,-,,,,,.,,,.,,,_,,,,.,.,, _ 2,,

°""’"‘ I-IE!we
[a] Insertion of two nonoornpute delay stages

—I- Time 4 r

51 III . l .
Stages 2 95II Is, !!E__
near D1
M”%IIIIIEI mum

[b] Mo-dfiad reservation tabto [ct Modified state diagram with a reduced M!-Y-.L= [1 + 31t2 = 2

—L l\J L0 -F

-I

III"-
IIIIe IIE~

Fig. 6.8 lrecrrlon oftwo delay stages to obtain an op1:lma.l MAL for the pipeline in Fig.6.?

This diagram displays a greedy cycle (1, 3), resulting in a reduced lvL-kl. = (1 + 3]:‘2 = 2. The delay
insertion thus improves the pipeline perfonnance. yielding a lower hound for the MAL.

Pipeline T'hmughprrt This is essentially the initiation rate or thc average number of task initiations per
clock cycle. if N tasks are initiated within n pipeline cycles, then the irririrrrrbrr rare or pipeline rirmugfrprn‘
is measured as N.-‘n. This rate is determined primarily by the inverse of the ltd.-"LL adapted. Therefore, the
scheduling strategy docs affect the pipeline performance.

In general, the shorter the adapted MAL, the higher the throughput that can he expected. The highest
achievable throughput is one task initiation per cycle, when the MAL equals 1 since 1 5 MAL 5 the shortest
latency of any greedy cycle. Unless the MAL is reduced to I, the pipeline throughput becomes a fiaction.

Pipeline Efficiency Another important measure is p|‘pei|'ne qfieiency. The percentage of time that each
pipeline stage is used over asuflireiently long series oftask initiations is the srnge ririttznrrhn. The accumulated
rate of all stage utilizations dctcrrnincs the pipeline cflicicncy.

Let us reexamine latency cycle [3] in Fig. 6.5b. Within each latency cycle of three cloc-ls cycles, there are
two pipeline stages, S, and S3, which are completely and continuously utilized after time 6. The pipeline stage
S3 is used for two cycles and is idle for one cycle.

Therefore, the entire pipeline can be considered St‘? = 33.3% cffieicnt for latency cycle [3]-. On the other
hand, the pipeline is only 14L‘-£7 = 51.8% efficient for latency cycle (1, 8) and 8116 = 50% eflicient for latency
cycle (6), as illustrated in Figs. 6.5a and 6.51:, respectively. Note that none of the three stages is fully utilized
with respect to two initiation cycles.

The pipeline throughput and pipeline effieiency are related to each other. Higher throughput results from
a shorter latency cycle. Higher eflicieney implies less idle time for pipeline stages. The above example
demonstrates that higher throughput also accompanies higher efficiency. Other examples however may show

FM Mtfirnw H'IlI:'n.-rq|i;uin1'
24“ N _ flidvursced Computer Architecture

a contrary conclusion. The relationship between the two measures is a Function of the reservation table and
of the initiation cycle adopted.

At least one stage of the pipeline should be fully (100%) utilized at the steady state in any acceptable
initiation cycle; otherwise, the pipeline capability has not been fully explored. ln such cases, the initiation
cycle may not be optimal and another initiation cycle should be examined for improvement.

INSTRUCTION PIPELINE DESIGN

1 A stream of instructions can be executed by a pipeline in an overlapped manner. We describe
below instruction pipelines for CISC and RISC scalar processors. Topics to be studied include

instruction prefetehing, data forwarding, hazard avoidance, interlocking for resolving data dependences,
dynamic instruction scheduling, and branch handling techniques for improving pipelined processor
perfomiance. Further discussion on instruction level parallelism will be found in Chapter 12.

6.3.1 Instruction Execution Phases
A typical instruction execution consists of a sequence of operations, including instruction fetch, decode,
operand fetch, execute, and write-hack phases. These phases are ideal for overlapped execution on a linear
pipeline.

Pip-elined Instruction Pmcessing A typical inslniction pipeline is depicted in Fig. 6.9. The fizrch .smgc (F)
fetches instructions from a cache memory, ideally one per cycle. The tint-ode stage (D) reveals the instruction
function to he performed and identifies the resources needed. Resources include general-purpose registers.
buses, and fimctional units. The issue stage (I) reserves resources. The operands are also read from registers
during the issue stage.

The instructions are executed in one or several ere:-nre stages (E). Three execute stages are shown in
Fig. 6.9a. The last wrircbacl: stage (W) is used to write results into the registers. Memory load or store
operations are treated as part of execution. Figure 6.9 shows the flow of machine instructions through a
typical pipeline. These eight instructions are for pipelined execution of the high-level language statements
X = Y + Z and A = B >< C. Herc we have assum-od that form‘ and store instructions take four execution clock
cycles, while floating-point mid and nmIn;n{i- operations take three cycles.

The above timing assumptions represent typical values found in an older CLSC processor. in many RJSC
processors, fewer clock cycles are needed. On the other hand. Cray l required ll cycles for a load and a
floating-point addition took six. With in-order i.nstIuct_ion issuing, if an instruction is blocked from issuing
due to a data or resource dependence, all instructions following it are blocked.

Figure 6.91:: illustrates the issue of instructions following the original program order. The shaded boxes
correspond to idle cycles when instruc-tion issues are blocked due to resource latency or conflicts or due to
data dependences. The first two Joan‘ instructions issue on consecutive cycles. The nah’ is dependent on both
feats and must wait three cycles before the data (Y and Z) are loaded in.

Similarly, the store of the sum to memory location X must wait three cycles for the nniri’ to finish due to a
flow dependence. There are similar blockages during the calculation of A. The total time required is 1? clock
cycles. This time is measured beginning at cycle 4 when the first instruction starts execution until cycle 2|]

,.,,,..-W,-,.g..,....,,,E,,..,,,,,.C,,, _ H,
when the last instruction starts execution. This timing measure eliminates the undue effects of the pipeline
“st.srtup" or “draining” delays.

Figure 6.9c shows an improved timing after the instruction issuing order is changed to eliminate
unnecessary delays due to dependence. The idea is to issue all four toad’ operations in the beginning. Both the
acidand mu1rrplfi- instructions are blocked fewer cycles due to this data prefctching. The reordering should not
change the end results. The time required is being reduced to ll cycles, measured from cycle 4 to cycle I4.

Fetch Do-node lss no Exec ute Execute Execute
F D I E E E W

[a]/it seven-stage Instruction pipeline

or Tlrno
1 2 3 4 5 6 7' B Q10111.2113141516171319-2t}.5!12223

R1<-Mem[‘t'J
R2 t- lu'ls|'r|[Zj
R3~e—[R1]+[R2)

lu1nm[x]s— [R3]
R44-Mom[B]
R5<- Mom[C]
R61:-[R1t)'[R5J

lulem[A]<t-[R6] 1l_l

[bl In-order Instruction issuing

or Time
12 3 4 5 6 T B 91D11121314~151B1T

“ts Marti" nnnnR2 e "Bull nnnnnR4 4- Mom[E-J F
R5 \t— Mom[C)
R3 <- {Ft1]+[R2J
R6 <- [R4)‘[R5]

lulern[x]<- [R31
Me~v~=<~ ea nnnn

[cl Rnorelorod Instruction issuing

HE
HEHE

HE

HEIIEIHE

MINE

EHEE Hfllil EEEHE
E

Fig. 6.9 Plpelln-ed execution ofX = Y + Z andfii = B :-< C (Courtesy efjarn-in Smlel'i;reprlri1:ed with pcrrnlml-on
from IEEE Con1purnr,july 1939}

Ir)
Cg Example 6.4 The MIPS R4000 instruction pipeline

The MIPS R4000 was a pipelined I54-bit processor using separate instruction and data caches and an eight-
stage pipeline for executing register-based instructions. As illustrated in Fig. tS.lU, the processor pipeline
design was targeted to achieve an execution rate approaching one instruction per cycle.

24‘: Ii ifldvwrcedfiompmerhichitedure

¥1 ti I-U1'1 rn >< ca "l'| 0tn -1n WB

3.Iflfitflflbfl n|=: Data me Is: Instruction seencache 'mew lfldmmf; cs: Data second RF: Register flte
tag check EX: Eiosmtlm TC: Tag check

Iflfiwflbfl IF: |I'|S1l'LI§‘lb|'t first ws: Wrtte back
traretatbn |"$W*3"°"

; disco-do

Read:mg|sm.__; ALU ,_,_{D-cache
me ioperallcm access]

IPi
-E’----.-----.-----.-

CF

ss '5'' Data
address

traristaticm

I
RI

[a] R4000 pip-silnestagae
Master

etnckeyets

| i Eightdteep
I |FI|sIRFIExInFInsITcIwsI
I I|FI|sIRFIExIOFInsIrcIwa|

I I F |.|c§..|§...F |55_,i_l3!Fl$ I7? W5.PIP*""* n
I IF E .F-‘.F |E51I15.F. I53

I IF I IS IRFIEZKIDFIDSITCIWBI
IIF I |sIRF|E>c|nFIns|"rc|wsI

I ||= I |s|RF|ExInF|ns|'rcIwsI
i‘ CUl1'B1'lCP‘U cycle

[I1] R4000 Insimetion overlapping In p-Ipsrtine

Fig. 6.10 The srehlreceure of ‘H14! MIPS IHOUIU Insrrucrien pipeline {Coureesy nfMIPS Cornpuner Sysrenu]

Thc execution of each R4000 i11st111ction consisted of eight major shcps as sumrnarizod in Fig, 6. lfla. Each
of these steps required approximately one clock cycle. The instruction and data rneniory references are split
across two stages. The single-cycle ALU stage took slightly more time than each ofthe cache access stages.

The overlapped execution of successive instructions is shown in Fig. l5.l0h. This pipeline operated
cfficienfly because diFfCl'BIll CPU resources, such as address and bus access, ALU operations, register
accesses, and so on, were utilized simultaneously on a noninterfering basis.

The internal pipeline clock rate (IUD MI-lz) of the R4000 was twice the external input or master clock

...,...-...,.,........,,,._.,.,..,......,.. _ ,,_,_
frequency. Figure 6.l0h shows the optimal pipeline movement. completing one instruction every intemal
clock cycle. Load and branch instructions introduce extra delays.

6.3.1 Mechanisms for Instruction Pipelining
We introduce instruction buffers and describe the use of cacheing, collision avoidance, multiple functional
units. register tagging, and intemal forwarding to smooth pipeline flow and to remove bottlenecks and
unnecessary memory access operations.

Preflstclr Buffer: Three types of buffers can be used to match the instruction fetch rate to the pipeline
consumption rate. ln one memory-access time, a block of consecuti ve instluctions are fetched into a prefetch
bufier as illustrated in Fig. 6.11. The block access can be achieved using interleaved memory modules or
using a cache to shorten the effective memory-access time as demonstrated in the MIPS R4000.

t

.I t\/s

S-equon nstmetlons Indicated by program counts-r

. Buffer 1
= .Bu er2at uni

Ta “fiat 1 Instruction Pipeline
Target Buffer 2

tlons from braneltad to-cations
li_ll

Fig.6.11 The use ofseqoemclal and target hofizrs

Sequential instructions are loaded into a pair of.scqrrcnri.ni' brrflers for in-sequence pipelining. Instructions
from a branch target are loaded into a pair of airgyr brg{*i=r.~r for out-of-sequence pipelining. Both buffers
operate in a first—in-first-out fashion. These buffers become part of the pipeline as additional stages.

A conditional branch instruction causes both sequential buffers and target buffers to fill with instructions.
After the branch condition is checked, appropriate instructions are taken from one of the two buifers, and
instructions in the other buffer are discarded. Within each pair, one can use one buffer to load instructions
from memory and use another buffer to feed instructions into the pipeline. The two buffers in each pair
altcmatc to prevent a collision between instructions flowing into and out of the pipeline.

A third type ofprcfetch buflier is known as afonp inrrflbr. This buffer holds sequential instructions contained
in a small loop. The loop buffers are maintained by the fetch stage of the pipeline. Pre-fetched instructions in
the loop body will be executed repeatedly until all iterations complete execution. The loop buffer operates in
two steps. First, it contains instructions sequentially ahead ofthe current instruction. This saves the instruction
fetch time from memory. Second, it recognises when the target ofa branch falls within the loop boundary. In
this case, unnecessary memory accesses can be avoided if the target instruction is already in the loop buffer.
The CDC 6600 and Cray 1 made use of loop buffers.

Multiple Functional Unit: Sometimes a certain pipeline stage becomes the bottleneck. This stage
corresponds to the row with the maximum number of checkmarks in the reservation table. This bottleneck
problem can be alleviated by using rnultiplc copies of the same stage simultaneously. This leads to the use of
multiple execution units in a pipelined processor design (Fig. 612}.

Par MIGIITLH HI" l'mrJI||r_.u|i¢\

Z44 i Aduwrced 'l:-Da'TlPl.lIvl!l'-"||!Ctl't|lIvECfl.rIE

Instruction from Memory

Ftsglster
Instruction Fetch Unit _ _ _Flis _

Tag Deon-do and Issue Units
| A S

' II

ll‘l1l
§;i?JI§‘“"l*’f~l lrfl rfl lRf| R..'§::i.t
FunctionalUm at FU we

s 1 ts. 1

________l

 |

I

Fig. 6.12 A pipelined processor with multiple functional u-nlrs and dlsrrlhuind reservation srarlons sup-ported
by tagging {Comte-sy of G.Sd'ti;roprlnned with permission from IEEE Tmnsucrlons on Cempurerglrhrch
1990}

Solii (1990) used a model architecture for a pipelined scalar processor containing multiple functional units
(Fig. 6.12). In order to resolve data or resource dependences among the successive instructions entering the
pipeline, the msermrion .smrr'on.s (RS) are used with each functional unit. Operations wait in the RS until
their data dependences have been resolved. Each RS is uniquely identified by a mg. which is monitored by
a rag unit.

The tag unit keeps checking the tags from all currently used registers or RSs_ This register tagging
technique allows the hardware to resolve conflicts between source and destination registers assigned for
multiple instructions. Besides resolving conflicts, the RSs also serve as buffers to interface the pipelined
functional units with the decode and issue units. The multiple functional units opemte in parallel, once the
dependences are resolved. This alleviates the bottleneck in the execution stages of the instruction pipeline.
Internal Dara Forwarding The throughput of a pipelined processor can be further improved with internal
data forwarding among multiple functional units. In some eases, some memory-access operations can be
replaced by register transfer operations. The idea is described in Fig. 6.13.

A store-ioadforwarding is shown in Fig. 6.13s in which the loan‘ tJ].:k_'r'flItirJn (LI) R2. Ml frflm II'1BII101'1~'
to register R2 ean be replaced by the move operation (MOVE R2, RI) from register R1 to register R2.
Since register transfer is faster than memory access, this data forwarding will reduce memory traflle and
thus results in a shorter execution time. Similarly. load-loadfonvar-ding {Fig. 6.1315) eliminates the second

,.,,,.,-,,,-,,,,,,,,5,,,,.,,,,,,,,,,.,,,, _ 2,5
loud operation [LEI R2, M) and replaces it with the mow operation {MOVE R2, RI 1. Further discussion on
operand forwarding will be continued in Chapter 12.

M M M M
Access Aoooss Access Aces-ss

Unit Unit Unit Urit
R1 R2 R1 R2 R1 R2 R1 R2
— — _ — — _ _ —

STD M, R1 LD R2, M STD M, R1 MOVE R2, R1 LD R1, M LD R, M2 LD R1, M MOVE R2, R1
{a) Store-load forwarding to) Load-toad forwarding

Fig.-5.13 Internal ohm forwarding by rephclng memory~aooess operations with register transfer operations

I»)
lg Example 6.5 Implementing the dot-product operation with

internal data forwarding between a multiply
unit and an add unit

One can feed the output of a multiplier directly to the input of an adder (Fig. 6.14) for implementing the
following dot-product operation:

S = 2.-1, >< rt, (0.10)
1 |

Without internal data forwarding between the two functional units. the three instructions must be
sequentially executed in a looping structure [Fig. ti.I4a). With data forwarding, the output of thc multiplier is
fed directly into the input register R4 of the adder (Fig. 6.l4b). At the same time, the output of the multiplier
is also routed to register R3. internal data forwarding between the two functional units thus reduces the total
execution time through t.he pipelinod processor.

Hazard Avoidance The rerrd and it-rim of shared variables by different instructions in a pipeline may lead
to different results if these instructions are executed out of order. As illustrated in Fig. 6.15. three types of
logic .Fm:.nrr.fs are possible.

Consider two instructions land .1. Instruction J is assumed to logically follow instruction l according to
program order. If the actual execution order of these two instructions violates the program order. incorrect
results may be read or written, thereby producing hazards.

Hazards should be prevented before these instructions enter tl'|c pipeline, sueh as by holding instruction J
until the dependence on instruction 1 is resolved. We use the notation DU) and Rtli for the domain and range
of an instruction I.

The domain contains the input ser {such as operands in registers or in memory) to be used by instruction
I. The range corresponds to the onrpnr sor of instruction I. Listed below are conditions under which possible
hazards can occur:

246 ii ifldvwrcedfiumplmerahdnitedum

3; bl"

R1 2 2 R2

a 0
l1:R3<-{R1j|'{R2j

R3 l2:R4<-[R31
l3:R'54-4_‘R5)+[R4]

‘Q51

R4i i

[a] Without data forwarding

3; bl"

R1 Z Z R2
Cr

@ "“““‘“""“"té :R4<- [R1]'{R2)
[5 : R5<- [R4] + [R5]

R3 1 1 R4 Z
[’1an-cl 5 can he emecmed
simuitaneously with lntamai
data fomardhg.

[bi with lntamzn zhta forwarding

0:1

Fig. 6.14 lrmernal dam 5:.-rwarding for lrr|piemen1:ing the dot-pm-duct operadm

[wrltejl Wnte

w [Read] [Write] w

[a] Read-afwr-Write [RAWJ hazard [t-J Write-after-Wrke [WAJHJ hazard

[Raadj m@ -W M»
[c] Wrhe-after-Read [WAR] hazard

Fig. L15 Ftvsslble hazards between read and write up-eratlons in an ll'|5tfl.lCtlGfl pip-eHne{hstruc|:I-a|1 I is ahead
of HEDIIHCHOHJ in program order]

...,,“-.,t,.g.,.,‘,5.,,,._.,,,:_,,.,..,.c,.. _ M
R(I} A D(J] qr d for RAW hazard
Rm rt rr(.n qr n for waw hazard (5.111
D{1)n RU) e‘= d for WAR hazard

These conditionsare necessary but not sufficient. This means the hazard may not appear even ifone ormore
of the conditions exist. The RAW hazard corresponds to the flow dependence, WAR to the antidependenee,
and WAW to the output dependence introduced in Secfiou 2.}. The occurrence of a logic hazard depends on
the order in which the two instructions are executed. Chapter 12 discusses techniques to handle sueh hazards.

6.3.3 Dynamic Instruction Scheduling
In this section, we describe three methods for scheduling instructions through an instruction pipeline. The
static sc!redr.u'r'ng scheme is supported by an optimizing compiler. Qt-'mrrrrie scheratrfing is achieved using a
technique such as Tomasulo’s register-tagging scheme built in the IBM 3l50f9I , or the sea.-ebmmtng scheme
built in the CDC 6600 processor.
Static Scheduling Data dependences in tl sequence of instructions create interlocked relationships among
them. interlocking can he resolved through a compiler-based static scheduling approach. A compiler or a
postprocessor can be used to increase the separation between interlocked instructions.

Consider the execution of the following code fiagment. The mu!ripr'_1-‘ instruction cannot be initiated until
the prcc-cdirlg land is complete. This data dependence will stall the pipeline for three clock cycles since the
two fonds overlap by one cycle.

Stage delay: Instruction:
2 cycles Add R0. R1 FRO <— (R0) + (RI)1‘
I cycle Move R1. R5 {RI e— {R5]r'
2 cycles Load R2, lvl{rr} IRZ 4- [Memory (|'I]]r’
2 cycles Load R3. MLB) IR! <— [Memory (,3))r'
3 cycles Multiply R2, R3 IRE <— {R2} >< (R31!

The two lmrriv. since they are independent of the odd and move. can be moved ahead to increase the
spacing between them and the rrruln}u.'__v instruction. The following program is obtained after this modification:

Load R2, M(rr) 2 to 3 cycles
Load R3, M (B) 2 cycles due to overlapping
Add R0, RI 2 cycles
Move RI, R5 l cycle
Multiply R2, R3 3 cycles

Through this code reanangement, the data dependences and program semantics are preserved, and the
m1rlripl_v can be initiated without delay. While the operands are being loaded from memory cells rr and)3 into
registers R2 and R3, the two instructions mid and mot-'e consu.rne three cycles and thus pipeline stalling is
avoided.

M G HillFf» nf row t'4.\m;rwrn1
243 i Advanced Comprrterwfirtltitecture

Tomasulo’: Ji'l.lgo.r'ithm This hardware dependence-resolution scheme was first implemented with multiple
floating-point units of the IBM 36{lf9I processor. The hardware platform is abstracted ir1 Fig. 6.12. For thc
Model 9] processor, three RSs were used in a floating-point adder and two pairs in a floating—point multiplier.
The scheme resolved resource conflicts as well as data dependences using register tagging to allocate or
deallocatc the source and destination registers.

An issued instruction whose operands are not available is forwarded to an RS associated with the finnctional
unit it will use. It waits until its data dependences have been resolved and its operands become available.
The dependence is resolved by monitoring the result bus (called eormrrmr dam fins in Model 91). ‘When all
operands for an instruction are available, it is dispatched to the functional unit for execution. All working
registers are tagged. ll‘ a source register is busy when an instruction reaches the issue stage, the tag for t.he
source register is forwarded to an RS. “ho the register data becomes available, it also reaches the RS which
has the same tag.

I»)
El Example 6.6 Tomasulo's algorithm for dynamic

instruction scheduling
Tomasulo's algorithm was applied to work with processors having a few floating-point registers. In the ease
of Model 91, only four registers were available. liigure 6.1641 shows a minimum-register machine code for
computing X = Y + Z and A = H >< C. The pipeline liming with Tomc.sulo‘s algorithm appears in Fig. 6.16-b.
Herc, the total execution time is 13 cycles, cotmtirtg fiorn cycle 4 to cycle 15 by ignoring the pipeline stm11.rp
and draining times.

Memory is treated as a special functional unit. When an instruction has completed execution, the result
(along with its tag} appears on t.he result bus. The registers as well as the RSs monitor the result bus and
update their contents (and ready/busy bits) when a matching tag is found. Details of the algorithm can be
found in the original paper by Tomasulo [I967].

-iv Time
12 s ti 5 s 1 a o1o11121s1=t1s1s1r1a1aR1 r-Mom[Y]|

R2 <-Mem[Z]
R3 4-[R1i+[R2]

Mernifx] s—[R3] F
R1 <-Mem[B]
R2 <-Mem[Cj|
R3 <-[R1]'[R2]

Morn[A] t-[R3] -5

[a] Minimum-register machine code lb) Tho pipeline schedule

|-<

-1

"rr U

Fig. $.16 Dynamic lnsrru-ecion scheduling usir|gTornasr.|lo‘s algorithm on the processor in Fig. 6.11 (Co urresy of
James Smith; reprinted with pmnissi-on from IEEE Cornprrtofluly 1989'}

CDC Scar-eboor-ding The CDC 6600 was anearly high-performance compute-rthatused dynamic instruction
scheduling hardware. Figure d.l'Ia shows a CDC 6600-like processor, in which multiple fttnetional units

,=,,....,..-,.g....,5.,,,......,.......,.. _ M
appeared as multiple execution pipelines. Parallel units allowed instructions to complete out of the original
program order. The processor had instruction buffers for each execution unit. Instructions were issued to
available functional units regardless of whether register input data was available.

Wilto-

Instruction Wilto-fmch Deco-do Issue Exec ute n. Exiecuto back
D I E EF W

I
II/' -

\\ Exec ute I" Exiecuia vii:
E E W

(a] A CDC B60-Osllke processor

irflmo
12 3 4 5 6 7 B 91fl1112131¢151fi171B19

R1 4-Mem[Y] E
R2 <-Mem[Z]
R3 <-[Ft1}+[R2i

Msm[x] <-[R3]
R4 <-Mom[BJ
R5 <-fl.-'lom[-C]
R6 4-[R4-j|'[R5j|

lu1em(Aj| <-[RB]

[ls] T he Improved schedu lo from Flg. B.9b

Fig.-i.1'I' Hardware secret:-carding for dynainic instruction scheduling (Courtesy ofjames Srn+d1;reprh11:od with
permission from IEEE Colnputeltjuly 1989]

Thc instruction would then wait in a buffer for its data to bc produced by other instructions. To control
the correct routing of data between execution units and registers, the CDC 6600 used a centralized control
unit known as the scorehmrn‘. This unit kept track of the registers needed by instructions waiting for the
various functional units. Vflicn all registers had valid data, the scoreboard enabled thc instruction cxccution.
Similarly, when a functional unit finished, it signaled the scoreboard to release the resources.

V)
g Example 6.1 Pipelined operations using hardware

scoreboarding on the CDC 6600-like
processor flames Smith, 1989)

Figure 6.l?b shows the pipeline schedule based on scoreboard issue logic. The schedule corresponds to the

F?» Mtfiruw Hit |:'i».-rqtwtnw
I50 i Advanced Computer Architecture

execution of the same machine code for X - Y ~' Z and A- B >< C. The pipeline latencies are the same as those
resulting from Tomasu|o's algorithm. The mid instruction is issued to its functional unit before its registers
are ready. lt then waits for its input register operands.

The scoreboard routes the register values to the adder unit when they become available. In the meantime,
the issue stage is not blocked, so other instructions can bypass the blocked add. It takes 13 clock cycles to
perform the operations. Details of the CDC seorcboarding can be found in the book by Thomton {I970}.

The scoreboard is a centralized control logic which keeps track of the status of registers and multiple
functional units. When fiinctional units generate new results, some data dependences can be resolved and thus
a highcr degree of parallelism can be explored with seorcboarding. Seoreboarding in latter microprocessors
like MCBEUDU used forwarding logic and register tagging. In a way, scoreboarding implements a kind of
data-dr-it-en mechanism to achieve eflicient computations.

Dynamic instruction scheduling was implemented only in high-end mainframes or supercomputers in the
past. Most microprocessors used static scheduling. But the trend has changed over the last two decades. RI SC
and superscalar processorsare today built with hardware support ofdynamic scheduling at runtime. Significant
trace-driven data are needed to optimize the pipelined processor design. Toward this goal, processor and
compiler designers have to work together to achieve an efficient design. Multiple-issue instruction pipelines,
which are rnuch more complicated than single—issue instruction pipelines, will be studied in Section 6.5.

6.3.4 Branch HancIlingTet:hr|iques
The performance of pipelined processors is limited by data dependences and branch instructions. In previous
sections, we have studied the effects ofdata dependence. In this subsection, we study thc effects of branching.
Various branching strategies are reviewed. The evaluation ofbranching strategies can be performed either on
specific pipeline architecture using trace data, or by applying analytic models. We provide below a simple
performance analysis. For a more detailed treatment of the subject, readers are referred to the book Brrtrtrh
.'i‘rrrttegLt-' ifittortnrny min‘ Perfnrrrtrirtr-e .-lforit’l.s by Harvey Cragon {I991}.

Effect of Branching Three basic temis are introduced below for the analysis of branching efiects: The
action of fetching a nonscqu-ential or remote instruction afier a branch instruction is called branch rnknrt. Thc
instruction to be executed after a branch taken is called a brrmch target. The ntnnber ofpipeline cycles wasted
between a branch taken and the fetching of its branch target is called the def-n_y star. denoted by b. In generaL
ll S b S .i'— I, where It is the number ofpipcline stages.

When a branch is taken, all the instructions following the branch in the pipeline become useless and will
be drained from the pipeline. This implies that a branch taken causes the pipeline to be flushed. losing a
number of useful cycles.

These terms are illustrated in Fig. 5.13, where a branch taken causes l;,H through IM. k | to be drained from
the pipeline. Let p be the probability of a conditional branch instruction in atypical instruction stream and q
the probability of a successfirlly executed conditional branch instruction (a branch taken]. Typical values of
p = 20% and (,1 = 60% have been observed in some programs.

The penalty paid by branching is equal to pqnbrbocause each branch taken costs fl rcxtra pipeline cycles.
Based on Eq. 6.4, we thus obtain the total execution time ofn instructions, including the effect of branching,
as follows:

T,',!y= kt + (rt — I) t+pqnl:It

_ __ Fr-|-Mcfiruw Hi'iI:'|-rr.-w.-.-|-rt _P§pe“'|wpgand5uPe-[§£uk1|'TK _ m
Modifying Eq. 6.9, we define the following qffecrive pi]-Jeiine rhmngnpur with the influence of branching:

mg. = L = _ (W)
126,- k+n—i+pr;mb

When n —> 0-=, the tightest upper bound on the effective pipeline throughput is obtained when b = k — 1:

11;, = (6.13)
When p = qr = D {no branching), the above bound approaches the maxirnum tl1rougi1putf= If r, same as in

l.-Jq, 6.2. Suppose p = £12, ql = 0.6, and b = ir — 1 ='= 7. We define the following rrerfarmancerdtgradrrmn fiicrrlri
- 11 * _n= I ”*@"=1- 1 = 1"!“ 1]‘ e= “'S4=n.4s (E-.14)f _rJq{k—1]+i pq[k—1)+l 1.84

The above analysis implies that the pipeline performance can be degraded by 46% with branching when
the irtstmction stream is sufficiently long. This analysis demonstrates the high degree of performance
degradation caused by branching in an instruction pipeline.

lmtnrction flow
in

(+1111:-1in+r+2 ¢'= [n+2 inn in pi’

-|-I r |<- cio-cit cycle

[aj| A it-stage pip-eiine

Original instruction flow Branch taken
an *

I I I [b+k_1.l I I [n+2 [inf lb I I I

nfii
Cagions:

A cieiay slot of length k-1 lb = Branch taken
L, = Branch target
ir= Ne. of pipeline stages
1 = ciock cycie [stage deiay]
ti = Delay slot size

I -I I I I I I [H2 [H1 [1,

in
New lnstmction flow

{bj|Anin>str1.|ctien stream containing a branch taken

Branch target

Flg.6.1lI Thedecisionofaha'ar|d11:ienatd1ehststagcofa1insuucdmpip-eihecatn-esbSk-iprevinusiy
imdedksnnucdomwbedninedfinmdupqselkn

I51 i Auhiwrccd 'i:-i2ta"i‘ijJti.lIvi!l'-"II-fCi't|iIvEt'1l.rJ'E

Brunch Prediction Branch can be predicted either based on branch code types statically or based on branch
history during program execution. Thc probability of branch with respect to a particular branch instruction
type can be used to predict branch. This requires collecting the frequency and probabilities of branch taken
and branch types across a large number of program traces. Such a srnric brrmch srrnregv may not be very
HDCHIBIG.

The static prediction direction {token or nor rat-en) can even be wired into the processor. According to past
experience, the best performance is given by predicting rniren. This results from the fact that most conditional
branch instructions are taken in program execution. Thc wired-in static prediction cannot be changed oncc
committed to the hardware. However, the scheme can be modified to allow the compiler to select the direction
of each branch on a semi-static prediction basis.

A nf_1-nnmic branch strategy works better because it uses recent branch history to predict whether or not
the branch will be taken next time when it occurs. To be accurate, one may need to use the entire history of
the branch to predict the fiiture choice. This is infeasible to implement. ‘Therefore, most dynamic prediction
is cietermined with limited recent history, as illustrated in Fig. 6.19.

Y ' Y Y
Branch Branch Branch

Instruction Prediction target
address Statistics add ress
[a] B ranch target buffer organization

T Ca ions:¢@ @ Brarchtaiten
N = Not-taken branch

N NN=Lasttwobranci1es nottaiten
T HT = Not branch taken and previous taken

- TT = Beth last two branches taken
Q TN = Last branch taken and previous not taken

N
[bi Atypical state diagram

Fig. 5.1! Branch hrisrory botiior and a st-are r:rsnsi1:ic.n ring:-am used in dynarrdc branch prediction (Coiirresy of
Lee and Smith. i.E.E.E Computer, 1984}

Cragon {I992} classified dyrtamic branch strategies into three major classes: One class predicts thc branch
direction based upon information found at the decode stage. The second class uses a cache to store target
addresses at the stage the effective address of the branch target is computed. The third scheme uses a cache
to store target instructions at the ictch stage.

,=,,,,,-,,,-,,,,,.,,5,,,,._.,,,,,,.,,,,,,,, _ ,5,
Dynamic prediction demands additional hardware to keep track of the past behavior of the branch

instructions at run time. Thc amount ofhistory recorded should bc relatively small. Otherwise, the prediction
logic becomes too costly to implement.

Lee and Smith [1984] suggested the use of a branch rmger hujt-r ['l:'lTB) to implement branch prediction
(Fig. 6. l Sta). The BTB is used to hold recent branch information including the address of the branch target
used. The address of the brunch instruction locates its entry in the BTB.

Astahe transition diagram (Fig. t5.l9b) has been used by Lee and Smith for tracking the last two outcomes
at each branch instruction in a given program. The BTB entry contains the information which will guide the
prediction. Prediction information is updated upon completion of the current branch.

The HTH can be extended to store not only the branch target address but also the target instruction itself,
i.n order to allow zero delay in converting conditional branches to unconditional branches. Thc rrrkcn (T) and
not-taken {N} labels in the state diagram correspond to actual program behavior. Further discussion on this
topic will be found in Chapter 12.
Delayed Branches Examining the branch penalty, we realize that the branch penalty would be reduced
significantly if the delay slot could be shortened or minimized to a zlero penalty. The purpose of delayed
branches is to make this Possible, as illustrated in Fig. 6.20.

The idea was originally used to rednce the branching penalty in coding rnicroinslructiorts. A r;li'irr_1-‘ed
brrmr:-fl of d cycles allows at most rt — l useful instructions to be executed following the branch taken. The
execution of these instructions should be independent of the outcome of the branch instruction. Otherwise. a
zero branching penalty cannot he achieved.

Delayed branch
Delayed branch 1 2 gr {E E T

1 2 @ X 5 6 IIIIBB
is IIIIE 2 delay H IIIIE1 slaw Inseam nun lnsweoel e nun

EIIIB H IIIIB
[ai A delayed branch for 2 cycles when the branch [b] Adelayod bran-cit for3 cycles when the branch

condition is reserved at the decode stage condition is resolved at the execute stage

Time
Delayed branch

1 2 2. -t (51 @ CblBe"el nun
3 may ‘1 IIIIB—amlreees=

trace: [1 IIIIE
[cl A delayed branch for 4 cycles when the branch

condition is resolved at the store stage

nstructions

Fig.i.10 The concept of delayed branch by moving independent instructions or HOP fillers into the delay slot
of a four-serge pipeline

If J11!!!‘ r'mr:-;|(min

I54 i ' Advanced Computerdrdtitecture

The technique is similar to that used for software interlocking. NOPs can be used as fillers if needed.
The probability of moving one instruction (if = 2 in Fig. 6.20a) into thc delay slot is greater than 0.6, that
ofmoving two instructions (d = 3 in l-‘lg. 6.2(lb) is about 0.2, and that of moving three instructions (d= 4 in
Fig. 6.20c) is less than lll. according to some program trace results.

I/)
Cg Example 6.8 A delayed branch with code motion into a

delay slot
Code motion across branches can be used to achieve a delayed branch, as illustrated in l-‘ig. 6.21. Consider the
execution of a code fiagment in Fig. 6.21 a. The original program is modified by moving the useful instruction
Il into the delay slot after the branch instruction I3.

:1. LOAD R1. A :2. Doc no.1
:2. Dec ns. 1 is. BFZBFO ns. :5
:3. Brloro ns. :5 :1. LOEEI R1. A

lint, Am an, Ft-1 :4. rm R2, R4
:5. Sub ns. no :5. Sub ns. as
[6_ Btorg R5‘ B I6. Store R5, B

O O
I I

[a] Original program [ti] ll.-loving useful lnstructloris Into the delay slot

Fig. $.21 Code motion across a branch to achieve a deiayed hraincii with a reduced penalty re pipeline
perforrrianee

in case the branch is not taken, the execution of the modified program produces the same results as the
original program. In case the branch is taken in the modified program, execution of the delayed instructions
Il and I5 is needed anyway.

In general, data dependence between instructions moving across the branch and the remaining instructions
being scheduled must be analyzed. Since instruction ll is independent of the remaining instructions, leaving
it in the delay slot will not crcatc logic hazards or data dependences.

Sometimes HOP fillers can be inserted in the delay slot if no useful instructions can be found. However,
inserting NOP fillers does not save any cycles in the delayed branch operation. From the above analysis.
one can conclude that delayed branching may be more cffcctiyc in short instruction pipelines with about
four stages. Delayed branching has been built into some RISE processors, including the MLPS R4000 and
Motorola MC-881 10.

..,,,.,,-,..,.,,,,,., ,,.,,.,,,,.,,,,,.,,,,,. . _ 255

ARITHMETIC PIPELINE DESIGN
_ Pipelining techniques can be applied to speed up numerical arithmetic computations. We start

with a review of arithmetic principles and standards. Then we consider arithmetic pipelines
with fixed functions.

A iised-point multiply pipeline design and the MC61ilLl40 floating-point unit are used as examples to
illustrate the design techniques involved. A multifunction arithmetic pipeline is studied with the TI-AF-C
arithmetic processor as an example.

6.4.1 Computer!-‘arithmetic Principles
In a digital computer, arithmetic is performed withfinite precision due to the use offixed-size memory words
or registers. Fixed-point or integer arithmetic otfers a fixed range of numbers that can be operated upon.
Floating-point arithmetic operates over a much increased dynamic range ofnutnbers.

In modem processors, fixed-point and floating-point arithmetic operations are very often performed by
separate hardware on the same processor chip.

Finite precision implies that numbers exceeding the limit must be truncated or rounded to provide a
precision within the number of significant bits allowed. in the case of fioating—point numbers, exceeding
the exponent range means error eonditions, called ovegdow or underjiloi-v. Thc Institute of Electrical and
Elec-tronics Engineers (IEEE) has developed standard formats for 32- and 64-bit floating niunbers known as
the IEEE Z54 Srmidarri. This standard has been adopted for most of today's computers.
Fixed-Point Op-motions Fixed-point numbers an: represented internally in machines in sign-magnitude,
ones corrtpi'emcnI. or In-'0 Ir cornpicmcnf notation. Most computers use the two’s complement notation because
of its unique representation of all numbers (including zero). One‘s complement notation introduces a second
zero representation called rfirry ccro.

Add. suhrmci mulriph-: and di:-'in’c are the four primitive arithmetic operations. For fated-point numbers,
the add or subtract of two n-bit integers (or fractions) produces an n-bit result with at most one carry-out.

The multiplication of two n-bit numbers produces a Zn-bit result which requires thc use of two memory
words or two registers to hold the full-precision result.

The division of an n-bit number by another may create an arbitrarily long quotient and a remainder. Only
an approximate result is expected in fixed-point division with rounding or truncation. However, one can
expand thc precision by using a Zn-bit dividend and an n-bit divisor to yield an rt-bit quotient.

Flnnringflininr Number: A floating-point number Xis represented by apair (m. e], when: m is thc ninnnsm
(o1'_,r'r.ocrion) and c is thc r.’.1]'J(J!'lr.’Nf with an implied brisc {or r.:idr'Jt',l'. The algebraic value is represented as X =
m >< r”. The sign ofX can be embedded in the mantissa.

g : Example 6.9 The IEEE 154 floating-point standard

A 32-bit i'loating—point number is specified in the [EEE 154 Standard as follows:

Par MIGIITLH HI" l'mrJI||r_.u|n¢\

I 55 i Auluwtccd Computer Architecture

D 1 2 9' 31

II---Ill ll
‘Y’ WI’

Exponent a lulantkssa m.2?->_:1
r_

A binary base is assumed with r = 2. The 8-bit exponent c field uses an e:xces.r-Ll‘? code. The dynamic
rangc of c is (-121, 128), internally represented as [0, 255}. The sign s and the 23-bit mantissa field m form
a 25-bit sign-magnitude fraction, including an implicit or “hidden“ l bit to the left ofthe binary point. Thus
the complete rnantissa actually represents the value Lm in binary.

This hidden bit is not stored with the number. If U *-1 c < 255, then a nonzero normalized numb-er represents
the following algebraic value:

x=(_-11-*'><2* '*"><(1m) (5.15)
When 1- = 255 and m ¢ U, a not-a-number (NaN_] is represented. NaNs can be caused by dividing a zero by

s zero or taking the square rootofa negative number, among many other nondeterminate cases. When e - 255
and m = 0, an infinite number X = (— l]|" -=-=~ is represented. Note that +-=-= and —¢-=> are represented differently.

‘Nhen c = 0 and m sfi D, the number represented is X = (—l]"'2. m'[D.m). when c = 0 and m = D, a zero is
rcprcscntcd as.-Y = (—1)"'U. Again, +0 and — U are possible.

The 64-bit (double-precision) floating point can be defnied similarly using an excess-1023 code in the
exponent field and a 52-bit rnantissa field. A number which is nonzero, finite, non-NaN. and nomialized. has
the following value:

.r=(-1)-"'>< 2“ ‘°”>< {Lm} (6.16)
Special rules are given in the standard to handle overflow or underflow conditions. Interested readers may

check the published LEEE standards for details.
Floating-Point Operations The four prinilitive arithmetic operations are defined below for a pair of
floating-point numbers represented by X = (mp cl) and l’ = |[m_,., al.). For clarity, we assume cl E cl. and base
r = 2.

,r+ r = on, >< 2*“ + m_,,) >< it-'" (an)
.r- r = rm, >< 2“ *'-"- my) ><.e- (ans)
X->< r = (in, >< my) >< 2*'~**'-~- (619)
aw, r ={m__ +m,.} >< 2"‘ "1 (ass)

The above equations clearly identify the number of arithmetic operations involved in eaeh floating-point
function. These operations can be divided into two halves: One half is for exponent operations sueh as
eomparing their relative magnitudes or addingfsubtraeting them; the other half is for mantissa operations,
including four types of fixed-point operations.

Floating-point units are ideal for pipclined implcmcntation. The two halves of the operations demand
almost twice as much hardware as that required in a Ilxed-point unit. Arithmetic shifting operations are
needed for equalizing the two exponents before their mantissas can be added or subtracted.

Shifting a binary fiaction m to thc right Ir placcs oorrcsponds to thc weighting m >< I ‘E, and shifti ng .1: places
to thc left corresponds to m X 2.". In addition, nonnalization of a floating-point number also requires left shifts
to be performed.

M-..,,,g..,,.,5.,,,.,,._,,..,,,,.,,. _ 25,
Elementary Function: Elementary Functions include trigonometric, eztponential, logarithmic, and other
transcendental Functions. Truncated polynomials or power series can be used to evaluate the elementary
liinctions. such as sin r, In x. c". cosh .r. tan ' __1-; xi, etc. Interested readers may refer to the book bv
Hwang (1979) for details of computer arithmetic functions and their hardware irnplenientation.

It should he noted that computer arithrnetic can be implemented by hardwired logic circuitry as well as by
table loolcup using fast memory. Frequently used constants and special function values can also be generated
by table lookup.

6.4.1 Static Arithmetic Pipelines
Most of to-day’s arithmetic pipelines are designed to perform fixed firnctions. These m-irhnwri'r:-’logir- rmirs
(.-'tLUs) perform fixed-point and floating-point operations separately. The fixed-point unit is also called the
integer |.m.it. The floating-point unit can be built either as part of the central processor or on a separate
coprocessor.

These arithmetic units perfonn scalar operations involving one pair of operands at a time. The pipelining
in scalar arithmetic pipelines is controlled by sofizware loops. Vector arithmetic units can be designed with
pipeline hardware directly under firmware or hardwired control.

Scalar and vector arithmetic pipelines differ mainly in the areas of register files and control mechanisms
involved. Vector hardware pipelines are often built as add-on options to a scalar processor or as an attached
processor driven by a control processor. Both scalar and vector processors are used in modern supercomputers.
Arithmetic Pipeline Siege: Depending on the firnction to he implemented, different pipeline stages in
an aritlunetic unit require different hardware logic. Since all arithmetic operations [such as nnii .s'ubB'nrf.
mliififlili dii-‘ids. squaring, square roofing. iogarirhnt ete,) can be implemented with the basic add and Shifiing
operations, the core arithmetic stages require some form of hardware to add and to shift.

1-"or example, a typical tl1ree—stage floating-point adder includes a first stage for exponent comparison and
equalization which is implemented with an integer adder and some shifting logic; a second stage for fraction
addition using a high-speed carry lookahcad adder; and a third stage for fraction normalization and exponent
readjustment using a shifter and another addition logic.

Arithmetic or logical shifis can be easily implemented with sh {ii registers. High-speed addition requires
either the use of a carry-propagation adder {CPA} which adds two numbers and produces an arithmetic sum
as shown in Fig. 6.22s, or the use ofa satay-save adder (GSA) to three input numbers and produce one
sum output and a carry output as exemplified in Fig. 6.22b.

In a CPA, the carries generated in successive digits are allowed to propagate from the low end to the high
end, using either ripple carry propagation or some carry looka-head technique.

In a CSA, the carries are not allowed to propagate but instead are saved in a can'y vector. In general, an
n-hit CSA is specified as follows: Let X, 1", and Z he three n-bit input ntunbers, expressed as X= Qt], l, x,,_ 2.
.r| , xq) and so on. The CSA performs bitwise operations simultaneously on all columns of digits to produce
two n-bit output numbers, denoted as Si’ = [0, S” |, 5,, 1, 5,, S0) and C = (Cm C" |, .. ., Ch 0}.

Note that the leading bit of the br'rn'r'.s'e sun! Sb is always a I], and the tail bit of the cnrrjv vector C is always
a D. The input-output relationships are expressed below:

S, = x,- E _v,- E :,-
C,-+| = .r,-__1-,- v_1t,-:,- v 2,-r; (5.11)

|__ _ rr.-.- Mcfirow Hill I'r>¢r.q|r_.u||r\ '

A B

ifldvwt-cred Computer Architecture

e.g. n=¢
A =

+1 B:

S: =A-1-B

Com g

l5LI'fll
[a] An n-bit eany-propagate adder [CPA] \~.rhic:i1 allows either eany

propagation or app-lies the earry- ieoirahead technique

_n UU-‘ U-L-U1 _L_.L_L Q44

3 II

X Y Z
e.g. n=-i

x = rt n n
Y:

EB-Z=

Sb; n+1 n+1
*lC=D111tIi1tIi b—~—--—-—-—-—-—-— b C SS=1011111=S+-C=.i(+Y+Z (Can? {amuse

veetor] sum)

U -I-'-UU °_L._L° 1.5""?-“ =»—~—~=~ _L¢@—l- _;_|._L-L

{bi An n-tilt carry-satre adder [CSAL where Sbis the bitwise strn of it, Y, andZ, and
C is a eany vector generated without carry propagation between digits

Fig. 6.22 Disdncrziort b-etween a cat'ry-propagate adder {CPA} an-d a 1:.-rryssatre adder (CSAI

for r‘ - 0.1, 2,n — 1, where 6' is the exclusive OR and v is the logical OR operation. Note thatthe arithmetic
sum of three input numbers, i.e., S = X+ Y + Z, is obtained by the two output numbers, i.e., S = +
C, using a CPA. We use the CPA and CSAS to implement the pipeline stages of a fixed-point multiply unit
as follows.
Multiply Pipeline Design Consider as an example the multiplication of two 3-hit integers .-I >< B = P,
where P is the 16-I:-it product. This fixed-poirit multiplication ean be written as the summation of eight partial
products as shown below: P = A >< B = P0 + P, + P; + + P7, where >< and + are arithmetic multiply and acid
operations, respectively.

I G I I D I D I .-"I
><}l00]tltllI=E

. Pu

P1
P2
Pa
P4

D P5

o o P6
i) l Ci l P;

DIIODIIIIIIDIIIIP

-..-:1:1_ UUUUU'-'UU'-UU QUU—UU'- '-'UUUUUU'- UUU—UU—U UUUUUU-I- UUU—UUU'- 5UUUUU—U UUUUUUU'- UUUUUU—U UUUUUUU- ‘I

,..,,.,.,,-,,g.....,5.,,,._.,,._,,......,,, _ 25,
‘Note that the partial product P; is obtained by multiplying the multiplicanel A by thejth bit of B and then

shifting the result j bits to the left for j = U, 1, 2, ..., 7. Thus is [B + j} hits long with j trailing zeros. The
surnmation of the eight partial products is done with a risrrm-' tree of CSAs plus a CPA at the final stage, as
shown in Fig. 6.23.

The first stage (5,) generates all eight partial products, ranging fiom 8 bits to 15 bits. simultaneously. The
second. stage {S2} is made up of two levels of four CSA.s, and it essentially merges eight uu.mlJ-ers into four
numbers ranging from I3 to I5 bits. The third stage {S3} consists of two CSAs, and it merges four numbers
from S1 into two l6-bit numbers. 'l'he final stage (S4) is a CPA, which adds up the last two numbers to produce
the final product P.

. 1“ i“ ._
it is

s1 I Multiplier recoding to-gin 1
£11¢12¢13 £14 i’15D—

\ 1’ \ i11ciji13/1 //15S2 we/3 1*» .3.
113 313 115 115

I
1 13 15

1s
ss 1

1s 1s
i D—

16 15

=~»~ Zfl
16

i D—
Captions: $16
CS1-'t= Carry save adder
CPA = Cary Prqsagate adder p = A 1 3

-sf)fillG?

“-_‘:-“"_‘.‘- UU

Oi

(‘J

Fig. 6.23 A pipeline unit for fixed-point rrrultiplication of B-bit: integen {The nurnber along each line infieanes
fllfl “I11! W'idti't..]

For a maxirntun width of 16 hits, the CPA is estimated to need four gate levels of delay. Eaelt level of the
CS-A can be implemented with a two-gate-level logic. The delay of the first stage (Sr) also involves two gate
levels. Thus all the pipeline stages have an approximately equal amount of delay.

Par MIGIITLH H“ l'mrJI||r_.u|r¢\

ICU U Auiuwtced Comptrterwfirchitecture

The matching of stage delays is crucial to the detemiination of the number of pipeline stages, as well as
the clock period (Eq. 15. I}. Ifthc delay ofthe CPA stage can be further reduced to match that ofa single CSA
level, then the pipeline can be divided into sis stages with a clock rate twice as fast. The basic concepts can
be extended to operands with a larger number of bits. as we see in the example below.

5%
MC6 8040

Figure 6.24 shows the design of a pipelined floating-point unit built as an on-chip feature in the Motorola
M68040 processor.

Example 6.10 The floating-point unit in the Motorola

Ea

2= Qs

//--.1::4-.4-"A-'?xI"/A-7-/.-'.-x'7-'1-'2//.4x/--2-7/..-.1-'-'./-'w'.-z-;-',-:/.-'.-:/.-2»://-':/.-'14:/-2--70/

11_

hi -

no:o-3-"
,3' .3

i23EE3»as

ii

iuiantissa Expflngfll

Multiplex it

Register -

/at/at WStage 1
Register

Register floral . gm,
.~ Q

:--;' .-'1'.-’. '.-"A 2'-//'.-2:-' .--'. .--'/..-:-I/.-sr-.-r/1--'5.-->'-'.<--:-:-;-'.-;/ /:--:.-;--'/' z w'1>:-'.g'--/:-o-.- -4-//.4.//--z‘mm’-.1--".4/.-n-v.--/-' 1/» / / .1 /
64-bit .K. B-bit

Multiplier
Register

/57113 .

6?-bit Add Unit Reg lei“
Stage 2

67-bit barrel
shifter _

s-'.-1»:-.--'/:.-.--:-‘ --/' ‘s-:-or:/'. /-'.»:--'1:--2 -/1 .//:/,-'/-->1-'2:-'1:-7-.z--//:.c-->'.--.-c--'.c-'1.-%.-- .- -it---'.--:/.--/s-//:1.-'/'-1 /xi4-"I-’.-'.»4-".-'1-'I4-'I-".-.-61?-"I"r?'.-'1-'3 /

Fhfl lster /16

./l':i-7;’ 67 Inerementer

Slag“ 3 Add Unit
Register ,.

FIg.i.14 Pipelined floating-point unit of the Hetero-la MC-6-‘B040 processor [Courtesy of Hotorola. Inc, 1991)

This arithmetic pipeline has three stages. The mantissa section and exponent section are essentially two

,.,,,,-.,,-,,,,.,,5,,,,._.,,,,,,.,,T.,,,, _ H,
separate pipelines. The mantissa section can perform floating-point add or multiply operations, either single-
precision [32 bits) or double-precision (6-4 hits).

In the mantissa section, stage I receives input operands and returns with computation results; 64-bit
registers are used in this stage. Note that all three stages are connected to two 64-bit data buses. Stage 2
contains the array multiplier [64 >< 8) which must be repeatedly used to can'y out a long multiplication of the
two mantissas.

The 6?-bit adder performs the acldition.*’suhtra-ction of two mantissas, the barrel shifter is used for
normalization. Stage 3 contains registers for holding results before they are loaded into the register file in
stage 1 for subsequent use by other instructions.

On the exponent side, a lo-bit bus is used between stages. Stage 1 has an exponent adder for comparing
the relative ntagrtitude of two exponents. The result of stage 1 is used to equalize the exponents before
mantissa addition can be pe;|'fon‘ned. Therefore, a shift count (from the output of the exponent adder} is sent
to the barrel shifter for mantissa alignment.

After normalization of the final result (getting rid of leading zeros), the exponent needs to be readjusted in
stage 3 using another adder. The final value of the resulting exponent is fed from the register in stage 3 to the
register file in stage 1, ready for subsequent usage.

Convergence Division One technique for division involves repeated multiplications. Mantissa division
is carried out by a cont-ergvence rrrerhod. This convergence division obtains the quotient Q = MED of two
normalized fractions 0.5 5 M< D < l in two‘s complement notation by performing two sequences of chain
multiplications as follows:

M R R R.Q: X | X 2 X X A

D><R| >< R: ><---><R,,
where the successive multipliers

R,-=1+5”'=2 oi" fori'=l,2,...,.lr and o=1-5
The purpose is to choose R; such that the denominator Dm = D >< Rl >< R3 >< - - - >< Rk —> 1 for a sufficient

number oft: iterations, and then the resulting numerator Mx R, >< R; >< >< Ry, —> Q.
Note that the multiplier R, can be obtained by finding the two's complement ofthe previous chain product

Dl‘l= Dx R, >< ><R,- ,= 1 — 52’ ' becausei -Dl‘7'=R,-. The reason why Dill —> 1 for large I; isthat
ni'l= gi s)(1+ 511+ 8211+ 5") (1 + 51“ ‘)
={l 51](1+ s*}(1+ .5‘) (1 + 51' '1
={1 8*’; forr'=l,2,...,.lt (6.23)

Since D < 5 = 1 ~ D S 0.5, 52" -3- D as ibecomes sufficiently large, say, f= it for some Ii’; thus Dm =
1 - 5*‘ = 1 sir large t. The end result is

g=.tr><t1 | s)><(1 +s1)><---><(1| 51*") (6.24)
The above two sequences of chain multiplications are carried out alternately between the numerator and

denominator through the pipeline stages. To summarize, in this technique division is carried out by repeated
multiplications. Thus divide and multiply can share the same hardware pipeline.

I51 i Advanced Computer Arclritecture

I»)
E Example 6.11 The IBM 360iModel 91 floating-point

unit design
In the history of building scientific computers, IBM 360 Mode] 91 was certainly a milestone. Many of the
pipeline design fcattucs introduced in previous sections were implcrncntcd in this machine. Thcrcforc, it is
worth the effort to examine the architecture ofModel 91. In particular, we describe how floating-point add
and rnultip1y.i'divide operations were irnplernented in this machine.

As shown in Fig. 6.25, the floating—point execution unit in Model 91 consisted of two separate functional
pipclincs: thc addrmir and the nirifripifi-'.-‘rift-'ic1'r' unit, which could be used concturcntly. The former was a two-
stage pipeline, and the latter was a sis-stage pipeline.

From From
Store Instruction Cambnsj
UM Um‘ cos = Common Data sus.

R5 = Rosoivaticn station. each indenti-
Flieti Floating fled by a miquo tag number.
33:23 g°"'l t_ CSA= Carry-save adder.

para ion _(FLB: Sack CPA- Carry propagate adder.

Bits Tagsilllflfli
FLR Bus

E

lll!!!
iIlllllllE

FLB Bus
CUB

O

s

in-15:

*IE"E

><

-L:
,,li,,t|,,tt
[1D][11] [12

ll IIT
II llAdd Unit

fiiéifi Ista as
To Q Multiply-i'|Iiivit:|-o

Storage Unit
Unit [6 pip-alino stages)

@
—Z
_-

cns _ J

Fig. 6.25 The IBM 360 Model 91 floating-point: uni: (Courtesy of IBM Corporation. 1967]

...,...-...,,g...,..5.,,,._.,,._,,..,.,,.,,, _ m
The floating-point operation stack was a kind of prefetch buffer holding eight floating-point instructions

for subsequent execution through the two functional pipelines. The floating-point buffers were used to input
operands.

Operands may also come from the floating-point registers which were connected via the common data bus
to the output bus. Results finrn the two furictional units could be sent back to the memory via the store data
buffers. or they could be routed back to the FLR or to the reservation stations at the input ends.

The add unit allowed three pairs of operands to be loaded into three reservation stations. Only one pair
could bc used at a time. The other two pairs held operands for subsequent use. The use of these reservation
stations made the add tmit behave like three virtual functional units.

Similarly, the two pairs at the input end of the multiply/divide unit made it behave like two virtual units.
Internal data forwarding in Model 91 was accomplished using source tags on all registers and reservation
stations. Divide was implemented in Model 9| based on the convergence method.

Every so1.u'cc of an input operand was uniquely identified with a 4-bit tag. Every destination of an input
operand had an associated tag register that held the tag naming the sotnce of data if the destination was
busy. Through this register tagging technique, operandsfresults could be directly passed among the virtual
functional units. This forwarding significantly e-ut down the data flow time between them.

Dynamic scheduling logic was bu.ilt into Model 91 rising Tomasulo's algorithm to resolve the data
dependence problem. l.-Zither the add unit or the multiplyfdivide unit could execute an operation using
operands from one of the reservation stations.

Under Tornasulo’s algorithm. data dependences are preserved by copying source tags when the sources are
busy. When data is generated by a source, it passes its identification and the data onto the common data bus.
Awaiting destinations continuously monitor the bus in a tag watch.

When the source tag matches, the destination takes in the data from the bus. Other variations ot'Tornasulo’s
algorithm can be made to store the source tags within the destinations. to use a special tag {such as U000) to
indicate nonbusy registen'buf’fers, or to use direct-mapped tags to avoid associative hardware.

Besides the IBM 360.-G70, the CDC ssoorrsoo also implemented convergence division. It took two
pipeline cycles to perform the floating-point add. six cycles to multiply. and [B cycles to divide in the [BM
Systcn'u'31Sl] Model 91 due to five iterations involved in the convergence division process.

6.4.3 Multifirnctional Arithmetic Pipelines
Static arithmetic pipelines are designed to perform a fixed function and are thus ealled unfi'i.1ric1‘iormI. When
:1 pipeline can perform more than one function, it is ealled nlrvlrffiimriormi. A multifunctional pipeline can
be either srnric or rift-‘HcIIIli£'. Static pipelines perform one function at a time, but different fimctions can be
perfonned at dit‘r"erent times. A dynamic pipeline allows several functions to be performed simultaneously
through the pipeline. as long as there are no conflicts in the shared usage of pipeline stages. In this section, we
study a static multifunctional pipeline which was designed into the TI Advanced Scientific Computer {ASC}.

I54 i ' Advanced Computer Architecture

I»)
8] Example 6.12 The TIIASC arithmetic processor design
There were four pipeline arithmetic units built into the Tl-ABC system, as shown in Fig. 6.26. Thc instruction-
processing unit handled the fetching and decoding of instructions. There were a large number of working
registers in the processor which also controlled the operations ofthe memory bufi'er unit and ofthe aritltmetic
units.

There were two sets of operand buffers, {.-Y, 1", Zi and {X', ll". Z}, in each arithrnctic unit. .-'t'. X. ll" and 1"
were used for input operands, and Z’ and Z were used to output results. Note that intermediate results could
he also routed from Z-registers to either X- or lrlrcgisters. Both processor and memory buffers accessed the
main memory for ioshucticrns and opcrundsfrcsults, respectively.

Each pipeline arithmetic unit had eight stages as shown in Fig. 6-.2'l'a. The PAU was a static multifunction
pipeline which could perform only one function at a time. Figure 627a shows all the possible interstage
connections for perfom-ting arithmetic, logical, shitting, and data conversion functions.

lrtstnietton
Buffer

Q.
Instruction Reg Hers Comm

Unit (IPUJ 3
16 Arlthm

Main
Memory

_ _ MBU

,,a _
O ds"'“"“ a
Memory

Buffer
L.Inlt [MBU]

' lpeillna ' lpollna Pip-allno Plpol lno
1 2 3 4

PAU I I 1 t

Plpoltno Arlthrnatie Units {PAUJ

Fig. are The anahiceeune of the-Tl Advanced Scientific Composer (ABC) (Ccurccsy ofTexas Instruments. toe.)

,=,,,.,,,,,,,,g.,,,.,5,,,,._,,,£_,4,,,.,c,,, _ M
Both fixed-point and floating-point arithmetic functions could be performed by this pipeline. The PAU

also supported vector in addition to scalar arithmetic operations. It should be noted that different functions
required difl"crcnt pipeline stages and dificrcnt interstage connection patterns.is i i

input S1 S1 S1

Exponent
Stbtract S2 L PF-I S2

Alignto ii is
‘ A

‘ F tion-—i — I r rr

Nomalirse 55 S5 S5

Fraction I
Multiply‘ S6

5 Aocurnoiate

i iHiii
is{E

Ottput SB SB S8

J1
R'EA’-J-(BI

I =1
[a] Pipeline stages and {bi F bred-point moitinlication [oi Floating-point dot product

interconnections

R=![.r'-1,9) R=A"x:B

Fig. 6.2‘? The multiplication arirdimetic pipeiine of the Tl Advanced Scientific Computer and die intersuge
connecci-one of two I‘Eprt‘Béfl‘lI312l"M functions {Ended stages are unmliized]

For example, fixed-point multiplication required the use of only segments S], S6, 5-,, and 5'5 as -Shown
in Fig. 6.2Tb. On thc other hand, thc floating-point dot product function, which p-csrforms thc clot product
operation between two vectors, required the use of all segments with the complex connections shown in
Fig. 6.2?c. This dot product was implemented by essentially the following accumulated summation of a
scqucnoc of multiplications through thc pipeline:

War MIGIIILH H“ I'mt!I;|(1rlnr\

Iii E ' Advanced Comptrtetwfircltitecture

Z t— .-'1; X B1-+ Z (6.25)

where the successive operands (A,-, B,-) were fed through the X- and 1"-buffers, and the accumulated sums
through the Z-buffer recursively.

The entire pipeline could perform the mtr)'rr}Jl'_v [X] and the ado'(--) in a single flow through the pipeline. The
two levels of buffer registers isolated the loading and fetching of operands to or from the PAU, respectively,
as in the concept of using a pair in the prefetch buffers described in Fig. 6.11.

Even though the Tl-ASC is no longer in production, the system provided a unique design for multifunction
arithmetic pipelines. Today, most supercomputers implement aritltmeiic pipelines with dedicated ftnictions
for much simplified control circuitry and faster operations.

SUPERSCALAR PIPELINE DESIGN
-

Pipeline Design Parameter: Some parameters used in designing the scalar base processor
and superscalar processor are sumrnarized in Table 6.1 for the pipeline processors to be studied

below. All pipelines discussed are assumed to have it stages.
The pr]-:eh'ne ct-'1-la’ for the scalar base processor is assumed to be l time unit, called the hose r-ycle. We

defined the instruction i.ss1rerrira'. i.ssrre Irtrenctt and SlHl1|'JllL'Op£'rrIHDH 1"-ttIt'rr£'_t‘ in Section 4.1.] . The instruction-
l'¢='t-‘clpt'trflll't.’liSl'itI (ILP) is the maximum number of instructions that can be simultaneously executed in the
pipeline.

For the base processor, all of these parameters have a value of 1. All processor types are designed relative
to the base processor. The ILP is needed to fully utilize a given pipeline processor.

Table i.1 Ensign Fhrorneters for Pipeline Processors

.il-fuchinc ifypie .S'¢'r.rlur 1.ru.t-rs macdrlne o_,F'.lt plpeiltlne srerges St.rpe'r.\'ez.rlur mat;'.lri.rre' of '1!-tgtgr-t'¢' m

Machine pipeline cycle l (btue cycle} 1
lrutlmction issue rate I m
lnst:|'uction issue latency l_ _ 1
Simple operation latency I
TLP to Fully utilize the pipeline m

Note: All timing is relative to the base cycle for the scalar base machine. ILP: Instruction level parallelism.

We study below the structure ofsnperscalar pipelines, the data dependence problem, the factors causing
pipeline stalling, and mutti-instruction issuing mechanisms for achieving parallel pipelining operations. For
a superscalar machine of degree m, in instructions are issued per cycle and the lI.P should be m in order to
fully utilize lIl't-B pipeline. As a matter of fact, the scalar base processor can be considered a degenerate case of
a superscalar processor of degree l.
Super:/color Pipeline Structure In an m-issue superscalar processor, the instruction decoding and
execution restntrces are increased to form effectively HI pipelines operating concurrently. At some pipeline
stages, the functional units may be shared by multiple pipelines.

,,,,,,,,,-,,,,,,,,,,,._,,,,,,,,,,,,,,, _ W
This resource-shared 1nultiple—pipeline structure is illustrated by a design example in Fig. 6.289.. in

this design, the processor can issue two instructions per cycle if there is no resource conflict and no data
dependence problem. There are essentially two pipelines in the design. Both pipelines have four processing
stages labeled fetch, decode, execute, and store, respectively.

From
D‘ca°h° Eneeute

stage
' Mtltlpfler :

IFetch
stage

Decode
stage

Store
"11 "12 "'3 iiwritebaelrj

From!-eache ||
t2 d2 5|;

Lookahead Wind

D. w
Q;--.
I

I-as fill:
-

2 _._ DM. I
la] A dual- plpleline, superscalar processor with bur functional units in the exam Llion stage and a lo-olrahead window

producing out-of-order issues

l1. Load R1, A
Add R2, R1
Add R3, R4
MLI R3, R5
Comp R6
Mu R6, R?‘

1'3|'l‘lO1'dgr

.55FT5F?-
PM

rel <i—l'uiBfl10l'y'[A]l'
.I‘R2<-[R2]+[R1]|.f
rRs<_ raayqasyr
rR4<_ in-wins):
rest-Fair
.I'R64— [REl]'[R?'].f Flew Al'l'li- Output-dependence

dependence dependence also flow
dependence

[b] A sample program and its dependence grqrilh, where [2 and L3 eha re the adder and I4 and [B eha re the
multiplier

Fig. 6.28 A two-issue superscalar processor and a Q-rnp-ie prograrn for prairaiiei eiteol.n:ion

Each pipeline essentially has its own fetch unit. decode unit. and store unit. The two instruction streams
flowing through the two pipelines are retrieved from a single source stream (thc I-eache}. The fan-out from
a single instruction stream is subject to resource constraints and a data dependence relationship among the
successive instructions.

For simplicity, we assume that each pipeline stage requires one cycle, except the execute stage which may
require a variable number of cycles. Four functional units, multiplier, adder, logic unit, and load unit, arc
available for use in the execute stage. These functional units are shared by the two pipelines on a dynamic
basis. The multiplier itself has three pipeline stages, the adder has two stages, and the others each have only
one stage.

FM Mtfiruw Hfl r'n.-rqiunn1'
I55 i _ .9|GhMlil'l>C£d Computer Arclriteotorc

The two store units [S1 and S2) can be dynamically used by the two pipelines, depending on availability
at a particular cycle. There is a1nnInlre¢rrr' winn‘on' with its own fetch and decoding logic. This window is
used for instruction lookahead in case out-of-order instruction issue is desired to achieve better pipeline
throughput.

It requires complex logic to schedule multiple pipelines simultaneously, especially when the instructions
are retrieved from the same source. The aim is to avoid pipeline stalling and minimize pipeline idle time.
Dam Dependence: Consider the crtample program in Fig. 6.2Sh. A dependence graph is drawn to indicate
the relationship among the instructions. Because the register content in R1 is loaded by ll and then used by
I2, we have flow dependence: Ii—> I2.

Because thc rcsult in register R4 afier executing I4 may afl'eet the operand register R4 used by I3, we have
antidependence: I3 4—> I4. Since both 15 and I6 modify the register R6, and R6 supplies an operand for I6, we
have both flow and output dependence: I5 —> I6 and I5 0+ I6 as shown in the dependence graph.

To schedule instructions through one or more pipelines, these data dependences must not be violated.
Otherwise, erroneous results may be produced.

Pipeline Smiling This is a problem which may seriously lower pipeline utilization. Proper scheduling
avoids pipeline stalling. The problem exists in both scalar and superscalar processors. However, it is more
serious in a superscalar pipeline. Stalling can be caused by data dcpccndcnccs or by resource conflicts among
instructions already in the pipeline or about to enter the pipeline. We use an example to illustrate the conditions
causing pipeline stalling.

Consider the scheduling of two instructiorl pipelines in a two-issue superscalar processor. Figure 6.29s
shows the case of no data dependence on the left and flow dependence {ll —:~ I2) on the right. Without data
dependence. all pipeline stages are utilised without idling.

‘Mth dependence, instruction I2 entering the second plpellllfl must wait for two cycles [shaded time slots)
before entering the execution stages. This delay may also pass to ‘il1e next instruction I4 entering the pipeline.

In Fig. 6.29b, we show thc effect of branching {instruction I2). A delay slot of four cyclcs results finm a
branch taken by I2 at cycle 5. Therefore, both pipelines must be flushed before the target. instructions I3 and
I4 can enter the pipelines from cycle 6. Here, delayed branch or other amending actions are not taken.

In Fig. t':.29c, we show a combined problem involving both resource conflict and data dependence.
Instructions Il and I2 need to use the same functional unit, and I2 -3 I4 exists.

The not effect is that I2 must he scheduled one cycle behind because tl1e two pipeline stages [cl and E2) of
the same functional unit must be used by ll and I2 in an overlapped fashion. l-‘or the same reason, I3 is also
delayed by one cycle. instruction I4 is delayed by two cycles due to the flow dependence on I2. The shaded
boxes in all the timing charts correspond to idle stages.

Supersealor Pipdina Scheduling instruction issue and completion policies are critical to superscalar
processor perforrnance. Three scheduling policies are introduced below. When instruclzions are issued in
program order, we call it in-onder issue. When program order is violated, our-oj3oni'or issue is being practiced.

Similarly, if the hrstructions must be completed in program order, it is called in-order completion.
Otherwise. our-ojiorrier completion may result. ln-order issue is easier to implement but may not yield the
optimal performance. In-order issue may rcsult in either in-order or out-of-order oomplction.

,.,,..-..,,¢....,.,,,,._.,,..,,,,...,,, _ m
Time

*1 EIE
*2 f "1 "2 9-tHas

it IIIIIB
I. I -

nstluetions

_. ha oi ~r~ oi or

'5.__._.

;s~s-EEE~ EEE~ IKE*~ IMH- am=- 5ts Est
[No data depemhnee] [I2 uses data generated by I1]

[a] Data dependence stalls the second pipeline in shaded cycles

I fE; g Qaotkinsz
B 9 10 11 f=fetch

E3 _ B1 92 s d = decode
I4 '91 e1 = execute 1. 92 5

d *1 92 8 e2=ei<ecute2
s = storeiwntebeckj

‘ I
I

_. NI

HE“EH“EH“

d>“tF““""7’ H-*-Q-D-"-I

[bi Branch instruction £2 causes a delay slot of length 4 in both pipelines

_ l\J In? 4* U‘! Cb

'6'-J.—‘

Mei‘EEE“EEE“ Ififlr
- Dl .IE5“EM'=* gt.. He

I1 EIIEIIB
‘2 r <1 B2 s

is f *1 *2 5
It EIEIIE

' I

[No resource e'onflicts{| [I1 and I2 conflict in using the mrne functional
unit, and I4 uses data generated by I2]

[e] Resource conflicts and data dependences cause the stalling of
pipeline operations for some cycles

Fig. $.29 Deperldenees and resource conflicts may stall one or two pipelines in a two-Issue superscalar
pl*C.\C£5S\‘.‘lll*

Out-of-order issue usually ends up with out-of-order completion. The purpose of out-of-order issue
and completion is to improve perforrnanee. These three scheduling policies are illustrated in Fig. 6.31] by
execution of the eiuunpie program in Fig. €i.28i:i on the dual-pipeline hardware in Fig. 6.28s.

it is demonstrated that performance can be irnproved from an in-order to an out-of-order schedule. The
performance is often indicated by the total execution time and the utiliration rate of pipeline stages. Not all
programs can be scheduled out of order. Data dependence and resource conflicts do impose constraints.

In-Order issue Figure 6.'30a shows a schedule for the six instructions being issued in program order ll,
I2, I6. Pipeline 1 receives Ii, I3, and I5, and pipeline 2 receives I2, I4, and I6 in three consecutive cycles.
Due to I1 —> I2, I2 has to wait one cycle to use the data loaded in by I].

I3 is delayed one cycle for the same adder used by L2. I6 has to wait for the result of 15 before it can enter
the multiplier stages. In order to maintain in-order completion. I5 is forced to wait for two cycles to come out
of pipeline 1. In total, nine cycles are needed and five idle cycles (shaded boxes) are observed.

I'M Mrfirow Hill!‘ -. 1 nrr.q|r_.u|»r\

210 Ii Advwiccd compmeniclmeom

In Fig. 6.3lIlh. out-of-order completion is allowed even if in-order issue is practiced. The only diffenence
between this out-of-order schedule and the in-order schedule is that I5 is allowed to complete ahead of I3 and
I4, which are totally independent of I5. The total execution time does not improve. However, the pipeline
utilization rate does.

Only three idle cycles are observed. ‘Note that in Figs. 6.2921 and 6.2%, we did not use the lookahead
window. In order to shorten the total execution time, the window can be usodto reorder the instruction issues.

Elms [clock cycles)

flfiiruetions

5'07'4

esEEEE~Eihfilha EEEIEE* IEEEHm Elflfld» EIHE~ EH~ E...

Pip-e1,l1
PIP“-I2

[a] in-order issue with in-order completion in nine cycles

1 2 3 4 5 s r s s
P*P"’1"1 El
Pip“ 2- *2 IEE Comnletbfl orderItIlill—E'-‘IE! -i 5 s 1' 8 Q

[4 MPitt‘ ___
ls l2 do "'2 "'2 52

[h] in-order issue and out-of-order completion In nine cycles

p'““1'['~"E El H991 issue order
Pips 2- ItElli! Pie 2 IIIIIILooirahead Window ggg[Pipe 1) Lcokahead Q

Pips - is IHEIIIEIIE 4 5 6 1'
Pipe 2' [1 plpel Completion order

PM 2- I2 EIIEI Pips 2 —IIll!l
[cl Outof-order issue and out-of-order completion in seven cycles using an instruction

loolrahead window in the recoding process

-5. |\J I.-Ii

Es
LTI U5 '-q _a |\J hi

Fig. 6.10 Instruction issue and cornpleticn policies for a supersedes‘ processor with an-cl without instruction
looiiahcadsupp-or: (Thiing charm correspond rcparalid execution ofthe program in Fig. 6.18]

Out-of-Order Issue By using the lookahcad window. instruction IS can he decoded in advance hecausc
it is independent ofall the other instructions. The six instructions are issued in three cycles as shown: I5 is
fetched and decoded by the window, while I3 and I4 ane decoded concurrently.

It is followed by issuing Id and II at cycle 2, and I2 at cycle 3. Because the issue is out of order, the
completion is also out of order as shown in Fig. 6.30s. Now, the total execution time has been reduced to
seven cycles with no idle stages during the execution of these sis instructions.

,,,.,,-.,,,,...,,,..,,..........,...,.. . _ ,,,
The in-order issue and completion is the simplest one to i.mplernent. It is rarely used today even in a

conventional scalar processor due to some unnecessary delays in maintaining program order. llowever, in a
multiprocessor environment, this policy is still attractive. Allowing out-of-order completion can be found in
both scalar and superscalar processors.

Some long-latency operations, such as loads and floating-point operations, can be hidden in out-of-order
completion to achieve a better performance. Output dependence and antidependence are the two relations
preventing out-of-order completion. Out—of-order issue gives the processor more freedom to exploit
parallelism, and thus pipeline efliciency is enhanced.

The above example clearly demonstrates the advantages of i.nstruction lookahead and of out-of-order
issue and completion as far as pipeline optimization is conccmed. It should be noted that multiple-pipeline
scheduling is an NF-complete problem. Optimal scheduling is very expensive to obtain.

Simple data dependence checking, a small lookahead window, and scoreb-carding mechanisms are needed.
along with an optimizing compiler, to exploit instruction parallelism in a superscalar processor.

Motorola 88710 Architecture The Motorola 881 I0 was an early superscalar RJSC processor. It combined
the three~chip set, one CPU (B8100) chip and two cache (33200) chips, in a single-chip implementation,
with additional improvements. The 83110 employed advanced techniques for exploiting instruction-level
parallelism, including instruction issue, out-of—order instruction completion, speculative execution, dynamic
instruction rescheduling, and two on-chip caches. The unit also supported demanding graphics and digital
signal processing applications.

The 881 ll) employed a symmetrical superscalar instruction dispatch unit which dispatched two instructions
each clock cycle into an array of 10 concurrent units. ll allowed out-of-order instmction completion and some
out-of-order instruction issue, and branch prediction with speculative execution past branches.

The instruction set of the 88110 extended that of the 83100 in integer and floating-point operations. It
added a new set of capabilities to support 3-D color graphics image rendering. The 88110 had separate,
independent instruction and data paths, along with split caches for instructions and data. The instruction
cache was SK-byte, 2-way set-associative with 128 sets, two blocks for ear:-11 set, and 32 bytes [8 instruetions_',l
per block. The data cache resembled that of the instruction set.

The 88110 employed the Ml:;Sl cac-he coherence protocol. A write-invalidate procedure guaranteed that
one processor on the bus had a modified copy of any cache block at any time. The 83110 was implemented
with 1.3 million transistors in a 199-pin package and driven by a fill-lvll-I2. clock. Interested readers may refer
to Diefendortf and Allen (1992) for details.
Supermnlur Performance To compare the relative performance of a superscalar processor with that of a
scalar base machine, we estimate the ideal execution time ofN independent instructions through the pip-cline.

The time required by the scalar base machine is
T[I, I] = it + N l (base cycles) (15.26)

The ideal execution time required by an m-issue superscalar machine is

rm, 1) = /t’ + (base cycles) (rm)

where k is the time required to execute the first m instructions through the in pipelines simultaneously. and
the second term corresponds to the time required to execute the remaining N — in instructions, m per cycle,
through m pipelines.

IIEIHIIIIIIIIIIIE;I _ rhr I.‘ IBM!‘ I l!'n¢r.q|r_.u||r\ 5

272 Ii Advwrcred CompuIe|'A.rchitectum

The ideal speedup of the superscalar machine over the base machine is
50",“: T-i:l,lV] : N+k-l :m~[_N+k—]] (6-28)

T[m,1] N.-"m + It -1 N +m-[It -1]

A5 N —> M, the speedup limit Hm 1) —> m, as expected.

5;?
As illttstratcd in Fig. 6.3 l, this was a 64-bit supcrscalar processor. T111: design emphasized spcud, mt|ltiplt-
instruction issue, multiprocessor applications, software migration from the VAX./VMS and MIPSIOS, and a
long list of usable features. The clock rate was 150 MT-Ir. with the first chip implementation.

Example 6.13 DEC Alpha 21064 superscalar architecture

ICACHE is HIE-yt-as]
Bran-sh HistoryI Tame TAG DATA |

Address B-us
in

[M bitsi

éssgm

s;17__

FBOX
i_||t,|pli|fl' Multiplier!

r Profothor Ame;R~»~~~Conflict

Calculation

me Data Bus
hrssfipslti‘ ll“ (352243 5'“ (123 ml‘

Writo Address
I Buffer |Gonsratorl DTB l|'°3'd3“°|

External Cac he
in

Control
DCACHE rs KB-ytosfi

I mo | oxm |

EBOK = Imogdr unit BIL! = Bus interface unit
FBOK = Floatingqloint mit IRF = integer register filo
ABOK = Address unit FRF = Fioating- point register filo
IB-OJt = C-ontrai control DTB = Datastroam translation in-ufior

Fig. 6.31 Ardfltocmre ofthe DEC Alpha 111164 processor (Colrnesy of Digital Equipment Corp-oration]

..,,,.,-.,,,,,,..,,,,,..,,.,,,,.,,..., _ m
Unlike others, the Alpha architecture had thirty-two 64-bit integer registers and thirty-two 64-bit floating-

point registers. The integer pipeline had 7 stages, and the floating-point pipeline had I0 stages. All Alpha
instructions were 32 bits.

The first Alpha implcmcntation issued two instructions per cycle, with larger number of issues in later
implementations. Pipeline timing hazards, load delay slots, and branch delay slots were all minimized by
hardware support. The Alpha was designed to support fast multiprocessor interlocking and interrupts.

A privileged lihrifly of soflware was developed to run fiull VMS and to run GSF.-'1 using different versions
ofthe software library that rnirrorcd rnany of thc VAXr“lr'MS and MIPSIOS features, respectively. This library
made Alpha an attractive architecture for multiple operating systems. The processor was designed to have a
300-MIPS peak and :1 I51]-Mflops peak at 151] MT-lz.

Note 6.1 Innovation versus commercial success

The relationship between innovative design ideas and the commercial success of a product is not
always simple, as an idealist may believe.

Most of the processors used as examples in this chapter are no longer in commercial production.
Rapid advances in technology and immense pressures fi'om the market-place are usually the two main
reasons behind the inirlolzluction and the demise of newer processor models. However, the innovative
design ideas introduced in a new processor ofien have a life longer than the processor itself, since these
same ideas are often carried forward in subsequent designs of the same or other processor families.

For example, IBM 36lJr"9 I, Motorola 63040, Motorola 831l0 and DEC Alpha 21 lll-64 were all
recognized for their innovative designs when they were introduced, but they achieved different degrees
ofcommercial success. Our aim in this book is to study the innovative ideas embodied in processor and
system designs; hut we must also appreciate that the commercial success of a product ofien depends on
many other crucial factors.

~‘;§*~‘~i Summary

Instruction pipelines in processors usually have a linear strucl;ure—the execution oi each instruction
progresses linearly. one stage at a time, from the first to the last pipeline stage. ln tlieoryr, such a linear
pipeline can be designed with synchronous or asynchronous timing mode; in practice, processor pipelines
In-day operate in synchronous mo-do, i.e.wl1:h a common clock signal.We studied the timing and clocking
requirements of linear pipelines. and discussed the related speedup. efficieney and throughput lssues.A
simple model was presented which can be used in determining the optimal number of pipeline stages.
based on a trade-off between cost and rhnoughput.

Dynamic or nonlinear pipelines are designed to perform a number of different functions, by apprlopriatlo
scheduling of operations on the pipeline stings. Reservation tables are used for diiierent functions;
collision free schedules and lacency analysis are needed for efiicient operation of nonlinear pipelines.
Ville studied how concepts of collision vectors, state transition diagrams and greedy cycles are used to
determine bounds on minimum average latency [HAL]. and thereby optimum schedules In terms of HAL

n-- iiltfimw Hi'ilII4-npoml-I
TF4 P Adroriced Computer Architecture

For a given machine instruction set. instruction pipeline design begins with analysis of the execution
phases of instructions through the processor: we used the MIPS R4000 instruction pipeline as a specific
example. Processor performance can be enhanced by techniques such as prefench buffers, multiple
functional units, and data forwarding: in addition, hazard avoidance is a constant goal in pipeline design
and scheduling. Dynamic instruction scheduling was discussed, with a look at both Tomasulo‘: algorithm
and the technique of scoreboarding developed at CDC.

Branches in the flow of execution of instructions have a major impact on pipeline performance. since
they may result in the instruction pipeline being flushed. ‘Ne used a simple model to estimate the elliect
of branches on processor throughput. and discussed several useful branch handling techniques such as
dynamic branch prediction, branch target buffer, and delayed branch.

Ville reviewed the standard IEEE floating point representation and the basic principles of floating point
arithmetic.Frinciples of static and multifunctional arithmetic pipelines were studied.with specific examples
of arithmetic pipeline design from Motorola 60040. IBM 360.031, and Tl Advanced Scientific Computer.

A superscalar pipeline is one in which multiple instructions can be issued in parallel in chdock
cycle, so as to better exploit instruction level parallelism in the running program. In this process, data
dependences, anti-dependences and output. dependences between instructions must also be
We reviewed in-order versus out-of-order instruction issue,and carried out basic performance analysis of
superscalar pipelins. Motorola 88110 and DEC Alpha 21064 processors were used as specific examples.

gExercises
Problem 6.1 Consider the execution of a
program of 15.00,000 instructions by a linear
pipeline processor with a clock rate of 100'.) l"‘|Hz.
Assume t:hat the instruction pipeline has five stages
and that one instruction is issued per clock cycle.
The penalties due to branch instructions and out-of-
sequence executions are ignored.

(a) Calculate the speedup fiictor in using this

on dwe web and then answer dwe following questions
with reasoning:

{a} Analyze dwe scalability of the Alpha processor
implementation in terms of superscalar
degree.

(b).Analy1e the scalability of an Alpha-based
multiprocessor system in terms of address

pipeline to execute the program as compared
with the use of an equivalent nonpipelined
processor with an equal amount of flow-
through delay

(b) What are the efficiency and throughput of
this pipelined processor?

Problem 6.2 Studythe DECAlpha architecture in
Example 6.13. find more information on DEC Alpha

space and multiprocessor support.

Problem 6.3 Find the optimal number ofpipeline
stages kn giw-in in Eq. 6.? using the performancefcost
ratio (PCR]- given in Eq. 6.6.

Problem 6.4 Prove the lower bound and upper
bound on die minimal average latency (MAL)
specified in Section 6.2.3.
Problem 6.5 Consider the following reservation

.,,,.,,-.,,.g......5.,,,.,,..,,..,...... _ 2,5
table for a four-stage pipdine with a clock cycle
t= 2 ns.

I 2 3 4 5 6

X

Si X X
S2 X X
'53
S4 X X

(a) What are the forbidden latencies and the
initial collision vector?

{b} Draw the state transition diagram for
scheduling the pipeline.

{c} Determine the MAL associated with the
shortest greedy cycle.

{d} Determine the pipeline throughput
corresponding to the MAL and given t.

(e) Determine the lower bound on the MAL for
this pipeline. Have you obtained the optimal
latency from the above state diagram?

Problem 6.6 You are allowed to insert one
noncompute delay stage into the pipeline in
Problem 6.5 to make a latency of i permissible in
the shortest greedy cycle.The purpose is to yield a
new reservation table leading to an optimal latency
equal to die lower bound.

(a) Show the modified reservation table with five
rows and seven columns.

(b) Draw the new state transition diagram for
obtaining the optimal cycle.

(c) List all the simple cycles and greedy cycles
from the state diagram.

(d) Prove that the new MAL equals the lower
bound.

(e) ‘What is the optimal throughput of this
pipeline? Indicate the percentage of
throughput improsement compared with that
obtained in part (d) of Problem 6.5.

Problem 6.7 Consider an adder pipeline with
four stages as shown below.The pipeline consists of
input lines X and T and output line Z.The pipeline
has a register R at its output where the temporary

result can be stored and fed back to S1 at a later
point in time. The inputs X and T are multiplexed
with the outputs R and Z.

Z

MPX
X-1-

i 51H S2 H S3 H 54 H
Y

(a) Assume the elements of the sector A are fed
into the pipeline through input X.one element
per cycle. What is the minimum number of
clock cycles required to compute the sum of
an N-element vector A: s = E? | Ail)? in the
absence of a|1 operand, a value of 0 is input
into the pipeline by default Neglect the setup
time for the piptfline.

(b) Let t be the clock period of the pipelined
adder. Consider an equivalent nonpipelined
adder with a flow-through delay of 4t. Find
the actual speedup S4{64) and the efficiency
r]_,{64) of using the above pipeline adder for
N = 64.

(c) Find dwe maximum speedup S4{->0] and the
efficiency r14 {on} when N tends to infinity.

(d) Find N1,-;,the minimum vector length required
to achieve half of the maximum speedup.

Problem 6.8 Consider the following pipeline
reservation table.

IIII
S1 X X
S2 X
S3 X

(a) What are the forbidden latencies!‘
(b) Draw the state transition diagram.
(c) List all the simple cycles and greedy cycles.
(d) Determine the optima] constant latency cycle

and the minimal average latency.
(e) Let the pipeline clock period be t = 2 ns.

Determine the throughput of this pipeline.

Fl» MIG-l‘l7l|H Hl'Ifl'qmqieu||¢1
2156 W .6clw:|ir|ced Computer Architecture

Problem 6.9 Consider the five-stage pipelined
processor specified by the following reservation

S3 X
S4 X
S5 X X

{a} List the set of forbidden latencies and the
collision vector".

(b) Draw a state transition diagram showing all
possible initial sequences {cycles} without
causing a collision in dwe pipeline.

(c} List all the simple cycles from the state
diagram.

(d) identify the greedy cycles among the simple
cycles.

(e} What is the minimum average latency (MAL)
of this pipeline?

{f} What is the minimum allowed constant cycle
in using this pipeline?

{g} What will be the maximum throughputofthis
pipeline?

(h) ‘What will be the throughput if the minimum
constant cycle is used?

Problem 6.10 The following assembly code is
to be executed in a three-stage pipelined processor
with hazard detection and resolution in each stage.
The stages are instruction fetch. operand fetch (one
or more as required), and execution [including a
write-back operation). Explain all possible hazards in
the execution of the code.

inc R0 IRO t— {R0} + ll
l"’iul ACC, R0 IACC <— {ACC} >< {R0}!
Store R1, ACC IR] 4- (ACC).i
Add ACC, R0 IACC -t— (ACC} + [R0}I
Store i"'l,ACC I'M <— {ACE}!

Problem 6.11 Consider the following pipelined

processor witn four stages.This pipeline has a total
evaluation time of six clock cycles. All successor
stages must be used after each clock cycle.

Output

(a) Specify the reservation table for this pipeline
with six columns and four rows.

table:

1 1 _3,. 4 7 5. 5
S1 X X lnpul S1 S2 S3 S4
S2 X X I

(b) List the set of forbidden latencies between
task initiations.

(c) Draw the state diagram which shows all
possible latency cycles.

(d) List all greedy cydes from the state diagram.
(e) Vifhat is the value of the minimal average

latency?
(f) What is the maximal throughput of this

pipeline?

Problem 6.11 Three functional pipelines fi. fi,
and fi are characterized by the following reservation
tables. Using these three pipelines, a composite
pipeline network is formed below:

ll-1!

IIZII
5' ___
$1 111
5322

fiz

1 2 3 4
T1 X X
T1 X
T3 X

13 1

1 2 3 4
U1 X X
U2 X_iTim
U3

.,,,.,,-.,-,.g......5.,,,.,,..,,..,....., _ 2,,
Each task going through this composite pipeline

uses the pipeline in the following order: f1 first, fi
and f3 next, fl again, and then the output is obtained.
The dual multiplexer selects a pair of inputs. (A. B)
or (XX), and feeds them into the input of fi. The
use of dwe composite pipeline is described by the
combined reservation table.

X

i‘
Q

:11III}

DudI_ _ _ _ _

Htltiplexer D"llp""l

Y

(a) Complete the following reservation table for
this composite pipeline.

1 2 3 4 5 ti 1 11 9 111 11 12
5| X
s2 X
s3 g g x g g g g
T1
T2
T3
Ul X
U2
L13

i1i_1i

(b} Write the forbidden list and the initial
collision vector.

(c) Draw a state diagram clearly showing all
latency cycles.

(d) List all simple cycles and greedy cycles.
(e} Calculate the MAL and the maximal

throughput of this composite pipeline.

Problem 6.13 A nonpipelined processor X has a
clock rate of25-0 Hi-lz and an average CPI {cycles per
instniction] of 4. ProcessorY,an improved successor
of X. is designed with a five-stage linear instruction
pipeline. However. clue to latch delay and clock skew
elfectii the clock rate ofY is only 200 l“‘ll"iL

{a} If a program containing 1000 instructions is
executed on both processors, what is the
speedup of processorY compared with that
of processor X?

(b) Calculate the HIPS rate of each processor
during the execution of this particular
program.

Problem 6.14 Design a binary integer multiply
pipeline with five s1:ages.The first stage is for partial
product generation.The last stage is a 36-bit tarry-
lookahead adder. The middle three stages are made
of 16 carry-save adders (CSAs} of appropriate
lengths.

(aj Prepare a schematic design of the five-stage
multiply pipeline.All line widthsand interstage
connections must be shown.

(b) Determine the rnraximal clock rate of the
pipeline if the stage delays are t| = F2 = t3 =
t4 = 9 ns. t5 = 4 ns, and the latch delay is 1 ns.

{c} What is the maximal throughput of this
pipeline in terms of the number of 36-bit
results generated per second?

Problem 6.15 Consider a four-stage floating-
point adder with a 2-ns delay per stage which equals
the pipeline clock period.

{a} Name the appropriate functions to be
performed by UTE four stages.

(b) Find the minimum number of periods required
to add 100 floating-point numbers A1 + A1 +

+ Aim using this pipeline adder, assuming
that the output Z of stage S4 can be routed
back to either of the two inputs X orT of the
pipeline with delays equal to a multiple of the
clock period.

Problem 6.16 Consider two four-stage pipeline
adders and a number of noncompute delay elements.
Each delay element has a one-unit time delay.

{a} Use the available adders and delays to
construct a composite pipeline unit for
evaluating die following expression: b(i) =
ofi} + c1[i— 1) + o(i— 2) + c1{i— 3)foralli= 4.5.

2‘fll'

. .., n. The composite pipeline receives c|I[|"} for
i=1.1.....n,as the successive inputs.

(in) Consider a third four-stage pipeline adder.
Augrnent the design in part {3} with this third
adder to compute the following recursive

- -ii ifldwvrced cumpuwnmzeam

e>q:mession:x{|]- = c|[i} + xfi — 1), for ali |'= 4,5.
Note that x{|) = 0(1) + x[i -1) = afi} +

[o{i— 1} + x[i -2)] = = b{i) + x|{i—4),where
b[i) is generated by the composite pipeiine in
par't(a).

m-!|lrG-rm-P Hilliomporin-I ‘

Part I I I
Parallel and Scalable Architectures

Chapter T
Multiprocessors and Multicomputers

Chapter B
Multivector and SIMD Computers

Chapter 9

Scalable, Multithreaded, and Dataflow
Architectures

—
Summary

Part lll consists of dwree chapters dling with parallel.vector.and scalable architectures for building high-
performance computers. The multiprocessor system interconnects studied indude crossbar switches.
multistage networks. hierarchical buses. and multidimensional ring. mesh. and torus architectures.
Three generations of multicomputer developments are reviewed. Then we consider message-passing
mechanisms.

Vectorsupercom puters appr either as pipelined multip rocessorsoras SIMD data-parallel computers.
We study the architectures of the Cr'ay‘f1l"'lH C-90. Cr'ay.|'l"‘IPFI NEC SX. FujitsuVP-2000. VPP500. VAX
9000. Hitachi S-820.Stardent 3000. CH-2. l"1asPar MP-1.and CM-5 forconcurrent scalarlvector processing.

Chapter 9 introduces scalable archimtures for massively parallel processing applications. These
Include both von Neumann. fine-grain. multithreaded. and dataflow architecturesvarious latency-hiding
techniques are described. includingthe principles of multithreading. Case studis include the lntel Paragon.
Stanford Dash. MIT Alewife. _]-l"'lad"|ine and *T. Tera computer. KSR-l.Wisconsin Multicube. USC|'Ol"'lPI
ETL EM4.etc.

FM Illnffirm-H Hilllmmne-rm

— —

Multiprocessors and
Multicomputers

In this chapter. we st1.|dy system ardtitectures of multiproc-moors and multicomputers. ‘various cache
coherence protocols. synchronization methods. crossbar switches. multiport memory. and multistag
networks are described for building multiprocessor systenn. Then we discuss multicomputers with
distrll:iuted memories which are not globally shared.The lntel Paragon is used as a cm-e study. Message-
passing medranisms required with multicomputers are also revievved.Single-add ress-space multicomputers
will be studied in Chapter 9.

M ULTIPRDCESSDR SYSTEM IHTERCCINNECTS

1 Parallel processing demands the use of efficient system interconnects for fast eomrnunication
among multiple processors and shared memory, U0, and peripheral devices. Hierarchical

buses. crossbar switches. and multistage networks are often used for this purpose.
A generalized multiprocessor system is depicted in Fig. 7.1. This architecture combines features from the

UMA, 'N'Ul\-‘LA, and CDMA models introduced in Section 1.4.1. Each processor P; is attached to its own local
memory and private cache. Multiple processors are connected to shared-memory modules through an inter-
processor-memory network (IPMN).

The processors share the access of IIO and peripheral devices through aprocessor U0 network [Pl()N}. Both
IPMN and PIDN are necessary in a shared-resource multiprocessor. Direct interprocessor communications
are supported by an optional interprocessor communication network ELPCN) instead of through the shared
memory.

Network Characteristic: Each of the above types of networks can be designed with many choiecs. The
c-hoices are based on the topology, timing protocol, switclting method, and control strategy. Dynamic networks
are used in multiproccssors in which the interconnections are under program control, Timing, switching,
and control are three major operational characteristics of an interconnection network. Tl1e timing control
can be either arm-hmrions or ¢t.s_\'nc-hr'orrrJ1r.s. Synchronous networks are controlled by a global clock that
synchronizes all network activities. Asynchronous networks use handshaking or interlocking mechanisms to
coordinate fast and slow devices requesting use of the same network.

A network can transfer data using either cor-uir swirr-hirig or packer sn'irc!rr'r1Ig. In circuit switching, once
a device is granted a path in the network, it occupies the path for the entire duration of the data transfer.

PM‘ MIGIELH HI" l'r>rrIq|r_.r.I|n*\ ‘I _

I32 i Advanced Computer Arclritedure

In packet switching, the information is broken into small packets individually competing for a path in the
network.

[Shared Memory]

%
ICC

i
[Shared IIO and Peripherals]

Disk Units

Backup storageB Printer

Torminais
I
IE - Network

Legends: IPMN [inter-Processor-iuiemoty Network]
PION [Proeassor- U0 Notvtork]
IPCN [inter-Proeemor Communication Network]
P [Processor]
C [Cache]
SM [Shared Memory]
LM [Local Memory]

Hg. 7.1 Interconnection sr:ru-crures in a generalized rmririprooessor system with iecai memory. private caches.
shared memory. and shared peripherals

Network control strategy is classified as cenrrrtiized or disnibirreri. With central.izcd control, a global
controller receives requests from all devices attached to the network and grants the network access to one or
more requesters. In a distributed system, requests are handled by local devices independently.

7.1.1 Hierarchical Bus Systems
A bus .s_v.srerrr consists of a hierarchy ofbuscs connecting various system and subsystem eomponents in a
computer. Each bus is formed with a number of signal, control, and power lines. Diife-rent buses are used to
perform different interconnection functions.

In general, the hierarchy of bus systems are packaged at different levels as depicted in Fig. 7.2, including
local buses on boards, baclqn-lane buses, and U0 buses.

Local Bu: Buses implemented Within processor chips or on printer!-cirt'ur'r boards are called focal buses.
On a processor board one may find a local bus which provides a common communication path among major
cornponerrts (chips) mounted on thc board. Arncmery board uses a merrrorjr has to connect the memory with

rr-. M G Hm " i. - I.‘ IBM!‘ ln¢r.q|r_.u||r\ 5

Mu\ltipruoesso.rs and Muttjcornputers 253

the interface logic. An IIO or network interface chip or board uses a dam bus. Each of these local buses
consists of signal and utility lines.

Locai Peripherals
{SCSI Bus]

CPU Board l'u'len'lory' Board

E

'F MC
‘1 _ _ Y

< System B-us [on backplanos] >
it I.

MD Board Common lcatlon Board

@ |F cc
Data Bus Data Bus:1 EllBuffer Buffer

I
Disk Pr lnter Network
Units or Plotter [Ethernet etc.)

Legends: IF [Interface lo-glc], LM [Local Memory)
IDC {HO Controller], MC [Mornory Controller)
IOEP {Lt-O Processor), CC [Corrrnunlcatlon Controller)

Fig.1'.I Bus s}rs1:orns at board ievel. heciqulane ievei.am:l HO ieve!

Bnckplnne Bu: A Jmckplme is a primed circuit on which many connectors are used to plug in fimctional
boards. A.sy.sIen1hrJ.s_ consisting of shared signal paths and utility lines, is built on thc hackplanc. This system
bus provides a eommmi on-znmuliication path alnong all plug-in boards.

Several backplaue bus standards have been developed over time such as the VMI.-Z bus {IEEE Standard
10l4~19S?), Multibus II [THEE Standard 1296~19S'T), and Futurebus+ [[EEE Standard 896.1-I991) as
introduced in Chapter 5. However, point to-point switched interconnects have emerged as more cificicnt
alternatives, as discussed in Chapters 5 and 13.
HO Bu: lnputfoutput devices are connected to a computer system through an M’) bus such as the ‘SCSI
(Small Computer Systems Itltcrfacc) bus. This bus is made of coaxial cables with taps connecting disks,

Fr‘:-r Mtfiruw irrtti-...¢-,.,i,l.¢. '
I34 i Advanced Canpritl:erArclritectuJn

printer, and other devices to a processor through an IEO controller (Fig. 7.2). Special interface logic is used to
connect various board types to the backplanc bus.

Complete specifications for a bus system include logical, electrical, and mechanical properties, various
application profiles, and interface requirements. Our study will be confined to the logical and application
aspects of system buses. Emphasis will be placed on the scalability and bus support for cache coherence and
fast synchronization.

For example, the core of the Encore Multimait multiprocessor was the Nanohus, consisting of 20 slots, a
32-bit address, a 64-bit data path, and a 14-bit vector bus, and operating at a clock rate of l2.5 lvll-la with a
total rncrnory bandwidth of 1l]Cl Mbytes/s. The Sequcnt multiprocessor bus bad a 6'4-bit data path, a lD-MI-Iz
clock rate, and a 32-bit address, for a channel bandwidth of 30 lvlbytesfs. A write-back private cache was used
to reduce the bus traffic by 50%.

Digital bus interconnects can be adopted in commercial systems ranging from workstations to
minicornputcrs, niainfiamcs, and rnultiprocessors. Hierarchical bus systtnns can be used to build rncdiun1-
sized multiproccssors with less than 100 processors. llotvever, the bus approach is limited by bandwidth
scalability and the packaging technology employed

Hierarchical Buses and Cache: Wilson (1987) proposed a hierarchical cachcf bus architecture as shown
in Fig. 7.3. This is a multilevel tree structure in which the leaf nodes are processors and their private caches
{denoted Ff, and CU in Fig. 7.3). These are divided into several clusters, each of which is connected through
a cluster bus.

Inter-cluster Bus

I r I
I Second

I-ave‘etidrlr/.<97J;£ Caches

Cl| I | I | rB,f‘°'

lP*>llF'1llP-EllPa|lP*llP5llPfil|P1llP@-I
Pro-comers

Fig. 1.3 A hierarchical cachetbtls archlriecrtrre for designing a scahhle rnulrlproocssor {Courtesy ofwlsonz
reprimand from Pmc. ofknnud l-rrL Syrup. on Compt.rte.rArchlnecu.|re, 198?)

An interclustcr bus is used to provide communications among the clusters. Second lcvcl caches (denoted
as C2,) are used between each cluster bus and the interclustcr bus. Each second-level cache must have a
capacity that is at least an order oi" magnitude larger than the sum of the capacities of all first-level caches
connected beneath it_

Each single cluster operates as a single-bus system. Snoopy bus coherence protocols can be used to
establish comisteney among first-level caches belonging to the same cluster. Second-level caches are used to
extend consistency from each local cluster to the upper level.

Fr‘:-r Mflirpw nrmr 'me-;|umn

Multiprocessor: and Multiownputers i :35

The upper-level caches form another level of shared memory between each cluster and the main memory
modules connected to the interclustcr bus. Most memory requests should be satisfied at the lower-level
caches. lnterc-luster cache coherence is controlled among the second~level caches and the resulting effects are
passed to the lower level.

Ir)
El Example 1.1 Encore Ultramax multiprocessor architecture

The Ultramax had a two-level hierarchical-bus architecture as depicted in Fig. 'l'.4. The Ultramwt architecture
was very similar to that characterized by Wilson, except that the global Nanobus was used only for intercluster

< Global Nanobus >

communications.

Cluster Nanobu Cluster Hahobus

II II II H
Legends: P = Processor

PC = Private Cache
MM = Main Memory
S-C = Shared Cache
RS = Route Switch

Fig.7.! The Llrramait rnuirlprocessor architecture using hierarchical buses with nurlrlple clusters {Courtesy of
Encore Cornpmser Corpora.rlon.19B7}

The shared memories were distributed to all clusters instead of being connected to the intercluster bus. The
cluster caches formed the second-level caches and performed the same filtering and cache coherence control
for remote accesses as in l|Vilson's scheme. When an aceess request reached the top bus, it would be routed
down to the cluster memory that matched it with the reference address.

The idea of using bridges between multiprocessor clusters is to allow transactions initiated on a local
bus to be completed on a remote bus. As exemplified in Fig. 7.5, multiple buses are used to build a very
large system consisting of three rnultiproeessor clusters. The bus used in this example is Futurebus+, but
the basic idea is more general. Bridges are used to interface the clusters. The main functions of a bridge
include corrmtunieation protocol conversion, interrupt handling in split transactions, and serving as cache
and memory agents.

IE5 C Advanced Comprrrter Architecture

{Processor Processor‘ {Processor Prooessori {Francesco-rl Proeesscrl

I i i I I i
I Cache i Cache I Cache i Cache I Cache | [Cache

Dual-Fr.lr.|erbus+
i I

Cache Cache Cache Cache
Memory Memory |

Processor Br ldee Br ldge .Prooessor'

Futu re-bus+
Cable

S"‘J"'°‘“ Spec or Special
Processor Processor Bridge Bridge Pljgcmosar PT -

Message Message Message
Cache Cac he Cache Interface I nterfaoe lrtertaoe

+Futurebus+ . + I I .Futurebus++ +
Message Message Message

Cache Cache Interface Interface irtertaoe
Memow

IIO Frame I/O ii‘-CI I10
rocessor Buffer Processor Processor] Processor

H-_-,lp| ii

 LAN

SCSI 2! IPI

is ISDNConnection to VisualizationSupercornputer Manner

‘U

Hg. 7.5 A multiprocessor system using multiple Fr.itrrrebus+ segnironrs (Reprinted with permission from IEEE
Smntlartl 396.1-1991. copyright ® W91 by IEEE. Inc}

7.1.1 Crossbar Switch and Mulcipurt Memory
Switched networks provide dynamic interconnections between the inputs and outputs. Major classes of
switched networks are specified below. based on the number of stages and blocking or nonbiocking. We
describe the crossbar networks and mnltiport memory st1'uctr.u'cs first and then the multistage networks.
Crossbar networks are mostly used in small or medium-size systerns. The multistage networks can be
extended to larger systems ifthe increased latency problem can be suitably addressed.
Network Stage: Dcpccnding on t.hc interstage connections used, a sr'rigIr.*-srage nam-'or.i' is also called a
rt-crrr-rrinrirrg nt=Iu'0rJ'r because data items may have to recirculate through the single stage many times before

rt» Mel; iv Hill 'I11 lnrfqrrgtrlli-\' _

rlllurltiprn-cessors and Mrriticomputers B In-y

reaching their destination. A single—stage network is cheaper to build, but multiple passes may be needed to
establish certain connections. The crossbar switch and multiport memory organization are both single-stage
networks.

A multistage network consists of more than one stage of switch boxes. Such a network should be able to
connect from any input to any output. We will study unidirectional multistage networks in Section 7.1.3. The
choice of interstage connection patterns determines the network connectivity. These patterns may be the same
or different at different stages, depending the class of networks to be designed. The Omega network, Flip
network, anrl Baseline networks are all multistage networks.

Blocking versus Nonblockirrg Networks A multistage network is called blocking if the sirnultancous
connections ofsome multiple input-output pairs may result in conflicts in the use ofswitches or communication
links.

Examples ofblocking networks include the Omega (Lawrie, I975), Baseline (Wu and Feng, I980], Banyan
(Goke and Lipovski, 1973), and Delta networks (Patel, 1979}. Some blocking networks are equivalent after
graph transformations. In fact, most multistage networks are blocking in nature. In a blocking network,
multiple passes through the network may be needed to achieve certain input-output connections.

A multistage network is called nonhioeking if it can perfonn all possible connections between inputs
and outputs by rearranging its connections. In such a network, a connection path can always be established
between any input-output pair. The Benes networks (Bones, 1965) have such a capability. However, Brmcs
networks require almost twice the number of stages to achieve the nonblocking connections. The Clos
networks (Clos, I953) can also perform all pemtutations in a single pass without blocking. Certain subclasses
of blocking networks can also be made nonblocking if extra stages arc added or connections are restricted.
The blocking problem can be avoided by using combining networks to be described in the next section.
Cmubur Networks In a cmssbnr n-erworI:, every input port is connected to a free output port through a
crtisspoint switch (circles in Fig. 2.26s) without blocking. A crossbar network is a single-stage network built
with unary switches at the erosspoints.

Once the data is read from the memory. its value is retumed to the requesting processor along the same
crossp-oi.nt switch. In general, such a crossbar network requires the use ofrr >< or ccrosspoint switches. A square
crossbar {n = m) can implement any of the nl permutations without blocking.

As introduced earlier, a crossbar switch network is a single-stage, nonblocking, pennutation network.
Each crosspoint in a crossbar network is a unary switch which can be set open or closed, providing a point-
to-point connection path between the source and destination.

All processors can send mcrnory requests indcpemlently and asynchronously. This poses the problem
of multiple requests destined for the same memory module at the same time. In such cases, only one of the
requests is serviced at a time. Let us characterize below the crosspoint switching operations.

Crasspoint Switch Design Out of n crosspoint switches in each eolurrrn of an rt >< or crossbar mesh, only
one can be connected at a time. To resolve the contention for each memory module, each crosspoint switch
must he desigrred with extra hardware.

Furthcrrnorc, each crosspoint switch requires the use ofa largenumber ofconnecting lines accommodating
address, data path, and control signals. This means that each crosspoint has a complexity matching that of a
bus of the same width.

Fr‘:-r Mtflr-purl rrrrtr-...s,.aa.¢. '
IBB i Adrorrced Conprnerkdrritedure

For an rr >< rr crossbar network, this implies that nz sets of crosspoint switches and a large ntnnber oflines.
are needed. What this amounts to is a crossbar nctworlr. requiring extensive hardware when rr is very large. So
far only relatively small crossbar networks with n 5 to have been built into commercial machines.

On each row of the crossbar mesh, multiple crosspoint switches can be connected simultaneously.
Simultaneous data transfers can take place in a crossbar between rr pairs of processors and memories.

Figure 16 shows the schematic design of a row of crosspoint switches in a single crossbar network.
Multiplexer modules are used to select one of rr roan’or trrire requests for service. Each processor sends in an
independent request, and the arbitration logic makes the selection based on certain fairness or priority rules.

[rr sets]
Data Data

M|JlllplB)I.‘9t
mad |_Ifl$ fl‘ ptfl-0955012

Addmfi [3 flea] Address

Shared ‘iimemory Roaeltwrlto
moduto

{Mil Control

Readflflflte

Roe trees
Acitnowtodgo

Art-ltralorr Red‘-‘eaA K ‘ad nproen-sears‘E we : ° “°*” at
Eflfib-IE ' Request

iv Aelrnowtactgo

Fig. 1.6 Schematic design ofa row of orosspolnt switches in a crossbar nenruork

For example. a 4-bit control signal will be generated for rr = I6 processors. Note that rr sets of data,
address, and read-"write lines are connected to the input ofthe multiplexer tree. Based on the control signal
received, only one out of rr sets of information lines is selected as the output of the multiplexer tree.

The memory address is entered for both min’ and nriro access. In the case of marl. the data fetched from
memory are retumed to the selected processor in the reverse direction using the data path established In the
case of write, thc data on the data path are stored in memory.

Acknowledge signals are used to indicate the arbitration rcsult to all requesting processors. These signals
initiate data transfer and are used to avoid conflicts. Note that the data path established is bidirectional, in
order to serve both rend and it-rirc requests for diflrerent memory cycles.

Cro.r.r.b-or Limitations A single processor can send many requests to multiple memory modules. For an
rr >< rr crossbar network, at most rr memory words can be delivered to at most rr processors in each cycle.

The crossbar network offers the highest bandwidth of rr data transfers per cycle, as compared with only
one data transfer per bus cycle. Since all necessary switching and conflict resolution logic are built into the
crosspoint switch, the processor interface and memory port logic are much simplified and cheaper. A crossbar
network is cost-efiective only for small multiproccssors with a few processors accessing a few memory
modules. A single-stage crossbar network is not expandable once it is built.

J11 Imltqtrarlnrt _

Multiprocessor: and Mrrtticornputers i 2“

Redundancy or parity-check lines can be built into each crosspoint switch to enhance the fault tolerance
and reliability of the crossbar network.

Mulriparr Memory Because building a crossbar network into a large system is cost prohibitive, some
mainframe multiproccssors used a mulnport memory organization. The idea is to move all crosspoint
arbitration and switching fimctions associated with each memory module into the memory eontrol.ler.

Thus the memory module becomes more expensive due to the added access ports and associated logic as
demonstrated in Fig. ?.‘l‘a. The circles in the diagram represent rt switches tied to rr input ports of a memory
module. Only one of rt processor requests can be honored at a time.

The rnultiport memory organization is a compromise solution between a low-cost, low-performance bus
system and a high-cost, high-bandwidth crossbar system. The contention bus is time-shared by all processors
and device modules attached. The multiport memory must resolve conflicts among processors.

This memory stmcture becomes expensive when mand rt become large. Atypical mainframe multiprocessor
configuration may have rt = 4 processors and rn = 16 memory modules. A multiport memory multiprocessor
is not scalable because once the ports are fitted, no more processors can be added without redesigning the
memory controller.

Another drawback is the need for a large number of interconnection cables and connectors when the
configuration becomes large. Thc ports of each memory rnodulc in Fig. ?.7b are prioritized. Some of the
processors are CPUs, some are Lit) processors, and some are connected to dedicated processors.

nPro-netssoreH

1 ;I=
§ .‘ED

12 12

m Shared memory m
[st] rt-port memory modules used

1 1 2 2 1 1
lM°2 l lamlr lswfal l 2M"l

M
{bl Memory ports prlorltlzted or prhrlteged ln each module by numbers

Fig. 7.7 Moltlporr: rnemory organtzaclorrs for mr.rlriprocessor syscerns {Cornrorsy off‘. H. Etsiotrrt ACM Compurrlrrg
Surveys. Match 19??)

FM Mtfiruw Hllltitmpwins

ZN i Mlvonced Cnmptster Architecture

For example, the Univac IIDUI94 multiprocessor consisted of four CPUs, Four HO processors, and two
scientific vector processors con.11ectcd to four shared-memory modules, each of which was ID-way ported.
The access to these ports was prioritized under operating system control. In other multiproccssors, part of the
memory module can be made private with ports accessible only to the owner processors.

7.1.3 Multistage and Combining Networks
Multistage networks arc used to build larger multiprocessor systems. We describe two multistage networks,
the Omega network and the Butterfly network, that have been built into commercial machines. We will study a
special class ofmultistage networks, called combining networks, for resolving access conflicts automatically
through the network. The combining network was built into the NY'Ll’s Ultracomputer.

Routing in Ornego Network We have defined the Omega network in Chapter 2. In what follows, we
describe the message-routing algorithm and broadcast capability of Omega network. This class of network
was built into the Illinois Cedar multiprocessor {Keck ct al., 1987), into the IBM RP3 (Pfistcr ct al., I985),
and into the NYU Ultracomputer (Gottlieb et al., I983). An 8-input Omega network is shown in Fig. "LB.

In general, an n-input Omega network has log; n stages. The stages are labeled fi"om D to log; n l from
the input end to the output end. Data roofing is controlled by inspecting the destination code in binary. When
thc ith high-order bit of the destination code is a 0, a 2 >< 2 switch at stage i connects thc input to thc upper
output. Otherwise, the input is directed to the lower output.

Two switch settings are shown in Figs. 7.8a and b with respect to permutations rt, = [0, 7, 6, -'-‘l, 2} (1, 3)
(5) and 11'; = (0, 6, 4, 7, 3] (1, 5] (2), respectively.

The switch settings in Fig. 7.8a arc for thc implcmcntation of 11'], which maps U -3 'i', 'i' -3» 6, 6 —:~ 4,
4 —> 2, 2 —> 0, 1 —> 3, 3 —> l, 5 —> 5. Consider the touting ofa message from input 001 to output Ul 1. This
involves the use of switches A, B, and C. Since the most significant bit of the destination 0|! is a "':nero“,
switch A mttst he set straight so that the input Dill is connected to the uppcr output (labeled 2}. The middle
bit in 011 is a “one”, thus input 4 to switch B is connected to the lower output with a “crossove-r” connection.
The least significant bit in fill is a "one", implying a flat connection in switch C. Similarly, the switches A,
E, and D are set for routing a message fi'orn input Illll to output IUI. There exists no conflict in all the switch
settings nccdod to implement the permutation H1 in Fig. 133..

Now consider implementing the permutation J1‘; in the 8-input Omega network (Fig. '!.8b]. Conflicts in
switch settings do exist in three switches identified as F, G, and l-I. The conflicts occurring at F are caused
by thc desired routings D00 —> 110 and 100 —> lll. Since both destination addresses have a leading bit 1,
both inputs to switch F must be connected to the lower output. To resolve the conflicts, one request must be
blocked.

Similarly, we sec conflicts at switch G between (lll —> (I00 and lll —> 011, and at switch I-I between
101 -—> UB1 and Ull —> DUO. At switches I and J, broadcast is used from one input to two outputs, which is
allowed if the hardware is built to have four legitimate states as shown in Fig. 2.24s. The above example
indicates the fact that not all permutations can be implemented in one pass through the Omega network.

The Omega network is a blocking network. In case of blocking, one can establish the conflicting
connections in several passes. For the example I2, we can connect DOD —> lll], U0] —> llll, Oil] —> D10,
101 —> 001.110 —> 100 in the first pass and [lll —>llll0, 100 —> lll, 1 ll —:~ llll in the second pass. In general,
if 2 >< 2 switch boxes are used, an n-input Omega network can implement n""2 permutations in a single pass.
There arc n! permutations in total.

. 1 I.‘ IBM‘ ln¢r.q|r_.u|»r\

Mutltipmoesson and Muiticornputers in

Input Stage t] Stage 1 Stage 2 Output

nnn non
_.*I'.__ __I"'i_

UB1 " 1 1 --——- 0111

1:1111 O 0 O ----- o11

1cc ----- “ _e_ _-__. 1oo
:-: o1o1 ----- 5 5 ' " ----- 1:11

11c --——- 6 B - - - - - - - - -- 11c
111

iIi
{aj Permutation 1:1 = [1], 1,6, 4, 2] {1, 3] {5} implemented on an D-mega network without blocking

Input
nun ,_ F 1 _- one

o1o --——- o1o
o11 0 O " i‘ HO --——- n11

1oo ----- I . ____- 1oo
1o1 - - - - - - - - -- 1111

111+ " G -1 1‘ 111

{|:1J Permutation rr2=[EI.6, 4,1 3){1.5J [2Jt1toettedatewitet1-as marked F.G. and H
1It

Fig.7.! ‘fiuostrrlechserdngsofanfiXflfinmeganetvmrkbtfltuvifltlxlstwirches

Fern = S,this implies that only 34/B! =4Cl96.~’4032D=0. 10 I 6 = 10. I 6% ofall penntrtations are implementable
in a single pass through an 8—input Omega network. All others will cause blocking and demand up to three
passes to be realized. In general, a maximum of log; n passes are nccdod for an r1-input Omega. Blocking is
not s desired feature in any multistage network, since it lowers the effective bandwidth.

The Omega network can alsoh-eused to broadcast data from one source to many destinations, as exemplified
in Fig. 7.9a, using the upper broadcast or lower broadcast switch settings. In Fig. 7.9a, the message at input
001 is being broadcast to ail eight outputs through a binary tree connection.

The twoway shufiie interstage connections can be replaced by four-way shuffie interstage connections
when 4 >< 4 switch boxes are used as building blocks, as exemplified in Fig. T.9b for n I6-input Omega
network with log4 I6 = 2 stages.

.
292 i Adi-rnneed Computer Arciritedure

.1;1 _.1—_ _.1j1_.m
—*1_1— -'1_1— “*1

001 ;_--- —-lil— —-Ji_._l—010
‘" —-I |— 1'-—- 011

E ;:__ _;-]i___l_1gg

—-| |— ‘* '='—-- 101

E ;:-- @11fl

-1 | "- -:___

{oi Broadcast connections

DC!-Gt}00000001 -7-..,..t 0001
0010 0010
GU11 V V D1111
0100 0100
0101 \ 4 4 L4 4 y 0101
0110 70' "‘ " 0110
0111 K 0111
1000 Q ‘ 1000
1001 £1 1001
1010 ll 41-<4 w 4><4 1010
1011 I‘ 1011
1100 1100
1101 1101(4'*3~xx1110 A:-mt 4-X4 1110
1111 1111

[bl Using iourauay shuttle interstage connections

Fig. 1.9 Broadcast capability of an Oreega ne1:wor'k built: widi 4 >< 4 swiedmes

Note that a four-way shuflle corresponds to dividing the I6 inputs into four equal subsets and then
shufliing them evenly among the four subsets. When Ir >< Ir switch boxes are used, one can define a it-way
shuflic function to build an even larger Omega network with logy n stages.

Routing In Butterfly Networks This class of networks is constructed with crossbar switches as building
blocks. Figure 7.10 shows two Butterfly networks of different sizes. Figure ‘Lilla shows a 6-¢1—input Butterfly
network built with two stages [2 = log; 64} of 8 X 3 crossbar switches. The eight-way shufir: ftlnction is used
to establish the interstage connections between stage 0 and stage 1. In l-‘ig. 7.1t‘.ib, a three-stage Butterfly
network is constructed for 512 inputs, again with 8 >< 8 crossbar switches. Each of the 64 >< 64 boxes in
Fig. 'i'.1'l}b is identical to the two-stage Butterfly network in Fig. ?.1Ua.

In total, sixteen ii >< 8 crossbar switches are used in Fig. 1.10s and 16 >< El + 8 >< 8 = I92 are used in
Fig. ?.lIJb. Larger Butterfly networks can be rnodularly constructed using more stages. Note that no broadcast

Jlrlutltiproioessors and Muiticornputers 2‘

connections are allowed in a Butterfly network. making these networks a restricted subclass of Omega
networks.

Stage 0 Stage 1

‘i’ Iv 1
I 3'1-(H B:-<31
I I

1" 7

3 -chi Q
I 3';-=13 5x5-
I I-

15 15

55 2 2 55
5? I I 57

' B:-<5 B;-r8 I
I I

B3 53

[a) At\vo~stag1e64:<B4tBu1terflyswitchnetwonr
built with 15 8 it 3 crossbar switches and
eight-wayshtifieintastageconnectlors

\-Z

....2

Stage!) St 1 Stage 2

U4_;@

E-=1-|@..,.||l-51$

D. W 1\.t is
ii /0% 3c4 gag or

- 11' 111'2

$"$

54:-:54

_ _ / 120
121 ' 1i? , Ma 121

5 /ii Q
425

B4:-<64 .

504 '- i 504
2 s .s511 511

[bi Athres-stage 512 >-c512 Butterfly switch network
builtwlth192B>cBcrossbars\1dtcJ1es

Fig.T.10 Mochrlar ccm1st:ruet:lon oi Butterfly switch networks with I X B crobar switches {Courtesy of BBN
Advanced Composers. Inc. 1990}

Ft‘:-r MIG:-|:|'u|' Hl'Ilr'mr:-;|;1mn '
Z74 i Advanced Canpm:erArclritecture

The Hot-Spot Problem When the network traffic is nonuniform, a her spot may appear corresponding tn
a certain memory module being excessively accessed by many processors at the same time. For example, a
semaphore variable being used as a synchronization barrier may become a hot spot since it is shared by many
processors.

Hot spots may degrade the network performance significantly. In the NYU Ultracomputer and the IBM
RP3 multiprocessor, a combining mechanism has been added to the Omega network. The purpose was to
combine multiple requests heading for the same destination at switch points where conflicts are taking place.

An atomic read-modify-write primitive Fetchflr-Add(x, e), has been developed to perform parallel memory
updates using the combining network.

Ferchflldd This atomic memory operation is eifective in implementing an N-way synchronization with a
complexity independent of N. In a Fetch&Add[x, e} operation, .1’ is an integer variable in shared memory and
e is an integer increment. When a single processor executes this operation, the semantics is

Fetch-imdd (x, e)
[temp t— x;

.1" <— Rfmp + e; (7.1)
return rerrzpi

When N processes attempt Fetch&Add(x, e] at the same memory word simultaneously, the memory is
updated only once following a.scrri:1i'i:¢1rion prirmpie. The sum of the N increments, e; + 6.’: + + en,-, is
produced in any arbitrary serialization of the N requests.

This sum is added to the memory word x, resulting in a new valuex + q + e; + . .. + em . The values returned
to the N requests are all unique, depending on the serialization order followed The net result is similar to
a sequential execution of N Fetchdrhdds but is performed in one indivisible operation. Two simultaneous
requests are combined in a switch as illustrated in Fig. "I. 1 l.

One of the following operations will be performed if processor P1 executes Ans, <— l~"etch&AddLr, r-1)
and P; executes Ans; <— Felch&o"\dc1{x_, E2) simultaneously on the shared variable x. If the request from P1 is
executed ahead of that from P2 , the following values are returned:

Arts; (* I

Ans; t— x + c; {T2}

If the execution order is reversed, the following values are returned:
Anal <t— .r+e3
Ans; <t— x [T3]-

Regardless of the executing order, the value x + +3] + £2 is stored in memory. It is the responsibility of the
switch box to form the surn e1 + -E2 , transmit the combined request Fctch&,Add(_r, cl + 22], store the value
e1 (or +33) in a wait butter of the switch, and retum the values x and J.‘ + e, to satisfy the original requests
Fetch&Add(x, 8;) and Fetch&Add(x_, e2), respectively, as illustrated in Fig. 7.11 in four steps.

rr.-.- Mcfirrrw "‘“'l_|N'f.l]|r_.\.ll|f\ _

.iiilo\ltipru~oessors and Multicornpoters 2‘;

P Fetch-llhod {x, Ia‘;
1 so-not

P2 Feioueaon pt, e2; L] 1

{ajTv4o requests me-etnta switdt

P1 5"""lm Fe1.cMsAoo[x,e1+e2)

P2 lnl *
{bl The swrtdi forms he sun e1 + B2, ables o1 It bullet, and tsnnnna ‘ho eomtined

re-quetatb memory

P1 Switch
X

(e) The ongnialvalua atoreoli xuretuned bawitch. andhenewualue-x+e, + e,
lsstoredn memory

P1 x Swlldi
JHBP2 I'i’E'1 Ll 1

|[d)The vflrea xanox + e1sI'e- r9l.|n'|e-ti ti P1a'|d P2 reg:-acutely

sttt tiiiii
Flg.'l'.11 ‘Mo Fe1:d'i&Add op-eratrions are eornbinecl no access a marred variable slmulraneoudy via a combining

network

Jilpplicotions and Drawbacks The Fetch&.Add primitive is very effective in accessing sequentially
allocated queue structures in parallel, or in forking out parallel processes with identical code that operate on
different data sets.

Consider the parallel execution ofN independent iterations of the following Do loop by p processors:
Doall N- l to 100

-=ICode using No
Endall

Each processor executes a Fetch&-Add on N before working on a specific iteration of the loop. in this
case, a unique value of N is returned to each processor, which is used in the code segment. The code for each
processor is written as follows, with N being initialized as 1:

n <— Fetcl1&Add (N, I)
While (n 5 100) Dnall

{Code using ni
n <— Fetcl1&Atid(N, 1)

Enilall
The advantage of using a combining network to implement the Fetch&Add operation is achieved at a

significant increase in network cost. According to NYU Ultracomputer experience, message queueing and
combining in each bidirectional 2 >< 2 switch box increased the network cost by a factor of at least 6 or more.

Ff» Mefimw H'["I':.\rl!q|t',|rllI1

ZN "i" Advanced Computer Arclriteeture

Additional switch cycles are also needed to make the entire operation an atomic memory operation.
This may increasc the network latency significantly. Multistage combining networks have the potential of
supporting large-scale multiproccssors with thousands of processors. The problem of increased cost and
latency may be alleviated with the use of faster and cheaper switching technology in the future.
Multistage Networks in Real System: The IBM RP3 was designed to include 512 processors using a high-
speed Omega network for reads or writes and a combining network for synchronization using Fetchtitdtdds.
A l23»port Omega network in the RP3 had a bandwidth oi" 13 Gbytes/s using a SIJ-MI-lz clock.

Multistage Omega networks were also built into the Cedar rnultiprocessor (Kuck ct al., 1986) at thc
University of Illinois and in the Ultracomputer (Gottlieb et al., 1983) at New York University.

The HEN Butterfly processor |{TC20ll{l) used 8 >< S crossbar switch modules to build a two-stage 64 >< 64
Butterfly network for a 64-processor system, and a three-stage 512 >< 512 Butterfly switch {see Fig. 7.10) for
a 512-processor system in the TCZDCIU Series. The switch hardware was clocked at 33 MI-12 with a l-byte
data path. The maximum interprocessor bandwidth for a 64-processor TCZUGO was designed at 2.4 Gbytesfs.

The Cray Y-MP multiprocessor used 64-. I28-, or 256—way interleaved memory banks, each of which
could be accessed via four ports. Crossbar networks were used between the processors and memory banks
in all Cray multiproccssors. Thc Alliant FXF2800 used crossbar interconnects between seven four-processor
{i860} boards plus one U0 board and eight shared. interleaved cache boards which were connected to the
physical memory via a memory bus.

CACHE cot-rsnsncearco SYNCHRDNIZATIDN
_ MECHANISMS

Cache coherence protocols for coping with the multicache inconsistency problem are
considered bclow. Snoopy protocols are designed for bus-connected systems. Directory—hascd protocols
apply to network-connected systems. Finally, we study hardware support for fast synchronization. Software-
implemented synchronization will be discussed in Chapter 11.

7.1.1 The Cache Coherence Problem
In a memory hierarchy for a multiprocessor system, data inconsistency may oecur between adjacent levels
or within the same level. For example, the cache and main memory may contain inconsistent copies of the
same data object. Multiple caches may possess tlitierent copies ofthe same memory block because multiple
processors operate asynchronously and independently.

Caches in a multiprocessing cnvironrnccnt introduce thc ctr:-he t-oherence prohl't=m. When multiple
processors maintain locally cached copies of a unique shared-memory location, any local modification of the
location can result in a globally inconsistent view of memory. Cache coherence schemes prevent this problem
by maintaining a uniform state for each cached block of data. Cache inconsistencies caused by data sharing,
process migration, or IMO are explained below.
Inconsistency in Dem: Sharing The cache inconsistency problem occurs only when multiple private
caches are used. ln general, three sources of thc problem arc idcritifted: sltoring of wrr'ra!:u'e darrt. process
migrririnn, and HO trcrit-'ir_v. Figure 112 illustrates the problems caused by the first two sources. Consider a
multiprocessor with two processors, each using a private cache and both sharing the main memory. Let X be

rm‘ I Ifllli i!|>rrIq|r_.\.I|n*\ _

Mudtiplooenon and Multicomputers i. 2;-I

a shared data element which has been referenced by both processors. Before update, the three copies ofX arrc
consistent.

If processor P. writes new data X’ into the cache, the same copy will be written immediately into the
shared memory under a nrire-rhmugia policy. In this case. inconsistency occurs between the two copies {X
and X) in the two caches (Fig. '?.l2a).

On the other hand, inconsistency may also occur when a u'rr'm-brmk policy is used, as shown on the right
in I-"lg. 7.129.. The main memory will be eventually updated when the modified data in the cache are replaced
or invalidated
Process Migration and HO Figcirc 7. 1211- shows the or:r:|.n'rc:r1r:c ofinconsistency afiera process containing
a shared variable X migrates from processor 1 to processor 2 using the write-back cache on the right. In the
middle, a process migrates from processor 2 to processor i when using write-through caches.

Processor P1 P2 P1 P2 P1 P2

we
' Bus

Shared
Merno"!r"

Before upchate Write-through Write-back
{aj inconsistency in sharing of writable data

PFOGBSSMS P1 P2 P1 P2 P1 P2

we
:_: -._: : Bus

Memory

Before Migration Write-througii Write-back
[b] incons istency after process migration

Fig. 7.12 C3£‘l'i£ coherence prcblerns in chra sharing and in process rnigrarlon {Adaptedfrun Dubois. 5Cl1rEl.iI"lCl1-.
and Brigs 1993]

In both cases, inconsistency appears between the two cache copies, labeled Xand X’. Special precautions
rnust be exercised to avoid such inconsistencies. A coherence protocol must be established before processes
can safely rnigrate from one processor to another.

Inconsistency problems may occur during U0 operations that bypass the caches.
when the U0 processor imds a new data I into the main memory, bypassing the write through caches

(middle diagram in Fig. 7.1 3a), inconsistency occurs between cache i and the shared memory. When
outputting a data directly from the shared memory [bypassing thc caches], the write-hack caches also create
inconsistency.

Par MIGIITLH Hi" i!'mt'JI||r_.u|r¢\ :

I93 i Advanced ConprsterArciritedm-e

One possible solution to the U0 inconsistency problem is to attach the H0 processors (IE-‘P, and IOP2)
to the private caches [C1 and C1), respectively, as shown in Fig. 'i'.l3h. This way Lr’Ci processors share caches
with the CPU. The lit) consistency can be maintained ifcache-to-cache consistency is maintained via the bus.
An obvious shortcoming of this scheme is the likely increase in cache perturbations and the poor locality of
HG data, which may result in highcr miss ratios.

P1 P2 P1 P2 P1 P2 Pmgesggfg

I ace
___. -_ - Bus

x x’ x’ it V0Processor
Memory lit] Memory [input] Memory [Output]

[Write-through) {Write-bacir]
[aj [IO operations bypassing the eache

Legends:W r.rrw=»r-r
lOPi [|.r‘O Processor i]
ci [Cache 43

Bus

Shared Memory

[bi A possible solution

Fig. ‘L13 Cache inconsistency after an |r'Ci operation and a poslbie soiuti-on (Arhpnecl fmrn Dubois.Scl1-era-ich.
and Brigs. 198'-B)

Two Protocol Approaches Many of the early commercially available multiproccssors used bus-based
memory systems. A bus is a convenient device for ensuring cache coherence because it allows all processors
in the system to observe ongoing memory transactions. If a bus transaction threatens the consistent state of a
locally cached obj cct, the cache controller can take appropriate actions to invalidate thc local copy. Protocols
using this mechanism to -cnsurc cohcrcncc arc called snoopy pmrocois bccausc each cach-c snoops on thc
transactions of other caches.

Dn the other hand, scalable multiprocessor systems interconnect processors using short point-to-point linlrs
in direct or multistage networks. Unlike the situation in buses, the bandwidth of these networks increases
as more processors are added to the system. However, such networks do not have a convenient snooping
mechanism and do not provide an cfficicnt broadcast capability. In such systems, thc cache coherence
problem can be solved using some variant of directory schemes.

in general. a cache coherence protocol consists of the set of possible states in the local caches, the state in
the shared memory, and the state transitions caused by the messages transported through the interconnection
nctworlrt to keep memory coherent. In what follows, we first dcscrihc the snoopy protocols and then thc
directory-based protocols. Other approaches to designing a scalable cache coherence interface will be studied
in Chapter 9.

J1? I!mt'JI||r_.u|i¢\

Mutltiprocessorr and flllultiicomputers F 2"

7.1.1 Snoopy Bus Protocols
In using private caches associated with processors tied to a common bus, two approaches have been practiced
for maintaining cache consist-ecncy: n'rr'.te- r'nvm'ir!are and tt'riIr.'-update policies. Essentially, the write-intralidate
policy will invalidate all remote copies when a local cache block is updated. The write~update policy will
broadcast the new data block to all caches containing a copy of the block.

Snoopy protocols achieve data consistency among the caches and shared memory through a bus watching
mechanism. As illustrated in Fig. lid, two snoopy bus protocols create difierent results. Consider three
processors (Pl, P2, and P") maintaining COI15lSlG11l copies of block X in their local caches (Fig. 7. l 4a} and in
the shared-memory module marked X.

Using a write-in validore protocol, the processor Pl modifies (writes) its cache from X to X’, and all other
copies are invalidated via the bus (denoted I in Fig. 7.l4b]. invalidated blocks are sometimes called dirty,
meaning they should not be used. The ‘It-rift’-H]'Jti'tII£’ protocol (Fig. '?.l4c) demands the new block content .15’
be broadcast to all cache copies via the bus. The memory copy is also updated if write-through caches are
used. [n using write-back caches, the memory copy is updated later at block replacement time.

Shared , Sh ed[:1 :1 Memory [:1 lilluleiiitory
I I Bus I I Bus

Cache II II same
6 ® 6 P~=-em fit ® o “mm

[a] Consistent ooples of block J(are In shared memory [tr] After a write-I nvatldate operation by P.‘
and three processor caches

, Sharedii ii Memory
I I Etus

. _ _ Caches

® Q a Processors

{c} After a vwlte-update operation by P1

Fig. 'l‘.14 Write-lmallelare and write-up-dare ooh.or\nn-co proroools For write rhrougli caches (1: invalidate]

Write-T‘.I-imugh Codie: The states of a cache block copy change with respect to rt-rid, it--rite, and
repfirconenr operations in thc cache. Figure 7.15 shows the state transitions for two basic write-invalidate
snoopy protocols developed for write-through and write-back caches, respectively. A block copy of a write-
through cache i attached to pmecssnri can assume one of two possible cache states: vofid or irrwifid (Fig.
7.15s}.

A remote processor is denoted j, wherej ¢ i. For each ofthe two cache states, sis possible events may take
place. Note that all cache copies of the same block use the same transition graph in making state changes.

In a miid state (Fig. 115a), all processors can rem‘ {R(i‘), HUI) safely. Local processor i can also nrire
(W (F1) safely in a valid state. The in valid state corresponds to the case of thc block either being invalidated
or being replaced (Z(r') or Z(,r')'].

Thur Ml.'I;Ifllb' HI" I!'n¢r.q|r_.u|irIi -

IUD i Adrrornccd Crnrnjarirterrfirclriterriru-e

Wherever a remote processor wrm-s {H-"'{,r‘)] into its cache copy. all other cache copies become invalidated.
Thc cache block i.n cache r' becomes valid whenever a successful road {R(_r‘)} or write [Iii-"(r'_]_) is carried out by
a local processor i.

The fraction of ii-rim r.'_}-'r:'l'es' on thc bus is highcr than thc fraction of rear! rye-res in a write-through cache,
due to the need for request invalidations. The cache rfirccrmy (registration of cache states} can be made in
dual copies or dua.l—portcd to filter out most invalidations. In case locks arc cached, an atomic Tcstdtflct must
be enforced.
Write-Bock Cache: The valid‘ state ofa write-back cache can be further split into two cache states. labeled
RW (rcrmI‘~wrire] and R0 [rtrraf-only-'} as shown in Fig. '7. l5b. Thc INV (invalidated or not-in-cache} cache
state is equivalent to the rm-ora: state mentioned before. This three-state coherence scheme corresponds to
an on-nersh ip ,rJror-or-oi‘.

arr], wrrr
RU] Fr Izur ,_._,‘[,l
Z“l curwin Em

Will. Ztil
[a] Write-through cache

R[|] RIII
wrrr ’ RUIo o

RW:Read-Write
RO:Read Only

wfil Isrvzrrwarierea or
notin cache

RU). ZUI. Will. Ztli
W[|] = Write to block by processor r‘. Wfl] = Write to block copy In cache _r'by processor ,r'=e r‘.
R[I] = Read bio-clr by p-ro-cessori. HQ] = Read bio-ck copy In cache jby processor is r'.
Z[|J = Replace block In cache r'. Zfii = Replace btc-clr: copy In ca~che_r'e r'.

rs) Write-back cache
Fig. ‘L1 5 Two smI:e~rrartsi'n|cn graphs icr a cache block using wrine-rlmall-hoe snoopy protocols {Aehpced from

Du-bot!-. Schemrldt. an-cl Brlfls. 19$)

When the memory owns a block, caches can contain only the RD copies of the block. In other words,
multiple copies may exist in the RD state and every processor having a copy (called a Iraq-icr of the copy)
can ram‘ (RE), R(,r'j) thc copy safcly.

rm Mrlirow Hill ' :lmrJI||r_.u|n¢\

Mutltiprocessors and Muttiicomputars i 3m

The Fhl"V state is entered whenever a remote processor it-'ri':es (H»"'(,r'}) its local copy or the local processor
replaces [_Z[_i)_) its own block copy. The KW state oorrcsponds to only one cache copy existing in the entire
system owned by the local processor i. Reid (R(i)} and write (lt'(i}) can be safely performed in the RW state.
From either the R0 state or the INV state, the cache block becomes uniquely owned when a local it-rim { H-1|[i])
takes place.

Other state transitions in Fig. 7.15b can be similarly figured out- Before a block is modified, ownership
for exclusive access must first be obtained by a roan‘-an!__i= bus transaction which is broadcast to all caches
and memory. If a modified block copy exists in a remote cache, memory must first be updated. the copy
invalidated, and ownership lralisferrcd to thc requesting eache.

Write-once Protocol James Goodman (I 983'] proposed a cache coherence protocol for bus-based
multiprocessors. This scheme combines the advantages of both write-through and write-hack invalidations.
In order to reduce bus ttnffie, the very first n-rite ofa cache block uses a writ.e-through policy.

This will result in a consistent memory copy while all other cache copies are invalidated. After the first
write, shared memory is updated using a write—back policy. This scheme can he described by the four-state
transition graph shown in Fig. 116. The four cache states are defined below:

P~Road
Wflto-Invffioad-lnv .

@@
Road-

ad-lnv K,‘ J Blk
|:sea,d_|n “ ' P-Write'11

170I

..-
,1

\
s,"'“" .r

~. ‘K
\-

'\)-
In.1‘\"\."'it"'rt

\\

1 .1*\J --_____,_--____-_"
,/Read-Elk ii‘

w P-Write

P-Wt lte

Solid lines: Command issued by local processor
Dashed Ilnos: Commands issued by remote processors

irla tlieaystom bus.

Fig. 7.1-ii Goo-clrrmfs write-once cache coherence protoco! using the wrlne lrwall-chiin policy on wrlne-beck
caelies {Aehpned from james Goo-drmn 1933, reprinted from Stons1:rorn.l‘EEE Comput-nr.j1.me 1990}

I l'Z!.llit?'.' The cache block, which is cottsistcnt with the memory copy, has been read fi'om shared memory
and has not been modified.

- fnioffd." Thc block is not iiiund in thc cache or is inconsistent with thc memory copy.
I Resen-'er:l'.' Data has been n-rmen exactly om:-e since being rend’ from shared memory. The eache copy

is consistent with the memory copy, which is thc only othcrcopy.

rho Melirpw Hl'llt'mr:-;|;imn '
3112 i Advanced Compattor Arclrlteetme

I Dirn-'.' Thc cachc block has been modified (it-rittenj more than oncc, and the cache copy is thc only one
in the system [thus inconsistent with all other copies).

To maintain consistency, the protocol requires two different sets of commands. The solid lines in
Fig. 7.16 correspond to access commands issued by a local processor labeled rend-miss, ii-rite-Fair, and H'ri!E-
miss. Whenever a rend-miss occurs, the vriiin’ state is entered.

The first write-hf! lcads to thc n-:serit’n' store. The second ii'ri!e-hit leads to the dirify state, and all ‘future
it-‘rife-hits stay in the rfirry state. Whenever a n'rr'Ie-rrziiss occurs, the eache block enters the rfirry state.

The dashed lines correspond to invalidation commands issued by remote processors via the snoopy bus.
The rem‘-int-dirirre command reads a block and invalidates all other copies. The v.-rim-in»-rilidrinz command
invalidates all other copies of a block. The bus—mad command corresponds to a normal memory rend by a
remote proces-.sor via the bus

Cache Event: and Action: The memory-access and invalidation commands trigger the following events
and actions:

' Read-rrtr'.ss.' When a processor wants to read a block that is not in the cache, a mod-miss occurs. A bus-
reod operation will be initiated. If no dirty oopy mtists, then main memory has a consistent copy and
supplies a copy to the n:-questing cachc. If a dirt]-' copy docs exist in a rcmotc cache, that cache will
inhibitthc main memory and scnd a copy to the rcqucsti ng cache. In all cases, thc cachc copy will cntcr
thc iolid state after a rcad-miss.

I Write-rift.‘ If the copy is in thc dirri-' or reserved statc, thc write can be carried out locally and thc
ncw state is .d'i'rr_v. If thc ncw statc is solid, a writedrriulidrrre command is broadcast to all caches,
invalidating their copies. The shared memory is n-'rim=n rhrough, and thc resulting statc is rsrsr.-rve.n"
after this first n-'rr'!e.

I Write-miss: When a processor tails to write in a local cache, thc copy must come either from the main
memory or from a remote cachc with a dirty block. This is accomplished by sending a read-invalidate
command which will invalidate all cachc copies. The local copy is thus updated and ends up in a r1"r'rr_i-'
5lfl.l.‘C.

I Read-hit: Read-hits can always be performed in a local cache without causing a statc transition or
using thc snoopy bus for invalidation.

I Block Replacement.‘ Ifa copy is r;l'r'rr_1-', it has to bc written back to main memory by block rcplaccmcnt.
lfthc copy is dean (i.e., in either the i-'alr'.d', resort-'err‘, or ininiid state], no rcplaccmcnt will Lake place.

Goodman’s write-once protoco] demands special bus lines lo inhibit the main memory when the memory
copy is invalid, and n has -rend operation is needed aflcra rend rm'.s.s. Most standard buses cannot support this
inhibition operation.

The IEEE Futurebus+ proposed to include this special bus provision. Using a write-through policy after
the first write and using a write-baclt policy in all additional ii-rims eliminates unnecessary invalidations.

Snoopy cache protocols are popular in bus-based multiproccssors because of their simplicity of
implementation. The write-invalidate policies were implemented on the Sequent Symmetry multiprocessor
and on the Alliant FIX multiprocessor.

Besides the DEC Firefiy multiprocessor, the Xerox Pale Alto Research Center implemented another write-
update protocol for its Dragon multiprocessor workstation. The Dragon protocol avoids updating memory
until replacement, in order to improve the efficiency of intercache transfers.

rt» Mel; w Hlll 'I11 lnrfqttgtrllo-\' _

Muiltiprocesson and Mulniccvripoters i 303

Multilevel Cache Coherence To maintain consistency among cache copies at various levels. Wilson
proposed an extension to the write-invalidate protocol used on a single bus. Consistency among cache copies
at the same level is maintained in the same way as described above. Consistency of caches at different levels
is illustrated in Fig. 13.

An invalidation must propagate vertically up and down in order to invalidate all copies in the shared
caches at level 2. Suppose processor P, issues a write request. The write request propagates up to the highest
level and invalidates copies in Cm, C22, Cm, and C13, as shown by the arrows to all the shaded copies.

High-level caches such as Cm keep track of dirty blocks beneath them. A subsequent rend request issued
by P7 will propagate up the hierarchy because no copies exist. Wben it reaches the top level, cache C20 issucs
a flush request down to cache Cu and the dirty copy is supplied to the private cache associated with processor
P-,. Note that higher-level caches act as filters for consistency control. An invalidation command or a read
request will not propagate down to clusters that do not contain a copy of the corresponding bloelt. The cache
C2, acts in this manner.
Protocol Performance lune: The performance of any snoopy protocol depends heavily on the workload
patterns and implcmcntation efficiency. The main motivation for using the snooping mechanism is to reduce
bus traffic, with a secondary goal of reducing the effective memory-access time. The block size is very
sensitive to cache performance in write-invalidate protocols. but not in write-update protocols.

For a uniprocessor system, bus traffic and memory-access time are mainly contributed by cache misses.
The miss ratio decreases when block size increases. llowever, as the block size increases to a darn pollnrimi
point, the miss ratio starts to increase. For larger caches. the data pollution point appears at a larger block sire.

For a system requiring extensive process migration or synchronization. the write-invalidate protocol will
perform better. However, a cache miss can rcsult for an invalidation initiated by another processor prior to the
cache access. Such in wtliatrrion mr'.r.rc.r may increase bus traflic and thus should be reduced.

Extensive simulation results have suggested that bus traffic in a multiprocessor may increase when the block
size increases. Write-invalidate also facilitates the implementation of synchronization primitives. Typically.
the average number of invalidated cache copies is rather small [one or two] in a small multiprocessor.

The write-update protocol requires a bus broadcast capability. This protocol also can avoid the ping-pong
efi'ect on data shared between multiple caches. Reducing the sharing ofdata will lessen bus traffic in a write-
update multiprocessor. However, write update cannot be used with long write bursts. Only through extensive
program traces (trace-driven simulation} can one reveal the eache behavior, hit ratio, bus traflic, and eflbctive
memory-access time.

7.1.3 Directory-Based Protocols
A write-invalidate protocol may lead to heavy bus traffic caused by nztrrl-rrIi.ss'+:s, resulting from the processor
updating a variable and other processors trying to read the same variable. On the other band, the write-update
protocol may update data items in remote caches which will never be used by other processors. In fact, these
problems pose additional limitations in using buses to build large multiprocessors.

When a multistage or packet switched network is used to build a large multiprocessor with hundreds of
processors, the snoopy cache protocols must be rno-tlifiecl to suit the network capabilities. Since broadcasting
is expensive to perform in such a network, consistency commands will be sent only to those caches that keep
a copy of the block. This leads to n'irccror_t-\- btts'crl;Jrorocof.s for network-connected multiprocessors.

Fr‘:-r Mcfiruw stilt-...¢-,.,c..¢. '
IHH i Advanced Ca'npm:erArcl'ritccturc

Directory Structure: In a multistage or packet switched network, cache coherence is supported by using
cache direictories to store information on where copies of cache blocks reside. Various directory-based
protocols differ mainly in how the directory maintains information and what information it stores.

Tang (I976) proposed the first directory scheme, which used a comm)‘ n'in'cr0rj_t-' containing duplicates of
all cache directories. This central directory, providing all the information needed to enforce consistency, is
usually very large and must be associatively searched. like the individual cache directories. Contention and
long search times are two drawbacks in using :1 central directory for a large multipro-cessoc

A distributed-directory scheme was proposed by Censier and Feaun-ier (l9'i'3). Each memory module
maintains a separate directory which records the state and presence inforlnation for each memory block. The
state infonnation is local, but the presence information indicates which caches have a copy of the block.

In Fig. 7.11‘, a l't"fld-J'7‘li‘i§‘.S‘ (thin lines] in cache 2 results in a request sent to the memory module. The
memory controller reironsmits the request to the dirty copy in cache 1. This cache writes back its copy. The
memory module can supply a copy to the requesting eache. ln the case of a write-hit at cache I [bold lines},
a command is sent to the memory controller, which sends invalidations to all caches (cache 2] marked in the
presence vector residing in the directory D1.

I
I Interconnection Network

II ,,,

Hg. 7.11‘ kslc concept ofa cHrec|:ocy-based cache coherence sch-en1c{Co|.u*cesy of Censlcrand F-eaurrtce IEEE
li'ms.Co|nputers, Dec.1‘?7B}

EE .ai'%

A cache-coherence protocol that does not use broadcasts must store the locations of all cached copies of
each block of shared data. This list of cached locations, whether centralised or distributed, is called a cache
rfirccroufy. A directory entry for each block of data contains a number ofpointers to specify the locations of
copies of the block. Each directory entry also contains a dirty bit to specify whether a particular cache has
permission to Write the associated block of data.

Different types of directory protocols fall under three primary categories: jiifi mop .n‘irccaJrr'cs, finiiren’
rfirccrorics, and chair:-t=d riirsctorits. F1.|.ll-map directories store enough data associated with each block in
global memory so that every cache in the system can simultaneously store a copy of any block of data. That
is. each directory entry contains N pQll1l.EIS_, when: N is the number of processors in the system.

Limited directories differ from full-map directories in that they have a fixed number of pointers per entry,
regardless of thc system size. Chained directories emulate the full-map schemes by distributing the directory

J11 Irufqretrlhw

Multiprocessor: and Muiticompoters i 305

among the caches. The following descriptions of the three classes of cache directories are based on the
original classification by Chaiken, Fields, Kwihara, and Agarwal (1990):

Full-Nlop Directories The full-map protocol implements directory entries with one bit per processor and a
dirty bit. Each bit represents the status of the block in the corresponding processor's cache (present or absent).
If the dirty bit is set, then one and only one processor's bit is set and that processor can write into the block.

A cache maintains two bits of state per block. One bit indicates whether a block is valid, and the other
indicates whether a valid block may be written. The cache coherence protocol must keep the state bits in the
Incrnory directory and those in the cache consistent.

Figure 'I'.llia illustrates three d.ifl'erent states of a full-map directory. In the first state, location X is missing
in all of the caches in the system. The second state results from three caches (Cl, C2, and C3) requesting
copies of location X. Three pointers [processor bits} are set in the enn-y to indicate the caches that have copies
ofthe block of data. In the first two states, the dirty hit on the left side ofthe directory entry is set to clcan {C},
indicating that no processor has permission to write to the block of data. The third state results from cache
C3 requesting write pennission for the block. In the final state, the dirty bit is set to dirty {D}, and there is a
single pointer to the block of data in cache C3.

Let us examine the transition from the second state to thc third state in more detail. Once processor P3
issues the write to cache C3, the following events will take place:

('1) Cache C3 dctccts that thc hloclt containing loerti-on X is valid hut that thc processor docs not have
pcrtn is sion to write to thc block, indicated by thc block‘-s writc-permission hit in thc cachc.

(2) Cache C3 issues a writc rcqucst to thc mcmory modulc containing location X and stalls processor P3.
(3) The memory module issues invalidate requests to caches Cl and C2.
(4) Caches Cl and C2 roccivc thc invalidate requests, sct thc appropriate hit to indicatc that thc block

containing location X is invalid and send acltnowlcdgmcnts hack to thc memory module.
(5) Thc memory module rcccivcs thc aclcnowlcdg mcnts, scts thc dirty hit, clcars thc pointers to caches Cl

and C2, and sends wtitc permission to cache C3.
(ti) Cache C3 rcocives thc write pcmiission message, updates the statc in thc cache, and rcactivatcs

processor P3.

The memory module waits to receive the acknowledgments before allowing processor P3 to complete
its write transaction. By waiting for acknowledgments, the protocol guarantees that the memory system
ensures sequential consistency. The fi.lll—ITlap protocol provides a useful upper bound for the perfomiance of
ccrrlralizied directory-based cache coherence. However, it is not scalable due to excessive memory overhead.

Because the sizie ofthe directory entry associated with each block ofmemory is proportional to the number
ofprocessors, the memory consumed by the directory is proportional to the size of memory DU») multiplied
by the size of the directory O(Nj. Thus, the total memory overhead scales as the square of the number of
processors O(N2).

Limited Directories Limited directory protocols are designed to solve the directory size problem.
Restricting the number of simultaneously cached copies of any particular block of data limits the growth of
the directory to a constant factor.

A directory protocol can be classified as Dir, X using the notation from Ag-arwal et al (1 988'}. The symbol
i stands for the number of pointers, and X is NB for a scheme with no broadcast A full-map scheme without

rr<- Mclinrw Hill I_|Il1‘.l]|r_.I.ll|f\

S Admrmed Crmpurter Architeaure

hmadeast is represented as Dir_,._. NB. A limited clircctory protocol that uses r' <1 N pointers is denoted Dir; NB.
The limited directory protocol is similar to thc fi.rll-map directory, except in the case when more than r' eaehes
request read copies of a particular block of data.

Shared memory Shared memory

X: IIII--- I I"IME!-2|
-

Cache Cache Cache Cach C he Ca e
I : IIIV "‘ x x De x:

'(F1) ' ' @j' '(r'='3)‘ '['r'="1j '{'r='2)' '@j
Readit Readx Headx wmex

Shared memory
X1 EIIIII BEBE

Cache’ Cac:-re . he
><-

'("r=1) ' (' i=2‘) (Pa)
{a) Three sures of a iuli-mac directory

306

El‘

Shared memory Shared me mery

*1 IE 1'<=II

Cache Cac = Cache Cache _ Cache Cache

><= @ ><= EEEI ><= @ >==
(P11 (r=2)i (P35 arm ((152) i{Pa}

Head Jr.
{U1 Eviction in a limited directory

Shared memory Shared me rncry
><= IEEE ><= IE

Cach“ Cache cor‘ ¢'.e'e " oer cm
K: " x: rieell "
(H) C2) C2) P1 C2) (2)

Reed X Write X
re) The chained eriecrmy

Hg.T.1l'| Three types of cache ctirocuzry protocols {Courtesy of-Chaihen er: al. IEEE Ccn1pr.rmr'.]r.rne 1990)

"Mr Met? iv Hill 'I11 lnufqrrgtrlli-\' _

Multiprocessor: and Mtrlticwrrputars i In-I

Figure 7.18b shows the situation when three caches request read copies in a memory system with a
Dir; NB protocol. In this ease, we can view l.hc two-pointer directory as a two-way set-associative cache of
pointers to shared copies. When cache C3 requests a copy of location X, the memory module must invalidate
the copy in either cache Cl or cache C2. This process of pointer neplacernent is called in--it-rirm. Since the
directory acts as a set-associative cache, it rnust have a pointer rcplaccmcnt policy.

If the multiprocessor exhibits processor locality in the sens-c that in any given interval of time only a small
subset of all the processors access a given memory word, then a limited directory is sufficient to capture this
small worker set of processors.

Directory pointers in a Dir, NB protocol encode binary processor identifiers. so cach pointer requires log;
N bits of mcrnory, where N is the number of processors in the system. Given thc same assumptions as for thc
fitll-map protocol, the memory overhead of limited directory schemes grows as orrv log1."r'_].

These protocols are considered scalable with respect to memory overhead because the resource required to
implement them grows approximately linearly with the number of processors in the system. Dir, B protocols
allow more than i copies of each block of data to exist, but they resort to a broadcast mechanism when more
than icached copies of a block need to be invalidated. However, point-to-point interconnection networks do
not provide an efficient systemwidc broadcast capability. In such networks, it is diflicult to determine the
completion of a broadcast to ensure sequential consistency.

Chained Directories Chained directories realize the scalability of limited directories without restricting
the number of shared copies of data blocks. This type of cache coherence scheme is called a c-lmim-d scheme
because it keeps track of shared copies of data by maintaining a chain of directory pointers.

The simpler of the two schemes implements a singly linked chain, which is best described by example
(Fig. ll Sc). Suppose there are no shared copies oi" location X. If processor Pl reads location X, the memory
sends a copy to cache Cl, along with a choir: rt-rrrtirrrniorr [CT] pointer. The memory also keeps a pointer to
cache Cl. Subsequently, when processor P2 reads location X, the memory sends a copy to cache C2, along
with the pointer to cache C1. The memory then keeps a pointer to cache C2.

By repeating the above step, all of the caches can cache a copy ot" the location X. If processor P3 writes
to location X, it is necessary to send a data invalidation message down thc chain. To ensu.rc sequential
consistency, the memory module denies processor P3 write permission until the processor with the chain
termination pointer acknowledges the invalidation ofthe chain. Perhaps this scheme should be called a grass in
protocol [as opposed to a snoopy protocol] because information is passed from individual to individual rather
than being spread by covert observation.

The possibility ofcache block replacement complicates chained-directory protocols.
Suppose that caches Cl through (IN all have copies of location X and that location X and location Y map

to the same {direct-mapped) cache line. If processor P, reads location Y, it must first evict location X from its
cache with the following possibilities:

(1) Send a message down the chain to eache C, | with a poimerto cache C,,.| and splice C, out ofthe ehain,
or

(2) lnvalitlate location X in eache C,-,| through eaehe C”.

The second scheme can be implemented by a less complex protocol than the first. In either case, sequential
consistency is maintained by locking the memory location while invalidations are in progress. Another
solution to the replacement problem is to use a doubly linked chain. This scheme maintains forward and
backward chain pointers for each cached copy so that the protocol does not have to traverse the chain when

FM Mtfiruw H'IHt'nm;n;u|n1'

NIB i Advanced Canpntter Archite-ctura

there is a cache replacement. The doubly linked directory optimises the replacement condition at the cost of
a larger average message block size (due to the transniissiori of extra directory pointers), twice the pointer
memory in the caches, and a more complex coherence protocol.

Although the chained protocols are more complex than tl1e limited directory protocols, they are still
scalable in terms of the amount of memory used For the directories. The pointer sizes grow as the logarithm
of the number of processors, and the number of pointers per cache or memory block is independent of the
number ofprocessors.

Cache Design Alternative: The relative merits of physical address caches and virtual address caches
have to he judged based on the access time, the aliasing problem, the flushing problem, OS kernel overhead,
special tagging at the process level, and costiperformance considerations. Beyond the use of private caches,
three design altematives are suggested below.

Each of the design alternatives has its own advantages and shorteornings. There exists insufiicient
evidence to determine whether any ofthe alternatives is always better or worse than the use ofprivate caches.
More research and trace data are needed to apply these cache architectures in designing high-performance
multiprocessors.

Shared Cache An alternative approach to maintaining cache coherence is to completely eliminate the
problem by using sfmreri’ c-aches attached to shared-memory modules. No private caches are allowed in this
ease. This approach will reduce the main memory access time but contributes very little to reducing the
overall memory-access time and to resolving access conflicts.

Shared caches can he built as second-level caches. Sometimes. one can make the second-level caches
partially shared by different clusters of processors. Various eache arch.itcetures are possible if private and
shared caches are both used in a memory hierarchy. The use of shared cache alone may be against the
scalability of the entire system. Tradeoffs between using private caches. caches shared by multiprocessor
clusters, and shared main memory are interesting topics for further research

Non-eaeheable Data Another approach is not to cache shared writable data. Shared data are mm-ndienhfe,
and only instructions or private data are eaeheable in local caches. Shared data include locks, process queues.
and any other data structures protected by critical sections.

The compiler must tag data as either criclwnbis or no.m:oc'.Fier'i!J!e. Special hardware tagging must be used
to distinguish them. Cache systems with caeheable and noncacheable blocks demand more support from
hardware and compilers.

Cadre Flushing A mini approach is to use cache flu.-tIn'ng every time a synchronization primitive is
executed. This may work well with transaction processing multiprocessor systems. Cache flushes are slow
unless special hardware is used. This approach does not solve I.-"0 and process migration problems.

Flushing can be made very selective by the compiler in order to increase efficiency. Cache flushing at
synchronization, It'll and process migration may be carried out unconditionally or selectively. Cache flushing
is more ofien used with virtual address caches.

7.1.4 Hardware: Synchronization Mechanisms
Synchronization is a special form of communication in which control infomiation is exchanged. instead
of data. between communicating processm residing in the same or different processors. Synchronization

re»-Mel; to um - 'J11 Em-lilirrsrlitlr _

Multiprocessor: and Multiccnmptrtars i 3“

enforces correct sequencing of processors and ensures mutually exclusive access to shared writable data
Synchronization can be implemented in software, firmware, and ha1'rlvva.rc through controlled sharing of data
and control information in memory.

Multiprocessor systems use hardware mechanisms to implement low-level or primitive synchronization
operations. or use software [operating system) level synchronization mechanisms such as Se'mq|'Jh0rr's
or monitors. Only hardware synchronization mechanisms arc studied below. Software approaches to
synchronization will be treated in Chapter 10.

Atomic Operation: Most multiproccssors are equipped with hardware mechanisms for enforcing atomic
operations sueh as memory read, write, or marl-mafiji-'-ii-'rirr> operations which can be used to implement
some synchronization primitives. Besides atomic memory operations, some interprocessor interrupts can be
used for synchronization purposes. For example, the synchronization primitives, Test&S-et [Fm-H and Reset
(fork), are defined below:

Test&Set (for-It)
rump <t— fork; Fork +r— l;
return scrap (T.-4)

Reset (fork)
lock 4- D

Test&Set is implemented with atomic l'E'rI{f-fllfldffit-H-‘rife’ memory operations. To synchronize concurrent
processes, the software may rrrpcat Test&.Set until the returned value (rcrnp) becomes l]. This synchronization
primitive may tie up some bus cycles while a processor enters busy-waiting on the spin lock. To avoid
spinning, interprocessor intermpts can be used.

A lock tied to an interrupt is called a .s'u.sperm' i"or1l'. Using such a lock, a process does not relinquish the
processor while it is waiting. ‘Whenever the process fails to open the lock, it records its status and disables
all interrupts aiming at the lock. When the loclr is open, it signals all waiting processors through an interrupt.
A similar primitive. Compare&Swap, was implemented in IBM 3?!) mainframes.

Concurrent processes residing in different processors can be synchronized rising barriers. A barrier can
be impirrmcnted by a shared-memory word which keeps eouriting the number of processes reaching the
barrier. After all processes have updated the barrier counter, the synchronization point has been reached. No
processor can execute beyond the barrier until the synchronization process is complete.

Wired Barrier Synchronization A wired-NOR logic is shovm i.n Fig. 7.19 for implernenting a barrier
mechanism for fast synchronization. Each processor uses a dedicated control vector X = (X1, .-Y1, ..., X“) and
accesses a common monitor vector Y = (Tl, Y2,__. ltm) in shared memory, where m corresponds to thc
barrier lines used.

The number of barrier lines needed for synchronization depends on the multiprograrnming degree and the
sire of the multiprocessor system. Each control bit X, is connected to the base (input) of :1 probing transistor.
The monitor bit l} checks the collector voltage (output) of the transistor.

Each barrier line is wired-NOR to rr transistors from rr processors. W'he;ru.:ver hit X; is raised to high (1),
the corresponding transistor is closed, pulling down (U) the level of barrier line i. The wired-NOR connection
implies that line i will be high (I) only if control bits X, from all processors are low (0).

Thur Ml.'I;Ifllb' HI" i!'n¢r.q|r_.u|»r\ -

3 ID I Advanced Canpmerkdritedrua

This demonstrates the ability to use the control bit .71"; to signal the completion ofa process on preeessor i.
The bit Xi is set to 1 when a process is initiated and reset to D when the process firrishes its execution.

Whrzn all processes finish their jobs, the .Y,- bits liom the participating processors are all set to ll; and the
barrier line is then raised to high (1), signaling the synchronization barrier has been crossed. This timing is
watched by all processors through snooping on the l’,-bits. Thus only one barrier line is needed to monitor the
initiation and completion ofa single synchronization involving many concurrent processes.

5\i"

I iino1II linoI I I I m

III III III III III III III III
x'l"Jhn Y‘l"Ym "11"xm Y1"“'m x'i"xm Y1"Ym 3'1-1"Xm Y-i"Ym

Pro-clamor 1 Processor 2 Pro-oossorfii Processor it

[a] Barrio: lines and interface logic

Stop 1: Foriring [use of one barrier lino]
Process-o|'1 Pro-no-ssor2 Pro-nassor3 Proce-ssor4

Lino 1
X E
YE E E E
Stop 2: Pro-case 1 and Process 3 reach tho synchronization point

K E E E
Y E E E E

Process. 1 Pro-co-as 2 Process 3 Process 4
Stop 3: Ali processes roachtho synchronization poirl

X E E E
Y E

Process 1 Process 2 Process 3 Process 4

[tr] Synchronization stops

F-lg. 1.19 The syn<:l'a'oni:a1:lonoffo|.tr indepen-clenr processes on four processors using one wirod~NOR barrier
iinc {Airlapred from Hwang and Sharrg. Pmc.lnr. Conf.Pnmki Processing, 1991}

Multiple barrier lines can be used simultaneously to monitor several synchnonization points.
Figtue 7.19 shows the synchronization of {bur processes residing on four processors using one barrier line.
Note that other barrier lines can be used to synchronize other processes at the same time in a multiprogrammcd
multiprocessor environment.

rm Mrfimw rrriir ‘H' |>rrIq|r_.\.I||¢\ _

Muiltiplooessors and Multicomputers i

lr
& : Example 7.2 Wired barrier synchronization of five partially

ordered processes (Hwang and Shang 1991)
If the synohmnization pattcm is predicted aficr compile tirnc, then our: can follow the prcccdcncc graph of a
partially ordered set of processes to perform nzultiple synchronization as demonstrated I11 hg 7 20

Pro-eesses
F'1F'2 P3 Pd P5

I I * °lg I d ° 0 G
G 0

6
[a] Synchronization pattems [bi Preoedenoe graph

Step Ci: lnitiaiizing the oontioi vectors [tee 5 in-arrierr lines)
Pro-oessor1 Pro-oessor2 Prooessorfi Processors Pro-oessorfi

X
Y
Sup-1:S§,rnchro
><
Y 1 LJ E
Sup 2a: Synchronization at barrie

>< " -.-. "lasslsfililll"
Y

Elfil EEE

at ti-arrier a
'1

:|

HF‘EIFJEIH

FIE,Flllslg

J-L11L-JGL-JE HE-1"‘H HIFJITE-I E-Ill?)E-IEIE[-1EIE[-1E5]

EElEEE

En
Sup 2b: Synizhnonlzation at banter c
x EEEIEIEIE
Y ilililltlls‘
Step 3: Synchro

E5135] I
Y
Sup 4: Sy noh
K
Y

X

Fig. 1.10 The syncnrorrlzatlon of five partially ordered procees using wired-NOR barrier lines{Amp1:ed from
Hwrmg an-cl Sung. Proc.l'ntConfIFhmlIelPiosli1g. 1991}

E511‘ E

aBEE§m
r=:c

5|;-gs mi
EE|:=: |:=:
E‘! E‘!EE

ti-arr ier

snags:-1EL-IHEEHsraguraHI;-Jat-.-Jsagas Hat-1Hat-1ui:at-1quaat-1quacan

barrier e
EEW‘

lillil IIEIIEE
E5] I5]

HE-IHIE!H!-IE-IE!FIEE-IEFIEE-IEEl!-IE-IE! HI?)HG]HE-IHE]E-IEC-IEFIEE-IE]FJC-IE-IE]

El?! E5] E5] FIE FIE] BF] El?! El?! II-TF1 E-TE‘!

EC-1HE-1Elli]EEIQ5]EEIQ5]EEIHIP]IHFJ Eli]Q5]Ell-IE5]QE-IE5]QE-IE5]Ell-III-IE5]

[oi Synohron ization steps

FM Mtfirpw Hliitiimyiwins

III i Advanced Canpoterfirchitecturc

Here five processes {P1, P2. ..., P5,) are synchronized by snooping on five barrier lines corresponding
to five synchronization points labeled rt, ii, c, oi, e. At step Cl the control vectors need to be iiiitializcd. All
five processes are synchronized at point ti. The crossing of barrier H is signaled by monitor bit Y1, which is
observable by all processors.

Harriers b and 1-can be monitored simultaneously using two lines as shown in steps 20 and lb. Only four
steps are needed to complete the entire process. Note that only one copy of the monitor vector l’ is maintained
in the shared memory. The bus interface logic ofeach processor module has a copy of l’ for local monitoring
purposes as shown in Fig. 'i'.20c.

Separate control vectors aroused in local processors. The above dynamic barrier synchronization is possible
only ifthe synchronization pattern is predicted at compile time and process preemption is not allowed. One
can also use the barrier wires along with counting semaphores in memory to support multiprogrammcd
multiproccssors in which preemption is allowed.

THREE GENERATIONS OF MULTICOMPUTERS

— Three early generations ofmulticomputers are reviewed in this section. which have contributed
to the development of modern systems. Experiences from lntel, nCUBE, MIT, and Calteeb

are examined. In particular, we present the lntel Paragon system in some detail. The genetic multicomputer
model shown in Fig. L9 and various network topologies presented in Section 2.3 form the background
needed for reading this section. Further discussion on related topics and current advances can be found in
Chapter I3.

1.3.1 Design Choices in the Fast
Before we examine these developments, let us identify the major design choiem made so Far in building
multicomputers, as compared with the development of other types of parallel computers. As illustrated in
Fig. 7.21, the choices made involve the selection ofprocessors, memory structure, interconnection schemes,
and control strategy.
Design Choice: In selecting a processor technology, a multicomputer designer typically chooses low-cost
so-called commodity processors as building blocks. in fact, the majority of parallel computers have been
built with standard oft‘-the-shelf processors. Even the custom-designed processors used in the AMT D.-‘ll’,
nCUBE, Tlt-'ICr'CM-2, and IBM RP3 computers were low-cost processors.

The nest step was to choose distributed memory for multicomputers rather than using shared memory
which would limit the scalability. Each processor has its own local memory to address. Scalability becomes
morc feasible without shared resources. With distributed memory, a new programming model and tools are
needed for multicomputers.

Multicomputers have message-passing, point-to-point, direct networks as an interconnection scheme
rather than the address-switching networks used in Nl.JMr'i multiproccssors like the IBM RP3 and BBN
Butterfly. A message-passing networlt routes messages between nodes. Any node can send a message to
another. Sendireceive semantics must be incorporated to guarantee consistent programming with or without
uniform messaging speeds.

F61‘ Mrlirnw H["l'|>rf' |u.||¢\ i.1] _ I _

Muitiplooenon and Muiticomputers i.

Muttlcon1puters

n-CUBE MIMD, MPMD,
lntel SPMD

[Control selection]

AMT
ncuss Message _________ __ AMT
Intel Paeelng TMC
TMC

{lntereomectlon selection)

AMT
{$55 oeribmed _________ __ senses sou
" Memory Swltehln mm RP3"rue 9

IBM RPS

[Mernory selection]AMT
nCUBE
Intel
S-equent Low-on-st _________ __ Shared Sequent
Alliam Processors Mernory Alllant
BEN
TMC
IBM RP3

[Processor selection]

Parailel _________ __ Expensive -Cray
Arehlteemre Prooessors IBM Mainframe

Fig.'I'.I1 Design choices made in the pas: for developing message-passing rnuirleonrpuirers cornprar-ed to those
made for other parallel eomp-uters (Courtesy of lntel Scientific Computers, 1938}

in selecting a control strategy, designers of rnulticornputers choose the asynchronous MIMD, MPMD,
and SPMD operations. rather than the SlM'D lockstep operations as in the CM-2 and DAP. Even though
both support massive parallelism, the SIMD approach ofi'e:rs little or no oppoitmiity to utilize existing
multiprocessor code because radical changes must be made in the programming style.

Cln the other hand, multicomputers allow the use of existing soflware with minor changes from that
developed for multiproeessors or for other types of parallel computers.
First Generation Caltcclrfs Cosmic Cub-e (Seitz, 1933} was the first of the first generation multicomputers.
The lntel iPSCi 1, Ametek SII4, and nCUBl3.~‘l0 were various evolutions of the original Cosmic Cube.

For example, the EPSCJI used iilfllfifi processors with 512 Kbytes of local memory per node. Faeh node
was implemented on s single printed-eireuit hoard with eight U0 ports. Seven L-“CI ports were used to forrn
a seven-dimensional hypercube. The eighth port was used for an Ethernet connection fiom each node to the
host.

3|!

HM‘ If J11!!!‘ Em-liqtrsrlrtli _

I I4 i Advanced Computer Architecture

Table i'.l summarizes the important parameters used in designing the early three generations of
multicomputers. The eomrnutiieation latency {for a IUD-byte message) was lather long in the early 19805.
The 3-to-l ratio between remote and local communication latencies was caused by the use of a srrJrc-rmd-
fnrutird routing scheme where the latency is proportional to the number ofbops between two communicating
nodes.

Table 1.1 Three Early Genet-:ule.ns of Mulucanputer Devolopmein

L'it=.'ncrr.ri'io-n First Second Third
l‘i.'r.rr.\" iissisr I 985‘ 9.1’ testis:
Typical no-dc
MIPS 1 ID 100
Mflops scalar 9.1 2 40
Mflops vector ID 40 200
Memory (Mbytes) 0.5 4 32

Typical system
N (nodes) 64 2515- I024
NILPS -E-4 25-ED ICHJK
Mflops scalar 6.4 512 40K
Mflops vector 640 ltlK ZDUK
Memory (Mbytes) 32 1K 3-2K

Coniniunicatjon latency
(l'l]'lJ—by1c message)
Neighbor (microseconds) ZDIDID 5 0.5
Nonlocal {microseconds} 6000 5 0.5

{Modified front Athas and Scitz, "ll-'Iult-icomputcrs: Message-Passing Concurrent Computers", IEEE Ce-uripiirer: August 1988].

Vector hardware was added on a separate board attached to each processing node board. Or one could use
the second hoard to hold extended local memory. The host used in the iP‘S-Ci l was a.n lntel 310' lrtieropro-cursor.
All I/D must be done tiuough the host.

13.1 Present and Future Development
The second and third generations of multicomputers are introduced below. The lntel Paragon is presented as
a ease study. More recent advances in high-p-erfonnance eomputing are discussed in Chapter l3.

The Second Generation A major improvement of the second generation included the use of better
processors. such as i386 in the iPSG'2 and i360 in the il'SC.-‘S450 and in the Delta. The nCUBE.r‘2 implemented
64 custom-designed VLSI processors on a single PC board. The memory per no-dc was also increased to ll)
times that of the first generation.

Most importantly, hardware-supported routing, sueh as it-'orniho)'c retiring, reduced the communication
latency significantly from 6000 its to less than 5 _us. In fact, the latency for remote and local commlmieations
became almost the same, independent of the number of hops between any two nodes.

If J11!!!‘ IlN‘Hlll[1|1lf\

Multipruicessors and Muiticwrrputars i 3 |5

The architecture oi" at typical second-generation multicomputer is shown in Fig. 7.22. This corresponds to
a l-6-node mesh-connected architecture. Mesh routing chips {M.RCs) arc usotl to establish the fotir-neighbor
mesh network. All the mesh communication channels and h'[R{l‘-s are built on a backpiane.

O|

eeealter‘
 ?l?ei"'|n?a?a§'*-e.e.e.e

F ilo system

Odfi

A
Communication

node node ode

"eri-be; O O 0
Com puter M RC M RC M RC

L Display Generator
Ethernet

Legends: MRG = Mach routing chip

Fig.‘!.I2 The architecture of a second-generation multieornputor~ using a hardware-routed mosh interconnect
{Courtesy of Charles Sela: reprinted with permission from "Concurrent Anrititee-turn". iil_$i‘ ond
Ftzrmiiel Compur.otion. edited by Suzy; and Birtwistie. Morgan Knufmann Publishers. 1990)

Each node is implemented on a PC board plugged into the backplam: at the proper MRC position. All Lil]-
devices, graphics, and the host are connected to the periphery {boundary} of the mesh. The Intel Delta system
had such a mesh architecture.

Another representative system was the nCUBE/‘Z which implemented a hypercube with up to S I 92 nodes
with a total of5 I2 Gbylcs of distributed memory. Note that some parametens in Table 7.1 have been updated
from the conseiwrative estimates made by Atlas and Seitz in 1988. Typical figures representative of current
systems can he found in Chapter 13.

The Sttperhlodie lilflfl was a Transputer-based multicomputer produced by Parsystem Ltd_, England.
Another second-generation system was A1nctck‘s Series 2010. made with 25-Mt-Iz M68020 proccssots using
a mesh-routed architecture with 225-lvibytes.-‘s channels.
The Third Generation These designs laid the foimdation for the current generation of multicomputers.
Caltoch had the Mosaic C project designed to use VLSI-implemented nodes, each containing n 14-MIPS
processor, Iii-hihytesfs routing charuiels, and 16 Kbytes ofRAM integrated on a single chip.

FM Mtfiruw Hlllrirmpdrrns

3 I6 i Advanced Cmipoterlirclrite-cturn

The fi.tll sine of the Mosaic was targeted to have a total of 16,334 nodes organized in a three-dimensional
mesh architecture. MIT built thc I-machine which it planned to extend to a 65K-nodc niulticontputcr with
VLSI nodes interconnected by a three-dimensional mesh networir. We will study the J-machine experience
in Section 9.3.2.

The I-machine planned to use message-driven processors to reduce the message handling overhead to less
than 1 _tis. Each processor chip would contain a 512-Kbit DRAM, a 32-bit processor, a floating-point unit,
and a communication controller. The communication latency in systems was later reduced to a few ns using
high-speed links and sophisticated communication protocols.

The significant reduction of overhead in communication and synchronization would permit the execution
of much s11ortt:r tasks with sizes of 5 its pcr processor in thc I-machine, as opposed to executing tasks
of 100 us in the iPSc.~'l.'l'his implies that concurrency may increase from I02" in the iPSc1l to I05 in thc
J-machine.

The first two generations of multicomputers have been called lll-L'£‘ltl'1.l.l?l-gl"|t'll7!l .s_v.s!crri.s, With a significant
reduction in communication latency, the third generation systems may be callcdfine-groin multr'compr.rter's.

Research is also underway to combine thc private virtual address spaces distributed over thc nodes into
a globally shared virtual memory in MPP multicomputers. Instead of page-oriented message passing, the
fine-grain system may require block-level cache communications. This fine-grain and shared virtual memory
approach can in theory combine the relative merits ofmultiproccssors and multicomputers in a lrererogerreorrs
pro:-cssing (HP) environment.

7.3.3 The lntel Paragon System
In the 1930s, hypercube multicomputers were made with homogeneous nodes because all U0 Functions were
given to the host. This limited the U0 bandwidth, and thus thcsc computers could not be used in solving
large-scale problems with efiiciency or high throughput. The lntel Paragon was designed to overcome this
difficulty. The usage model tumed the multicomputer into an applications server with multiuser access in a
network cnvironrnent.

Ever since the introduction ofthe iPSC.I'1 CFS, parallel L"D has been possible with dedicated disk nodes in
addition to the computing nodes. The iPSCl86ll further pushed the idea of using heterogeneous node types.
The Paragon system went fi.I.l1l'lB1' by making it a host-free multicomputer. We explain be-low the various node
types used in the Paragon and prcstmt thc hardware router design.

Thc architccttm: ofthe lntel Paragon system is shown in Fig. 7.23. This system was driven by applications
which require solving general sparse matrix problems, performing parallel data manipulation, or making
scientific predictions through simulation modeling.

These difiicult problems demand heterogeneous node types for numeric, service, I/O, and network
gateways, as dclrtonstrntod in the schcinatic diagram of the Paragon system. The rncsh architocttrrc of the
Paragon was divided into three sections.

The middle section, called the compute partition, is a mesh of numeric nodes implemented with lntel
iiifi-UXP microprocessors. This array bad an aggregate of 3.3 Gbyles oi" distributed memory.

The system had a potential performance of 5 to 300 Gllops collectively. This mesh architecture eliminated
the powcr-of-2 upgrade requirement of a hypercube architecture. All L"O was handled by the two disk L"D
columns at the left and right edges of the mesh. Each column was a 16 >< 1 array of l6 disk nodes. The
aggregate IFO bandwidth reached 48 Mbytes’s with a total of 214 Gbytes per disk U0 column.

J1? lmrJI||r_.u|n¢\

Muitiproceson and Muttioomputers i 3 ni

Cctrnputa F'a|1iIion _|i'_d_i
: Patiticrn Pa-tition Subwfiteml

1 scs| Co = - --- = SCSI
-Q-1'!‘ Node I. ~15’: - Nudge III Node

H‘|F"F'| |'|1p|_| |'|1|;| "" ampuEIIIIIIII Neda
4‘

:::si

--_---_---__---__-___l

IIl

"5.§!.i'==t?§
§-tsisiisills-»—§_@_si 1-;E----'

I:|gi_|5;

I I
‘I I
I I

Tap-as
I

HIPPI Compu amp "" ompu -= = SCSI INode Node II............
I--_I I I I I I I ‘___- I I I I I I I I I I I I I I I I I '_____ I I I I I I I______ I I I I I I I

I I I I I | I I

Fig. 7.23 The Inset Paragon system architecture {C-o1.|r|:esy -of lntel5 Systems Division. 1991)

The prooessors used in the L"O columns were Intel i386’s which supervised the massive data transfers
between the disk arrays and the computational array during U0 operations. The system L"U column was made
up of sir. sen-'ic'e norfas, two tape nodes, two Ethernet nodes, and a l-IIPPI node. The service nodes were used
for system diagnosis and handling of interrupts. The tape nodes were used for backup storage.

The Ethernet and HIPPI nodes were used for fast gateway connections with the outside world. Collectively,
a 17,000-MIPS perfo-rrnanee was claimed possible on the STU numeric and disk UD nodes involved in program
execution. The system was designed to run iPSCf36G-compatible software.
Node and Router Arehirecrure The Paragon was designed as an experimental system. One unit was
built and delivered to Caltoeh in May 1991 for research use by a consortium of 13 national laboratories and
universities. The typical node architecture is shown in Fig. 7.24.

Node Floating OtherBags I '°°‘B“’°"["ll ipnmiumis; omits; I

His

- - Local Externd
' Hemw we

Routa
(on baekplanai

Communication
cinannds

Fig.7.!-I Node arei1irecn.u'e -efdte Paragon muiricomp-u1:er

F?» Mtfiruw Hillrlimpwlnw

SIB i Advanced Canpln:erArchite-cture

Each node was on a separate board. For numeric nodes, the processor and floating-point units were on
the same iE6l] chip. The local memory look up most of the board space. The external Ht] interface was
implemented only on the boundary nodes with a computational array. The message U0 interface was required
for message passing between local nodes and the mesh network. The nwsh-connccrcd mnrcr is shown in Fig.
7.25.

[North]

To or from the
lo-c.al no-do

J= E Legends:
IC: lrput Controller

C I13 .[INQQ1] I!-I 5'?ffi,h' |-- FB:Fllt Buffer
ii-*5’ H IE3”

[So-tlh]

Fig. ‘L25 The stru-crure of a i‘I'l'E5l't~COi‘ltl‘l'BC136d rou1:er with four pairs of |l'C.'l channels connected to rlcighb-orlng
routers

Each router had ll) U0 ports, 5 for input and 5 for output. Four pairs of U0 channels were used for mesh
connection to thc four neighbors at thc north, south, cast, and west nodes.

Flow mm:-of digits (flits) buffers were uscd at the end of input channels lo hold thc incoming fills. Thc
concept of flits will be clarified in the next section. Besides four pairs of external channels, a fifth pair was
used for internal connection between the router and the local node. A 5 >< S crossbar switch was used to
establish a connection hctwccn any input channel and any output channel.

The functions of the hardware router included pipclined mcssagc routing at the flit lcvcl and resolving
buffer or channel deadlock situations to achieve deadlock-free routing. In the next section, we will explain
various routing mechanisms and deadlock avoidance schemes.

All the llfl channels shown in Figs. 7.24 and 7.25 are l'Jh__\-'siml' c'hannc'l's which allow only one message
(flit) to pass at a limc. Through limo-sharing, one can also implement 1-irrmti channels lo multiplex the use of
physical channels as described in the next section.

MESSAGE-PASSING MECHANISMS
_ Message piISS].l1g III a mulllcomputcr network demands special hardware and software

support. In this section, we study the store-and-forward and wormhole routing schemes and
analyze their communication latencies. We introduce the concept of virtual channels. Deadlock siulalions in
a message-passing network arc examined. We show how to avoid deadlocks using virtual channels.

J11 Incl'q||;1r|I¢-\

Mmltiprocesson and Multicomputers i 3 H

Both deterministic and adaptive routing algorithms are presented for achieving deadlock-free message
routing. We first study deterministic dimension-order routing schemes such as E-cube routing for hypeneub-es
and X-Y routing for two-dirnensional meshes. Then we discuss adaptive routing using virtual channels or
virtual subnets. Besides one-to-one unicast routing, we will consider one-to-many multieast and one-to-all
broadcast operations using virtual suhnets and greedy routing algorithms.

7.4.1 Message-Reuting Schemes
Message formats are introduced below. Refined formats led to the improvement Erum store-and-forward to
worrnhole routing in two generations ofmu lticomputers. A handshaking protocol is described for asynchronous
pipelining of successive routers along a communication path. Finally, latency analysis is conducted to show
the time difference between the two roofing schemes presented.

Ma.-sage Format: Information units used in message routing are specified in Fig. 7.26. Amessrige is the
logical unit for internode communication. It is often assembled from an arbitrary number of fixed-length
packets, thus it may have a variable length.

Mm-=@| | l l l
Pmfl// 1 1

l';@.i;@. In
R: Routlnglnfomadon
S: Sequence Number
D: Data only fills

F1g.‘l'.2i Theformatofmessage,pache|l:,a|1dfliu(oont.r\olflcwdifltshnedasirriormafiorluniuofcommunicadon
in a messagepasslng network

A packer is the basic unit containing the destination address for routing purposes. Because difierent
packets may arrive at the destination asynchronously, a sequence number is needed in each packet to allow
reassembly of the message transmitted.

A packet can be Further divided into a number offixed-lengtl1fl'iIs(flow control digits). Routing information
(destination) and sequence number occupy the header flits. The remaining fiits are the data elements of a
packet.

ln multicomputers with store-and-forward routing, packets are the smallest unit of information
transmission. In Wormhole-routed networks, packets are fitrther subdivided into fiits. The flit length is often
atfeetod by tl1e network size.

The packet length is determined by the routing scheme and network implementation. Typical packet
lengths range from 64 to 512 bits. The sequence number may occupy one to two flits depending on the
message length. Other factors afiecting the choice of packet and flit sizes include channel bandwidth, router
design, network traflie intensity, etc.

Stan:-and-Forwnrd Routing Packets are the basic unit of inforroation flow in asrom-mu’-forv.-amtnetwork.
The concept is illustrated in Fig. 127a. Each node is required to use a packet bufi'er. A packet is transmitted
from a source node to a destination node through a sequence ofintenncdiate no-ties.

Fr‘:-r Mtfiruw rrrrrr-...¢-,......¢. '
320 i Advanced Canpin:erArchirectuJ"e

When a packet reaches an intermediate node, it is first stored in the buffer. Then it is fonvarded to the next
node ifthe desired output channel a11d a packet buffer in the receiving node are both available.

The latency in store-and-forward networks is directly proportional to the distance (the number of hops)
between the sotuce and the destination, This routing scheme was implemented in the first generation of
multicomputers.

Wormhole Ruining By subtlividing the packet into smaller flits, latter generations of multicomputers
implemem the n-'orrnhoie muting scheme, as illustrated in Fig. ?.2’!b. Flit buffers are used in the hardware
routers attached to nodes. The transmission from the source node to the destination node is done through a
sequence of routers.

Sou reo No-do Destination Noel-s
I I I IG

lntarmodlato Nodes

[a] Store-and-fonvard routing using packet bufiors in suooasslvo nod-as

Sou nee Node Destination No-do

- I I I IIii I
lntomtodlat-a No-dos

[bi Wormhole routing using fllt buffers in suooesslvoroutors

Fig. 7.27 Store-mid-forward routing and worrrrh-oi: routing {Courtesy of |_ionei Ni. 1991'}

All the flits in the same packet are transmitted in order as inseparable companions in a pipelined Fashion.
The packet can be visualized as a railroad train with an engine car (the header flit) towing a long sequence
of box ears {data fljts).

Only the header flit knows where the train {packet} is going. All the data flits [hos ears} must follow the
header flit. Different packets ean be interleaved during transmission. However, the flits fi'om diflhrcnt packets
cannot be mixed up. Otherwise they may be towed to the wrong destinations.

We prove below that wormhole routing has a latency almost independent of the distance between the
source and the destination.
Jlryndrmnous Pipelining The pipelining of successive flits in a packet is done asynchronously using a
handshalring protocol as shown in Fig. 7.23. Along the path, a 1-bit rennf-,-freqiresr {FHA} line is used between
adjacent routers.

When the receiving router {D} is ready (Fig. 123a) to receive a flit (i.e. the flit buffer is available), it pulls
the RJA line low. When the sending router (S) is ready (Fig. 7.2Sb), it raises the line high and transmits flit i
through the channel.

While the flit is being received by D (Fig. 7.281;). the RM line is kept high. After flit r' is removed from
D's buffer (i.e. is transmitted to the next node) {Fig 128-d], the cycle repeats itself for the transmission of the
neat flit i + 1 until the entire pac-1.-tet is transmitted.

Mu\ltipruoesso.r: and Multicwnpmrs 32'

Router S Router D
_ "’_’°*l_‘°“'l .R‘*§_l'"‘:-“"2-..

Channel
[af|Dlsroad'ytoreoalveafllt [tr]Slsreadytose1'|dflltr'

R.I'A{hlg1[| PM Howl

{c} Fllt 1' ls received by D {d] Fllt its removed from D's butter and fllt 1' + 1
arrlves at S's bufisr

Fig.7.2l I-tan-dd-making protocol bmveen two uornrhole routers {Cour-may of Lionel N1. 1991}

Asynchronous pipelining can be very effieient, and the clock used can be faster than that used in a
synchronous pipeline. However, the pipeline can bc stalled if flit buffers or successive channels along the
path are not available during certain cycles. Should that happen, the packet can be buttered, blocked, dragged,
or detoured. We will discuss these flow control methods in Section 14.3.
Latancylinnlysis A time comparison between store-zmd-forward and wonnhole-routed networks is given
in Fig. "L29. Let L be the packet length (in hits), W the eharmel bandwidth {in bitsfs), D the distance (number
of nodes traversed minus 1). and F the flit length [in bits).

T3; -
Lrw

"1 Data
4---—-*-%~2 ,|:13Ir:1 D

Na header Packet |:|j:|:|:| L

N4

I‘ TIITIB
{aj Store-and-tonvard ro uting

TWH
LIIN

N1

"2 l:|:|:l:l:| D
"E l:|:l:l:|:]It Emmi

i"lime
{ajr Wormhole routing

Fig.‘l'.29 Tlrne cornparlson between the two revurlng eechnlqoes

Fr‘:-r Mflirpw H["l'm'l!I||(1rlnr\ '
322 i Advanced Computter Arch-itecture

The communication latency T3,. for a store-and-forward network is expressed by

To = (D +11 no
The latency Tm, for a wonnhole-routed network is expressed by

L F
Tip” = Hf -l- F X D

Equation 7.5 implies that Iv is directly proportional to D. In Eq. 7.6, T“.-H = Lfli’ ii'L ;>;> F. Thus the
distance D has a negligible effect on the routing latency.

We have ignored the network startup latency and block time due to resource shortage (such as channels
being busy or buficrs being full. etc.) The channel propagation delay has also been ignored because it is much
smaller than thc terms in Tit.‘ or Tm,-.

According to the estimate given in Table 7.1, a typical first generation value of l":,~,t- is between 2000 and
6000 us, while a typical value of Tm, is 5 ,us or less. Current systems employ much faster processors, data
links and routers. Both the latency figures above would therefore be smaller, but worrnhole routing would
still have much lower latency than packet store-and-forward routing.

1.4.1 Deadlock andifirtual Channels
The communication channels between nodes in a wormhole-routed multicomputer network are actually
shared by many possible source and destination pairs. The sharing of a physical channel leads to the concept
of virtual channels.

We introduce below the concept and explain its applications in avoiding deadlocks in this section and in
facilitating network partitioning for multicasting in Section 7.4.4.
Virtual Channel: A virtual channel is a logical link between two nodes. It is formed by a flit buffer in
the source nodc, a physical channcl between thcrn, and a flit buflbr in thc receiver node. Figure 7.30 shows
the concept of four virtual channels sharing a
single physical channel. _? U _,__

Four flit buffers are used at the source node L
and receiver node, respectively. One source
buffer is paired with one receiver bufferto form ___? I] U ___
a virtual channel when the physical channel is L
allocated for the pair. pWsm|

In other words, the physical channel is time- f Chflflflfll U
shared by all the virtual channels. Besides the ’
buffers and channel involved, some channel
states rnust be identified with different virtual T
channels. The source buffers hold fiits awaiting _";_ El _"
use of thc channel. The rccciver hufibrs Fm buffets |,-, Fm bluffgfig in
hold flits just transmitted over the channel. Wt“ "Q49 '-‘*5-‘""31im "$19
The channel (wires or fibers) provides :1 F}g_-mu Fm“, wfiufl mamas Shams 3 Pays,Q1 (hams
communication medium between them. Mm firm mumpyexmg on 3 fl|t_b,y_fm has

' Ifllli lm'rIq|r_.\.I|n*\ _

Multipuuneson and Multicwnputars i. 323

Comparing the setup in Fig. 1.31] with that in Fig. 123, the difference lies in the added bufihrs at both
cnds. Thc sharing of a physical channel by a set of virtual chatmcls is conducted by t'u:nc-multiplexing on a
flit-by-flit basis.

Q)
As illustrated in Fig. 7.31, two types ofdcadluck situations am caused by a circular wait at bttffcra or channels.
A brgfer timdlnck is shown in Fig. 7.3 la for a store-a11d-forward network. A circular wait situation results
from four packets oecupyiiig -Four buffets in four nodes. Unless one packet is discarded or misrouted, the
deadlock caunntbc broken. In Fig. 7.3 lb, admnne] riearilnck results fium four messages being sixnultanouusly
transmitted along four channels in a mesh-connected network using Wormhole routing.

EIEIEIEIIEI
Nocleflt Node D

No-do B Node C

Packet Buffer
ll IEIEIIEIEIEI

{aj Buffer clmdiock among four no-clos with store-and-forwarcl routing
Massage 3

Rants; A i o-daA ode D

Example 1.3 The deadlock situations caused by circular
waits at buffers or at channels

Message 4 mam Route-r D

I‘fi4|:| m2|:|
‘ odefl odsG

Rotter B MU
Message 2

Flli buffer Massage 1 Router C

[D] Channel dead lock among bur nodes with an-rmhote routing; shaded boxes are fllt buffers

Fig. ‘L31 Deadlock situations caused by a circu'lar wait at buffers or at no|'r|n'i1.|-nicadu-n channels

Fr‘:-r Mcliruw stilt-...¢-...,“. '
324 i Advanced Canpucer Architecture

Four iiits From four messages occupy the four channels simultaneously. if none of the channels in the
cycle is freed, the deadlock situation will continue. Circular waits are finthcr i.llusttatod in Fig. 7.32 using a
chtmnef- tfqriemzlencc grqrih .

The channels involved are represented by nodes, and directed arrows are used to show the dependence
relations among them. A deadlock avoidance scheme is presented using virtual channels.

Deadlock Avoidance By two virtual channels, IQ and V4 in Fig. 7.3I.c, one can break the deadlock
cycle. Amodified channel-dependence graph is obtained by using the virtual channels V3 and P}, after the use
ofchanncl C1, instead ofreusing C3 and C4.

The cycle in Fig. 7.32b is being converted to a spiral, thus avoiding a deadlock. Channel multiplexing can
be done at the flit level or at the packet level if the packet length is sufficiently short. ‘virtual channels can be
implemented with either un idireetioml ehminels or bitfireetiorml c-hnrinels.

o ° o Q
C2 @

[3] -Chan nol dgadinink [bi Channel-dependence graph containing a cycle

C

053 e
cw v3 ca Q @

o C2 0 e
Q1

[cl Aeidingtwo virtual channels {V3, V4] [ell A modified chamel-dependence graph using thovirtua channels

Fig. 1.31 Deadlock avoidance using virtttai channels no convert a cycle to a spiral on a charmci-dependence
8*'3P'i"

The use of virtual channels may reduce the effective channel bandwidth available to each request. There
exists a hadeoff between network throughput and oonttnunication latency in determining the degree of using
virtual channels. High-speed multiplexing is required for implementing a large number ofvirtual channels.

7.4.3 Flow Control Strategies
In this section. we examine various strategies developed to control smooth network iraffic flow without
causing congestion or deadlock situations. When two or more packets collide at a node when competing for
buffer or channel resources, policies must be set regarding how to resolve the conflict.

Based on these policies, we describe below deterministic and adaptive routing algorithms developed for
one-to-one i.e. unicast communication.

J11 IlN‘HI|l(1|1lf\ _

Multiprocessor: and llllultirornp-uter‘: F 325

Pocket Collision Resolution ln order to move a flit between adjacent nodes in a pipeline of‘ channels, three
elements must he present: [1] the source buffer holding the flit, (2) the channel being allocated, and (3) the
receiver buffer accepting the flit.

When two packets reach the same node, they may request the same receiver buffer or the same outgoing
channel. Two arbitration decisions must be made: (i) Which packet will be allocated the channel? and (ii)
What will he done with the packet being denied the channel? These decisions lead to the four methods
illustrated in Fig. 7.33 for coping with the packet collision problem.

Figure 7,33 illustrates four methods for resolving the conflict between two packets competing for the use
of The satne outgoing channel at an intermediate node. Packet l is being allocated the channel, and packet 2
heing denied. A hsyjii-ring method has been proposed with the virtual cu!-through nisring scheme devised by
Kermani and Kleinrock (l9?9).

Packet 2 is temporarily stored in a packet buffer. When the channel becomes available later, it will be
ttansrnittcd thccn. This buffering approach has the advantage of not wasting the resources already allocated
However, it requires the use of a large buffer to hold the entire packet.

Furthermore, the packet b~ufi‘ers along the communication path should not form a cycle as shown in
Fig. 7.31 a. The packet buffer however may cause significant storage delay. The virtual cut-through method
-oflicrs a cornprornise by combining the store-and-forward and wonnhole roofing schemes. When collisions
do not occur, the scheme should perform as well as Wormhole routing. in the worst case, it will behave like
a store-and-forward network.

Pure wormhole routing uses a blocking policy in case of packet collision. as illustrated in Fig. ’!.33b. The
second packet is being blocked from advancing; however, it is not being abandoned. Figure 7.331.: shows the
disttirrf policy, which simply drops the packet being blocked from passing through.

The fourth policy is called dfffillr (Fig. 133d). The blocked packet is routed to a detour channel. The
blocking policy is economical to implement but may result in the idling ofresources allocated to the blocked
packet.

Packet 1

Q 'ULlT'J<>i"Q Control Pa-t:ket1
packet 2 buffer channel r 1

Packet huffe-r packet 2 @ I

[aj Buffering In virtual out-through routing [D] Blocking flow oontrol

P3“ ml 1 Detour char: nol Packet 1

Q I‘ --Packet 2 E a I Once-ins
Packet 2 channel

[cl Discard and retransmission [d] Detour after being mooted

Fig. 7.33 Fiow control rnethocts for resolving a collision between two pac-lneia requesting the same outgoing
channel (pecllet 1 being aiiocancd the dwslei and paellet '1 being denied}

F?» Mtfirnw ,dd"I_nlfJ|||;ltlII'\

32¢» i Advnrxed cimpt-to Architecture

The discard policy may result in a severe waste of resotuces. and it demands packet retransmission and
acknowledgment. Otherwise, a packet may be lost afber discarding. This policy is rarely used now because of
its unstable packet delivery rate. The BEN Butterfly network had used this discard policy.

Detour routing offers more flexibility in packet routing. l-lowever, the detour may waste more channel
resources than necessary to reach the destination. Ftutltemtore, a re-routed packet may enter a cycle of
lit-'elot~l:, which wastes network resources. Both the Connection Machine and the Dcnelcor HEP had used this
detour policy.

in practice, some multicomputer networks use hybrid policies which may combine the advantages ofsome
of the above flow control policies.

Dilnensiorr-Order Rn uting Packet routing can be conducted deterrninistically oradaptively. lrtdererrrtin isfic
roaring. the communication path is completely detemtined by the source and destination addresses. ln other
words, the routing path is uniquely predetemnned in advance, independent of network condition.

Adnyiriw muting may depend on network conditions, and alternate paths arc possible. In both types of
routing, deadlock—fi'ee algorithms are desired. Two such deterministic routing algorithms are given below,
based on a concept called dirrionsion orrier rourirlg.

Dimension-order routing requires the selection of successive channels to follow a specific order based on
the dimensions of a multidimensional network. In the case of a two-dimensional mesh network, the scheme
is called X-l’ retiring because a routing path along the X-dimension is decided first before choosing a path
along the Y-dimension, For hypercube [or n-cube) networks, the scheme is calledE-cnixr routing as originally
proposed by Sullivan and Bashltow (1977). These two routing algorithms are described below by presenting
examples.
E-cube Routing on Hyjsortube Consider an n-cube with N = 2” nodes. Each node b is binary-coded as
in = in" 1b,, 2 iil]iJ|:|. Thus the source node is s = s,, 1 s|.sD and the destination node is rl'= if" | ofidu. We
want to determine a route from s to ifwith a minimum number of steps.

We denote the n dirncnsions as i = 1,2, ..., n, where the ith dimension corresponds to the (i l)st bit in the
node address. Let \-' = t-',, | . . . t-‘[1-'0 be any node along the route. The route is uniquely deterrniricd as follows:

l. Compute the din:-ction bit r,= s,- |$ ti’, | for all rr dimensions (r'= 1, ..., nj. Start the following with
r.limensionr'= l and \-' =s.

2. Route from the current node t- to the nest node \-' EB 2' ' ifr, = l . Skip this step ifr, = D.
3. Move to dimension r'+ 1 {i.e. i<— i+ l). li'i£ rr, go to step 2,clsotlonc.

Iv)
El Example 1.4 E-cube routing on a four-dimensional

hypercube
The above E-cube routing algorithm is illustrated with the example in Fig. 7.34. Now n = 4, s = 0110, and
rf= lllll.Tl1t1sr=r,|r3r2r1= 1l]Il_Route fi‘0m.stos@2n=Ulll since r, =oo | = l.Route fromt-'=l)1ll
to v$ ll = Clllill since r2 =1 &l D= 1. Skip dimension r'= 3 because r3 =1EBl= D. Route from v = D101 to
11$ 13= llill =o'sinc-l: r_|= l.

rm Mrliruw Hill ' :tmt-:-m.u||n

Moitiprucesson and Multicmnputers i 321

ellm 2 mm 3

S-euros: s=G11D
Destination: d=11G1
Route:
G110->Ct111-10101-@1101elmi

elm-t

G110 0111 1110 1111

' 2 Q "M ‘FH | |

100. D101 I 1101

7E’ 1"?‘I om I mm 1001
GOOD "

Fig. 7.34 Ecube muting on a i1}I'pE1‘C||.dJ|E computer with 16 nodes

The route selected is shown in Fig. 7.34 by arrows. Note that the route is detmnjned from dimension 1
to dimension 4 in order. If the ith hit of s and d agree, no routing is needed along dimension i. Otherwise,
move fnum the current node to the other node along the same dimension. The procedure is repeated until the
destination is reached.

X-Y Routing on n ID Mesh The same idea is applicable to mesh-connected networks. X-Y routing is
illustrated by the example in Fig. 7.35. From any source node s = (x|_}=|] to any destination node n‘ = {I2}-'1},
mute from s along the X-axis first until it reaches the column 1'2, when: d is located. Then route to dalnng
the Y-axis.

There are four possible X-Y routing patterns corresponding to the east-north, east-south, west—norti1, and
west-south paths chosen.

I»)
g Example 1.5 X-Y routing on a 2D mesh-connected

multicomputer
l-‘our [so1.n'ce, destination) pairs are shown in Fig. 7.35 to illustrate the four possible routing patterns on a
two-dimensional mesh.

Par MIGIITLH HI" l'mrJI||r_.u|i¢\ :

328 i Advanced CanputterArcl1-itedwe

An east-north route is needed fiom node (2,1) to node (7.6). An east-south route is set up from node (11,?)
to node (4,2). A west-south route is neecled from node (5,4) to [2,0]-. The fourth route is west-north bound
from node (6,3) to node (1,5). lf the X—dimension is always routed first and then the Y-dimension, a deadlock
or circular wait situation will not exist

ind {yd {ad {ad fled lsfl |sfl |tr

ljiliiilfiilsilél E_?_iE§i~§i-IE1 1;.~.~2<=.§l'|

13,51 |4,5| I55‘ ‘B51 [I5
' F

3.4 4,4 5.4 ‘G311 T,4
Ll-ssssss

1 did fled dad fled #11

isn| |4n] |so| |snj [re'-C

Four tsouroantlostlnatloni pairs: [2,1;7,6}%- (D,?;4,2}—|- [5,4;2,0}—z> (6,311 ,5}----

Fig. 7.35 X-Y rourtngonallfi mesh corripurervidrltfl :-<3 = 154 nodes

It is left as an exercise for the reader to prove that both E-cube and X-Y schemes rcsult in deadlock-fi'oe
routing. Both can be applied in either store-and-forward or worrnhole-routed networks. resulting in a minimal
route with the shortest distance between source and destination.

However, the same dimension order routing scheme cannot produce minimal routes for torus networks.
Nonmininial routing algorithms, producing deadlock-free routes, allow packets to traverse through longer
paths, sometimes to reduce network traflic or for other reasons.
Adoptive Routing T'he main purpose of using adaptive routing is to achieve cfficiency and avoid deadlock.
The concept of virtual channels makes adaptive routing more economical and feasible to implement. We have
shown in l-‘lg. "L32 how to apply virtual channels for this purpose. The idea can be further extended by having
virtual channels in all connections along the same dimension ofa mesh-connected network (Fig. I36}.

Multiprocessor: and Mutticorriputers 3“

HIHIE HIHIE
HIE-H H-H-H
HIE-E EIEIE

[a] Original mosh without virtual channel tn; Tm pairs of vinuai channels In Y-dimension

qlfilg %lHlF
HIHIF qlHlF
M E E E E E

(c] For a westbound message [ct] For an eastbound message

Fig.7.!-5 Adaptive K-Y routing using virtual channels co avoid deadloclconly westbound and eastbound tralllc
are deadiociofree {Courtesy of |_icmd Ni. 1991]

This example uses two pairs of virtual channels in the Y-dimension of a mesh using X-Y routing.
For westbound traffic, thc virtual nenvork in Fig. 7.36c can be used to avoid deadlock because all eastbound

X-channels are not in use. Similarly, the virtual network in 1-'ig. 136d supports only eastbound traffic using
a different set of virtual Y-channels.

The two virtual networks are used at different times; thus deadlock can be adaptively avoided. This concept
will be titrtlicr elaborated for achieving dcadlockfree multicast routing in the next section.

Example 1.6 Adaptive X-Y routing using virtual channels

7.4.4 Multicast: Routing Algorithms
Venous communication patterns are specified below. Routing efficienc-y is defined. The concept of virtual
networks and network partitioning are applied to realize the complex communication pattems with efficiency.

Communication Pattern: Four types of communication pattcms may appear in multicomputer networks.
What we have implemented in previous sections is the one-to-one unieast pattern with one source and one
destination.

A mnirimo pattem corresponds to one-to-many communication in which one source sends the same
message to multiple destinations.

A iJJ't'Jfl£iC'flS‘f pattcm corresponds to the case of one-to-all cornrnunication. The most generalized pattern is
the many-to—manv cnnji-rence communication.

rs» Mam-w trrtti-...¢-,.a,i.¢. '
3340 i Advanced Canptnernrdritectutc

tn what fellows, we consider the requirements for iniplementing multicast, broadcast, and conference
communication pattems. Of course, all patterns can be implemented with multiple unicests sequentially, or
even simultaneflusly if resource conflicts can be avoided. Special routing schemes must he used to implement
these muiti-destination patterns.
Routing Eflildency Two eomrnnnly used eflieiency parameters are chartrtei bnmftt-'r'dt:h and ccmnwn icoriort
hi.reric_7t-'. The channel bandwidth at any time instant (or during any time period) indicates the effective data
transmission rate achieved to deliver the messages. The latency is indicated by the packet transmission delay
involved.

An optimally routed network should achieve both rnasimutn bandwidth and minimum latency for the
cornmunication patterns involved. However, these two parameters are not totally independent. Achieving
maximum bandwidth may not necessarily achieve minimum latency at the same time, and vice verse.

Depending on the switching technology used, latency is the more important issue in a store-and-i‘orwarnl
network, while in general the bandwidth affects efficiency more in a worrnhole-routed network.

I»)
8! Example 1.1 Multicast and broadcast on a mesh-connected

computer
Multicast routing is implemented on a 3 >< 3 mesh in Fig. 137. The source nude is identified as S, which
transmits a packet to five destinations labeled D, for i = 1, 2, ..., 5.

EIEI EU
DEM |:|a|
maefo ntaam
ta} Five unicasts with traffic = 13 tin) Amuiticast pattern with traffic = ?

and distance = 4 and distance = 4

DE H
|:|i:i|:i IE
HE: IIEI

(cl Another muiticast pattern with tn} Broadcast to ail nodes via a tree [numbers
trafflc = 6 and distance = 5 in nodes correspond to levels of the tree)

titii

Fig. 1'. 31' Multiple unicasts, rnuirimst: patterns. and a broadcast tree on a 3 x 4 mesh cornputer

J11 rum-“mars _

Multiprocessor: and tllluiticorrtputetu i 3:"

This five~destinalion tnulticast can be implemented by five unicasts, as shown in Fig. 7.371 The X-Y
routing trafiic requires the use of 1 + 3 + 4 + 3 + 2 = 13 channels, and the latency is 4 for the longest path
leading to I13.

A multicast can be implemented by replicating the packet at an intermediate node, and multiple copies of
the packet reach their destinations with significantly reduced channel traffie.

Two rnulti-cast routes are given in Figs. 'i'.37b and 'i".3?c. resulting in iraific of 7 and 6. respectively. On a
worniholc-routed network, thc multicast route in Fig. 'i'.3'i'c is better. For a store-and-forward network, thc
route in Fig. ’i'.3Tb is better and has a shorter latency.

A four-level spanning tree is used from node S to broadcast e packet to all the mesh nodes in Fig. 7.37d.
Nodes reached at level 1' of the tree have latency F. This broadcast tree should result in minimum latency as
well as in minimum traffic.

I»)
62] Example 7.8 Multicast and broadcast on a hypercube

computer
To btoadcast on an n~cube, a similar spanning tree is used to reach all nodes within a latency of n. This
is illustrated in Fig. 7.3-Ba for a 4-cube rooted at nude GOOD. Again, 1'nini.t:nu.m traffic should rcsult with a
broadcast tree for a hypercube.

0110 D111 1110 1111

s '\
s

3 Q _L

,1 Ir I.» I
0010 I U-D11 101 1 19111

0100 1100 1101

\
\. '\ I

nam *'mm tam 1aa1

[a1 B-roactcasttraa fora 4-cube rooted at nodaflfltlo

114} 9111 1110 1111

0011 "
“"0 1011

IIIIt—--—t--IIII| III '|éi: Q-i---\\:\

3|

____;t{___

I I I I I I I
0010

691°“ 1101
"mp1 1100 i __.-"

we 15.;“““"@‘°°‘
[bi A rnuttieast tree from no-no G101 to seven destination no-do-s

11aa,o111,1a1a,111a,1a11,1aoa,=.ma D011}

Fig. 7.38 Breadeasttree andmuiricast: tree one 4-cube usinga greedy aigcridim (Lari. E<a‘ai'mia|'t.a|'td I\Ii.‘l9'9D}

Ft‘:-r Meow-as rrrttr-...¢-,.w..¢. '
332 i Advanced Cnmputtar Architecture

A greedy multicast tree is shown in Fig. 7.38]: for sending a packet from node {1101 to seven destination
nodes. The greedy multieast algorithm is based on sending the packet tlrrough thc dimensionlsj which can
reach the most number of remaining destinations.

Starting from the source node S = 0101, there are two destinations via dimension 2 and five destinations
via dimension 4. Therefore, the first-level channels used are 0101 —> 0| ll and 0101 —> I 101.

From node 1101, there are three destinations reachable in dimension 2 and four destinations via dimension
1. Thus the second-level channels used include I101 —> I111, lllll —> HDO, andfllll —> D110.

Similarly, the remaining destinations can be reached with tl1irr.l-level channels ll ll —-3» 1110, llll—-9 lfll 1,
1100 —> 1000, and UIIU —> 0010, and fourth-level channel 1110 —>llIIIO.

Extending the multicast tree, one should compare the reaehabilitv via all dimensions before selecting
ccrtain dimensions to obtain a minimum eover set for the nodes. In case of a tic between two
dimensions, selecting any one of them is suffieient. Therefore, the tree may not be uniquely generated.

It has been proved that this greedy multicast algorithm requires the least number of traffic channels
compared with multiple unicasts or a broadcast tree. To implement multieast operations on wormhole-routed
networks, the router in each node should he able to replicate the data in the flit buffer.

ln order to synchronize the growth ofa rnultieast tree or a broadcast tree, all outgoing channels at the same
level of the tree must be ready before transmission can be pushed one level down. Otherwise, additional
buffering is needed at intennediate nodes.
Virtual Network: Consider a mesh with dual virtual channels along both dimensions as shown in
Fig. 7.39s.

These virtual channels can be used to generate four possible virtual networks. For west-north uatfie, the
virtual network in Fig. '?.39h should he used.

E!tr-5in=E
|-I-I u-I 21
Pi PiH HI
u-I u-I
Pj PiEl!fl""fl

-[af|A dual-channd 3 >< 3 mosh

U2 ‘l2 22 U2 12 22 D2 12 22 CI2 12 22

DU 19 BU E0 10 20 CO 10 20 CID 10 20

(tn WB5t—rtorlh suhrtai {cl East-no rlh sulztrtstt tdl West-south we net tell EH51-wvlh wheat

Fig. 7.3! Four vlrrtral nennoflts irnplornertrahle from a dtral-chann-at mesh

FM Altliruw Htllr 'm-ltlgtnrlitt _

Multiprocessor: and Multicorrtputers i 333

Similarly. one can consouct three other virtual nets For other traflic orientations. ‘Note that no cycle is
possible on any of the virtual networks. Thus deadlock can be completely avoided when X-Y routing is
implemented on these networks.

If both pairs between adjacent nodm are physical channels, then any two of the four virtual networks can
be simultaneously used without conflict. If only one pair of physical channels is shared by the dual virtual
channels between adjacent nodes, then only (bj and (c) or [_e) and {d} ean be used simultaneously.

Other combinations, such as (b) and (c), or {bl and (ti), or lc) and le), or (d) and (c), cannot coexist at the
same time due to a shortage of channels.

Obviously, adding channels to the network will increase the adaptivity in making routing decisions.
However, the increased cost can be appreciable and thus prevent the use of redundancy.
Network Partitioning The eoneept ofvirtual networks leads to the partitioning ofa given physical network
into logical subnetworks for multicast communications. The idea is illustrated in Fig. 7.40.

West East
Jt J.

f 1 F N

” 0,5 1,5 2,5 3,5 4,5 5,5 6,5 1,5 3

13,4 1,4 2,4 3,4 4,4 5,4 15,4 1,42
North -< > North

o,3 1,3 2,3 3,3 4,3 5,3 es 1,3

: o,2|-—{1,2|-—{2_,2l-—|3__2l-—|4.2|—>] 5,2|—-| 5;; l—>{r,2_ _,

Sou,h_4 0,1}-l1,1|-l2,1|<-|3,1]<-|4_1|->|5,1|->-|5,1|-{1,1 >- Sam

g -3,0 1,0 2,0 3,5 4,0 5,0 so 7,0 _,
k J‘ k JT Y

West East

Fig. 7.-I'll Parddonlng ofa 6 x B mesh lnro four subne-rs for a l't1L|tltiC35t frorn source no-do {-L2}. Shade-cl nodes
are along the b-ournhry ofadlaeenr subne1's{Ccurnosy of Lin. Mel(lnly: and NL1991}

Suppose source node (4, 2} wants to transmit to a subset ofnodes in the I5 >< 8 mesh. The mesh is partitioned
into four logical subnets. All trafi‘ic heading for east and north uses the subnet at the upper right corner.
Similarly, one constructs three other subnets at the remaining corners of the mesh.

Nodes in the fifth column and third row are along the boundary between subnets. Essentially, the tralfie
is being directed outward from the center node (4, 2). There is no deadlock if an X-Y multicast is performed
in this partitioned mesh.

Similarly, one can partition a binary mcube into 2" 1 subcubes to provide deadlock—free adaptive routing.
Each subcube has n + I levels with 2" virtual channels per level for the bidirectional network. The number

n-alromw Hllliornoorin-r l
334 ‘=‘i"“ Advanced Computer .-ltrchitscturs

of required virtual channels increases rapidly with rt. It has been shown that for low-diniensional cubes
{n = 2 to 4), this method is best for general-purpose routing.

ti“ Summary
t.

ln a multiprocessor system. interconnects between sub-systems such as processors. memorim and
network controllers play a crucial role in determining system pe|"for'rrnnce.The earliest multiprocessor
systerns were bus-based. with shared main rnemory.The bus is a simple interconnect but it has limitations
in scalability Hierarchical bus systems can address the problem to a limited extent. but as systems grow
larger". more sophisticated and scalable system interconnects are needed.

A network may be of blocking or non-bloc-king qvpe.We studied the crossbar network and the basic
dmign of a row of crosspoint switches, with its arbitration and multiplmter modules.While it has better
agregate bandwidth than the bus. the crossbar network also has limitations of scalability. Multi-port
memory can be used to enhance the aggregate bandwidth ofa memory module.

We studied Omega and Butterfly multistage networks. Larger Omega networks can be built using 2.22
and 4x4 basic switches. while die Butterfly network is built from modules of crossbar swit:ches."Nh-en
network traffic is non-unlfotrrtso-called‘hot-spots’ may develop which may degrade network performance.
The concept of combining networks was developed in an attempt to address this performance limitation.

We studied the related issues of maintaining cache coherence and synchroni1ntion.Write operations
on shared cache data. process migration and HO operations can cause loss of cache coherence. If all the
cadies are on a common bus. then the snoopy bus protocol can be used to maintain cache coherence.
Directory-based cache coherence protocols—using full map. limited or chained directories—can be used
on more general types of system interconnects. Details of the schemes vary between write-back and
write-thnough types of cache.

Hardware synchronization mechanisms between processors make use of atomic operations typified
byTest3tSet. However. at a still lower level of hardwane. in theory wired barrier synchnonization can also
be used. of which we saw examples.

Three early generations of multicomputer systems were studied. providing a pictune of how
multicomputer anchitecture has evolved over time. Broadly. the trend has been from expensive to low
cost processors. from shared to distributed memory. and [with higher‘ speed processors} to higher speed
int:e|'connects.lNe studied the Intel Paragon system as a specific example. laying the basis to review more
recent advancm in Chapter 13.

Message-passirtg communication uses networks of point-to-point links. the basic aim of routing
protocols being to achiew: low network latency and high bandw'idth.W'e studied the typical formats
of messages. packets. and flies (flow control digits); roofing schemes were studied from the points of
view of latency analysis and the avoidance of ddlocks.\Ne examined the important concepts of virtual
channels. worrnhole routing. flow control. collision resolution, dimension order routing. and rnulticast
communication.

TM Hnffirnil-' Hliilfmminnm
Mrrrltiprucessers and Muiti<:orr|puters '3' 335

3
Exercises

Problem 7.1 Consider a multiprocessor with
n procssors and m shared-memory modules. all
connected to the same baclcplane bus with a central
arbiter as depicted below:

< Data Transfer Bus >

Selected Request

Add ress Bus

Assume m > n and all memory modulesare equally
accessible to chprocessor. In other words. each
processor generates a request for any module with
probability 1im.The address bus and the DTB can
be used at the same time to serve different requests.
Both buses take one cyde to pass the address of a
request or to transfer one word of 4 bytes between
memory and processor. At each bus cycle {F}. the
arbiter randomly selects one of the requests from
die processors.

Once a memory module is identified at the
end of the address cyde (one bus cycle}. it takes a
memory cycle {which eq|..rals c bus cycles) to retrieve
the addressed word from the memory module.
and another bus cycle to transfer dwe word to the
requesting processor via the data transfer bus.

Until a memory cycle is completed. the arbiter
will not issue another requst to the same module.
All rejected requests are ignored and resubmitted in
subsequent bus cycles until being selected.

{a} Calculate the memory bandwidth defined
as die average number of memory words
transferred per second over the DTB if n = B.
m =16.r=1fl ns.andc- t=8r=B0 ns.

(bl Calculate the memory utilization defined as
the average number of requests accepted by
all memory modules per memory cycle using
dwe same set of parameters used in part |[a).

Problem 7.2 Use two-inputAND and OR gates
[no wired-OR} to construct an n >< n crossbar switch
network between n processors and n memory
modules. Let the width of each crosspoint be w bits
(or a word} in each direction.

{a} Prepare a schematic design of a typical
crosspoint switch using Cf]; as the enable signal
for the switch in the ith row and jth column.
Estimate the total number ofAND and OR
gates needed as a function of n and w.

(b) Assume that processor P; has higher priority
over processor P]. if i < j when they are
competing for access to the same memory
module. Letk = log n be the address width.
Design an arbiter whidw generates all the
crosspoint enable signals cg. again using only
two-input AND and OR gates and some
inverters if needed. The memory address
decoder is assumed available from each
processor and thus is not included in the
arbiter design. Indicate the complexity of the
arbiter design as a function of n and it.

Problem 7.3 Consider a dual-processor [P1
and P2) system using write-back private caches
and a shared memory. all connected to a common
contention bus. Each cadwe has four block frames
labeled below as Cl. 1. 2. 3.

FM Illnffirm-H Hiilllimnponm
3“ i

Proc-es_so|'1 E

NeCache 1

Bus

The shared memory is divided into eight cache
blocks as 0. 1. ..., 7.To maintain cache coherence.
the system uses a dwree-state {P-.0. RVV. and invalid)
snoopy protocol based on the write-invalidate policy
described in Fig. 7.12b.

Assume the same clock drivs the processors and
dwe memory bus. W'ithin each cycle. any processor
can submit a request to access the bus. In case of
simultaneous bus requests from both processors.
the request from P1 is granted and P1 must wait
one or more cycles to access the bus.

In all cases. the bus allows only one transaction
per cycle. Once a bus access is granted. the
transaction must be completed before the next
request is granted.When there is no bus contention.
memory-access events from chprocessor may
require one to two cycles to complete,as specified
below separately:

' Read-hit in cache requires one cycle and no
bus request at all.

- Read-miss In cache requires two cycles
without contention: one for block fetdw and
one for CPU read from cache.

- Write-hit requires one cycle for CPU write
and bus invalidation simultaneously.

- Write-miss requires two cycles: one for
block fetch and bus invalidation. and one for
CPU write.

- Replacement of a dirty block requires one
cycle to update memory via the bus.

fa) In the case of bus contention. one additional
cycle is needed for bus arbitration in all the
above cases except a read-hit.

Cache 2

Advanced Computer Architecture

(i) Show how to map the eight cache blocks
to four cadre block frams using a direct-
mapping cadwe organization.

{ii} Show how to map the eight cache block
frames using a two-way set-associative
cache orgnization.

{b} Consider the following two asynchronous
sequences of memory-access events. where
boldface numbers are for write and the
remaining are for read.

Processor #1 :0.0.D.1.1.4.3.3.5.5.5
Processor #2 1 2.1.0.0.7.5.5.5.7.7.0

(i) Trace the execution of thae two sequences
on the two processors by enrecuting the
successive blocks. Both caches are initially
flushed {empty}. Assume a direct-mapping
organimtion in both caches. Indicate the
state (RO or RW} of each valid cache block
and mark cache miss and bus utilization
[busy or idle) in dwe block trace for each
cycle. Assume that the very first memory-
access events from both processors take
place in cycle 1 simultaneously. Calculate the
hit ratio ofcache 1 and cache 2. respectively

{ii} Assume a two-way set-associative cache
organization and a LRU cache block
replacement policy.

Problem 1.4 Consider the execution of 24 code
segments. S. dirough S14.followinga given precedence
graph on a multiprocessor with four processors and
six memory modules as shown below. Assume all
segments have the same gain size and execute with
equal time.'When two or more processors try to
access the same memory module at the same time.
the request of dwe lowest numbered processor is
granted and the rest of the requests are deferred to
later segment time steps.

A processor waiting from an earlier memory-
access rejection has seniority priority over new
requests to access the same memory module. No
processor should wait for more than three steps

rm rilcfirm-H Hiii ' ._:toeqiunnrs

Mrrvltijiarecessers -and Muvticwrrputers

to access any given memory module. Each code
segment takes a fixed unit time to access a memory
and to execute. Assume that the four processors are
syndwronized in each seg|'nent execution instruction
cycle.

9
$69

9
®® ®@®%

o e ego
eqeeeooo

o es
In some cases. a single segment may require access

to several memory modules simultaneously. Ignore
d'1e contention problem in d'1e interconnection
network. The four processors operate in l"1ll"1D
mode. and different instructions can be exeuited by
different processors during the same cycle.

‘What is the average memory bandwidth in words
per unit time?Try to achieve the minimum execution
time by maximizing the degree of parallelism at all
steps.

Note that at each step some of the memory
modules may be idle. The highat possible memory
bandwidth is six words per step. Some segments may
require a wait of no more than three steps before
gr'anting of the memory access requested. But such
a waiting period should be minimized.

Processor
Instr. P1 P; P3 P4

M. M. M.
M1 M1 M2 M1

M3 M3

M5 M3 M2 M.
|"’|1 Ma M2

M2 M1 M1
M. M5-5r"'.i="15'."‘.rE'"\.‘f‘r$.-"‘_l."

5a M2 M3
59 M1 M4 M4
5111 M1 M3 l"'|-1 M-1
511 M2 M4 Ms M1
51: M2 Ms Ms
513 M1 Ma
514 M4 Ms M4
515 M: M3 M3
51¢. M2 M1 M2 M4
51? M1
51a M2 Ms
519 M2 M2 M2 M1
520 M3 M: M4
521 M1 M4
512 M3 M1 Ms
511 M1 M1 Ms M3
524 M1 M4

Problem 7.5 This problem is based on Fig, 7.11
which combines multiple Fetch3rAdd requests to the
same shared variable in a common memory.

{a} Show the necessary combining network
components needed to combine four
Fetch&Add {x.e;} for 1' = 1. 2. 3.4.

{la} Show the successive snapshots and variations
in switch and memory contents.as in Fig. 7.11.
for combining the four requests.

Problem 7.6 You have learned about a two-way
shuffle {perfect shuffle) in Fig. 2.14 and a four-way
shufile in Fig. 7.9. Generalize the mappings to an
m-vvay shuffle over r1 objects. where m >< it = r1 for
some integer k 2 2. for the construction of the class
of Delta netvvorks introduced by Patel (1983).

{a} Show how to perform a four-way shuffle over
11 objects.

(b) Use a minimum number of 4 >< 3 switch
modules and a four-way shuffle mapping as
an interstage connection pattern to build a
64-input. 27-output Delta network in three
stages.

[c] In general. an n-stage 0" X b" Delta network
is implemented with 1:1 >< b switch modules as
shown in Fig. 123. Calculate the total number
of switch modula needed and specify the

TM Illnffirihlr Hiiifiurnpennri .
BF

interstage connection pattern from b" inputs
to 0" outputs.

(d) Figure out a simple routing scheme to control
the switch settings from stage to stage in an
0" >< b" Delta network with n stages.

{e} What is the relationship between Omega
networks and Delta networks?

Problem 7.7 Prove dwe following properties
associated with multistage Omega networks using
different-sized building blocks:

[aj Prove that the number of legitimate states
{connections} in a it ><k switch module equals
16*.

{bi Determine the percentage of permutations
that can be realized in one pass through a
64-input Omega network built with 2 I>< 2
switch modules.

[c] Repeat part [b] for a 64-inp ut Omega network
built with 8 >< 8 switch modules.

(d) Repeat part (b]- for a 512-input Omeg
network built with 8 >< 8 switch moduls.

Problem 7.8 Consider ti'1e interleaved execution
of k programs in a multiprogrammed multiprocessor
using m wired-NOR synchronization lines on n
processors as described in Fig. .7.19a.

In general.the number my of barrier lines needed
fora programiisestimated asmy= by[q;.iPy] + 1.where
by = the number of barriers demanded in program i.
qy = the number of processes created in program
i. and Py = dwe number of processors allocated to
programi.

Thus m = my + my + .. .+ my. For simplicity assume
by = band qy= qfori=1.2.....ic. and Py = min(nu'k.q}
processors are allocated to each program i.

Prove that m can be approximated by b - q -

kiln + it. or that the degree of multiprogramming is

it E j—n+.y|In2+4bqmr1jl{2bq]- in such a

multiprocessor system. Note that bq represents the
number of required synchronization points. which

Advanced Computer Architecture

depends on the parallelism profiles in user programs.
For fixed values of bq and n. the maximally allowed

multiprogramming degree k increases with respect

I0 .|lr-rr -

Problem 7.9 Wilson (1987) proposed a
hierarchical cachefbus architecture (Fig. 7.3) and
outlined how multilevel cache coherence can be
enforced by extending die write-invalidate protocol.
Can you figure out a write-broadcast protocol for
achieving multilevel cache coherence on the same
hardware platform? Comment on the relative
merits of the two protocols. Feel free to modify
the hardware in Fig, 7.3 if needed to implement the
write-broadcast protocol on dwe hierarchical bus!‘
cache architecture.

Problem 7.10 Answer the following questions on
design choices of multicomputers made in the past:

{a} Why were low-cost processors chosen over
expensive processors as processing nodes?

{bj Why was distributed memory chosen over
shared memory?

[c] Why was message passing chosen over
address switching?

{dj Why was l*'1ll"'lD. l"'1Pl‘-‘ID. or SPHD control
chosen over SIMD data parallelism!

Problem 7.11 Explain the following terms
associated with multicomputer networks and
rnessage-passing mechanisms:

{a} Message. packets. and fiits.
(b) Store-and-forward routing at packet level.
{C} ‘Wormhole routing at flit level.
{d} Virtual channels versus physical channels.
(e) Buffer deadlock versus channel deadlock
(1') Buffering flow control using viruual

cut-through routirg.
(gi Blocking flow control in wormhole routing.
(hi Discard and retransmission flow control.
(ii Detour flow control after being blocked.
(j) Virtual networks and subnetworks.

TM iirlcfimu-‘ Hillfiornpennri .
Multiprocessor: and Mu'lticorr|p~1rter's

Problem 7.11

(=1

{bi

(Ci

ldi

Draw a 16-input Omega network using 2 >< 2
switches as buflding blocks.
Show dwe switch settings for routinga message
from node 1011 to node 0101 and from node
0111 too node 1001 simultaneously. Does
blocking exist in this case-I’
Determine how many permutations ran be
implemented in one pass through this Omega
network.‘W'hat is the percentag of one-pass
permutations among all permutations?
What is t.he maximum number of passes
needed to implement any permutation
dwrough the network?

Problem 7.13 Explain the following terms as
applied to communication patterns in a message-
passing network:

la)
{bi
iii
id)
(El

Unicast versus multicast
Broadcast versus conference
Channel bandwidth
Communication latency
Network partitioning for multicasting
communications

Problem 7.14 Determine the optimal routing
paths in the following mesh and hypercube
multicompute rs.

iii

lb)

iii

Consider a 64-node hypercube network.
Based on the E-cube routing algorithm. show
how to route a message from node (101101)
to node (011010). All intermediate nodes
must be identified on the routing path.
Determine two optimal routes for multicast
on an 8 >< B mesh. subject to the following
constraints separately.The source node is
(3. 5). and dwere are 10 destination nodes
(1. 1). (1.2).(1.6).(2.1).(4.1). (5.5). (5.7). (6.1).
(7. 1). (7. 5). TI're first multicast route should
be implemented with a minimum number of
channels. (ii) The second multicast route
should result in minimum distances from the
source to chof the 10 destinations.
Based on the greedy algorithm (Fig. 7.38).

determine a suboptimal multicast route.with
minimum distances from tl'1e source to all
destinations using as few trafiic channels as
possible. on a 16-node hypercube network.
The source node is (1010). and there are
9 destination nodes (0000). (0001). (0011).
(0100). (0101). (0111). (1111). (1101). and
(1001).

Problem 7.15 Prove the following statement_s
with reasoning or analysis or counter-examples:

(a) Prove d'1at E-cube routing is ddlock-free
on a wormhole-routed hypercube with a pair
of opposite unidirectional channels between
adjacent nodes.

(b) Prove that X-T routing is deadlock-free on a
2D mesh.
Prove d'1at E-cube routing on the 3D mesh
(k-ary n-cube) used in the j-Machine is
deadlock-free with wormhole routing and
blocking flow control.

Problem 7.16 Study the Turn model for adaptive
routing proposed by Glass and Ni (1992) in the
1992 Anrruicrl lntemotionol Symposium on Computer
Architecture. Answer the following questions:

(a) Why is the Turn model deadlock-free from
having cycles?

iii

(b) How can the Turn model be applied on an
n-dimensional mesh to prevent deadlock?

(c) How can the Turn model be applied on a
it-ary n-cube to prevent ddlock?

Problem 7.17 The following assignments are
related to the greedy algorithm for multicast routing
on a wormhole-routed hypercube network.

(a) Formulate the successive steps of the greedy
algorithm (Example 7.8) as a minimum cover
problem. similar to that practiced in Karnaugh
maps.
Prove that the greedy algorithm always yields
the minimum network traffic and minimum
distance from the source to any of the
destinations.

(bi

Ff» Mcfimw H'l'Ilt'4.wrtqn-.r.-11¢-s

m_

Problem 7.10 Consider the implementation of
Goodman's write-once cache coherence protocol in
a bus-connected multiprocessor system.Specify the
use ofadditional bus lines to inhibitthe main memory
when the memory copy is invalid. Also specify all
other hardware mechanisms and software support
needed for an economical and fast implementation
of the Goodman protocol.

Explain why this protocol will reduce bus
traffic and how unnecessary invalitlations can be
eliminated. Consult if necessary the two related
papers published by Goodman in 1983 and 1990.

Problem 7.19 Study die paper by Archibald and
Baer (1 986) which evaluated various cadwe coherence
protocols using a multiprocessor simulation model.
Ezrqzrlain the Dragon protocol implemented in the
Dragon multiprocessor workstation at the Xerox
Palo Alto Research Center. Compare tl'1e relative
merits of the Goodman protocol. the Firefly
protocol. and tl'1e Dragon protocol in the context
of implementation requirements and er-qaected
performance.

Problem 7.20 The Cedar multiprocessor at
Illinois was built with a dustered Omega network
as shown below. Four 8 >< 4 crossbar switches
were used in the first stage and four 4 >< B crossbar
switches were used in the second stage.There were
32 processors and 32 memory modules. divided into
four clusters with eight of each per cluster.

(a) Figure out a fixed priority scheme to avoid
conflicts in using the crossbar switches for
nonblodcing connections. For simplicity
consider only the forward connections from
the processors to the memory modules.

(b) Suppose both stages use 8 '>< B crossbar

Advanced Computer Arcirite-cture

switches. Design a two-stage Cedar network
to provide switdred connections between
64 processors and 64 memory modules. again
in a clustered 1'nanner similar to tl'1e above
Cedar network design.

(c) Further expand the Cedar network to three
stages using8 X5 crossbar switches as building
bloclts to connect 512 processors and 512
memory modules. Show the schematic
interconnections in all three stages from the
input end to the output end.

Processors Stage 1 Stage 2 Memories
l I

.-J.-J.F-‘Ii

IIIIIIIIIIIIIIII

1. \9 1»--- ‘irire3' *“l'Yr‘ .1lFll~l§4' l

-. rrlilr _£-. .111 vi:_
:1 e

PM 1'l|¢G-NH-‘ Hlllfiivoponm

— —

Multivector and SIMD
Computers

By definition. supercomputers ane the fastest computers available at any specific time. 'l'he value
of superoomputing was originally identified by Buzbee [1983] in three areas: knowledge acquisition,
computational n-actnbiity. and promotion of pmductivity. Computing demand. however. is always ahead of
computer capability.Todav‘s supercomputers are still one generation behind the computing requirements
in most application areas. which have expanded enormously over the last two decades.

In this chapter. we study the architectures of pipelined multivector supercomputers and of SIMD
array processors. Both types of machines perform vector processing over large volumes of data. Besides
discussing basic vector processors. we describe compound vector functions and multipipeline chaining
and networking techniques for developing higher~perlormance vector multiprocessors.

The evolution from SIMD and MIND computers to hybrid SlMDil"llMD computer systems is also
considered. 'l'l1e Connection Machine CH-5 reflected this architectural trend. This hybrid approach to
designing reconfigurable computers opened up new opportunities for exploiting coordinated parallelism
in complex application problems. Recent trends in this direction will be discussed in Chapter 13.

VECTOR PROCESSING PRINCIPLES

1 ‘v'cctor instruction types, memory-access schemes For vector operands, and an overview of
supercomputer families are given in this section.

8.1.1 Vector Instruction Types
Basie concepts behind vector processing are defined below. Then we discuss major types of vector
instnictions encountered in a typical vector processor. The intent is to acquaint the reader with the instruction-
set architectures oftyp ical vector processors.

Vector Processing Definitions A vet-tor is an ordered set ofscalar data items, all ofthe same type, stored
in memory. Usually, the vector elements are ordered to have a fixed addressing increment between successive
elements, called thc .s'n'iri'c.

A vocror processor is an cnscmhlc ofhardware resources, including vector registers, functional pipelines,
proccssing elements, and rcgistcr counters, lhrpcrforming vector operations. l-"Error proc-essirig occurs when
arithmetic or logical opcrationsan: applied to vectors. It isdist inguishcd from scalar processing which operates
on one datum or one pair oi" data. The conversion from scalar oode to vector code is called 1-'ccrori:.nrion_

Thu‘ Ml.'I;Ifllb' H“ l'n¢r.q|r_.u|»r\

34! i Advanced Cornptmerfircbitecture

ln general, vector processing is faster and more efficient than scalar processing. Both pipelined processors
and SIMD computers can perform vector operations. Vector processing reduces software overhead incurred
in the maintenance of looping control, reduces memory-access conflicts, and above all matches nicely with
the pipclining and segmentation concepts to generate one rcsult per clock cycle continuously.

Depending on the speed ratio between vector and scalar operations {including startup delays and other
overheads) and on the vcemrimricn ratio in user programs, a vector processor executing a well-vectorized
code can easily achieve a speed|.|p of IO to IO times, as compared with scalar processing on conventional
machines.

Oi‘ course, the enlnmced performance comes with increased hardware and compiler costs, as expected.
A compiler capable of vectorization is ealled a terrorizing eontpiler or simply a wcrorizcr: For successful
vector processing, one 11Beds to make improvements in vector hardware, vectorizing compilers, and
programming skills specially targeted at vector machines.

Vector Instruction Type: We briefly introduced basic vector instructions in Chapter 4. What are
characterized below are vector instructions for register-based, pipelined vector machines. Six types ofvector
instructions are illustrated in Figs. 8.1 and 8.2. We define these vector instruction types by rnathernatical
mappings between their working registers or memory when: vector operands are stored.

VJ; Ragiier V3 Register V; Ragista Vk Register '|.r‘,- Flogislsel

-.!-'1|sE

Fmtctiond unit Fundicnd unit
{a) Vacbr-vector instmction {b)'v'ectcr-smla inshudion

{vactcl Load)
Memory path Vi Regista

_till]
He Mr

till]
Hermcry path
{Vecbr Store)

{ct “ach:-mastery insiuetions

Fig. B-1 Veettor instruction types in Cray-like computers

{ll lirmr-t-'er.'ror rhstrrretrions As shown in Fig. 8.1a, one or two vector operands are fetched fi'om the
respccl:ivc vector registers, enter through a functional pipeline unit, and produce results in another
vector register. These instructions are defined by the following two mappings:

f| :l_’,-—> V, (8.11
jg : ii,-X I-1 —> P] (8.21

,,,,,,,,,,,,,,,,,,,.,,,,,,,,,,,,, _ H,

('3 l

{,3 l

{.41

{'51

('6 l

Examples are V, = sin{ I/E) and V3 = V, + Ir’; for the mappings_f'| and f3, respectively, where F} for
i=1, 2, and 3 are vector registers.
li'ctor-Molar r'nsrrur'rr'ons Figure B. lb shows a vector-scalar instruction corresponding to thc
following mapping:

jg :s>< Pk —> I’, (8.31

An example is a scalar product s >1: l"| = F3, in which the elements of Vl arc each multiplied by a
scalar s to produce vector V3 ofcqual length.
Vecsor-nremo:'_v insrrrrrrfons This corresponds to vector load or vector store (Fig. B. l cl, element by
element, between the vector register (i-" it and the memory (Ml as defined below:

f4 : M —t- V lireror load‘
f5 : l-’ —-3» M lti.-‘tutor store

(5-4!
(B.5j

lincmr redrrcrion innrrrerions These correspond to the follotwi ng mappings:

,5, : l-']- —> s (8.61

ft {B-71
Examples of_f5 include finding the moximrrm, mr'm'mrrm, sum, and mean voiue of all elements in a

: V, >< F, —'> s

vector. A good example off-_. is the dot product, which performs s = 2" tr, >< by from two vectors
_ |.-r = -|_'_o',-j and s = rs,-1 ’

Gather and st-otter r'n.srrnv:rr'ons These instructions use two vector registers to gather or to scatter
vector elements randomly throughout the memory, corresponding to the following mappings:

jg, : A-I —> V, >< I-Q, Gather (3.8;
f,,: P’, >< I-’,,—> M Scatter (8.91

Gather is an operation that fetches fi'om memory the nonzero elements of a sparse vector using
indices that themselves are indexed. Scatter docs t.he opposite, storing imo memory a vector in a
sparse vector whose nonzero entries are indexed. The vector register I-"| contains thc data, and the
vector register I-Q, is used as an index to gather or scatter data from or to random memory locations as
illustrated in Figs. 8.2a and E.2b, respectively.
Mrlsfring in.sn'ur'rr'ons This type of instruction uses a rrtaslr vector to compress or to expand a vector
to a shorter or longer index vector, respectively, corresponding to the following mappings:

_,fi,-,: lQ,>< l"m -3 V, (B. l'I]j

Tbc following example will clarify the meaning ofgather, scrrrter, and moshing instructions.

.9?) Example 8.1 Gather, scatter, and masking tnstructtons tn
the CrayY-MP (Cray Researeh,1990)

The gather instruction (Fig. 8.23.) tra.nsfers the contents (600, 400, 250, 200] of nonsequential memory
locations (104, 102., I07, [DO] to fruu elements ofa vector register l"1. The base address (100) of the memory
is indicated by an address register Aft. The number of elements being transferred is indicated by the contents
(4) of a vector iengdt register FL.

rr M G um - '
344"i- in I “M t Admn-cad Cumplmerhxdritedlnm

The offscls {h1dic4:s) from the has: address are rctricvcd fi'om the vector register VG. Thc cffccliv: mcrnnry
addwzaws are nbtained by adding the base address in the indices.

v1. Regina
Manny

CnrrbemtsJ'
VD Reghta V1 Ragisiar -P-diiflfifi

|* #1
A0

N:-tn}

Q38:
GIG‘ $8 GD fiéé

| 1un|

VL Fhgastel

DOGDUO -1..-|..a.4.4 DOGGIGM‘-IQ-aw

|[a}| r.-".-mm mmmm
Hem-my

Contents!
vn Regista v1 Ragishr P-ddflm

I 4|
A0

1*, , $9‘2 we mu “>2QI1I!lI wul O .4O -F

v4. Register M
“T

u1011m111n1.. . 13
maagaaa 9

Fig. 8.2 Gatheawzauer and masking operations on due Cray'Y-HF [Courmesy uffiray Research 1990]

{hp Scaiter inshudion

Q -AD ‘Iul

vo Register
(T851191!)

vs Ragisiar
{RBBHW

01
- cc:

-15 10
a 11
0 13

24
-r

-1? -

{oi Masiurig imiucim

,,,,,,,,,,,,,,,,,._.,,,,,,,,,,,, _ H,
The scatter instruction reverses the mapping operations, as illustrated in Fig. 8.2h. Both the I/L and A0

registers an: embedded in the instruction.
The masking instruction is shown in Fig. 8.2c for compressing a long vector into a short index vector. The

contents of vector register Vt} are tested for Zero or nonzero elements. A mrr.s.irr'ng rcgi.srcr { F.-‘vii is used to
store the test results. .-lifter testing and forrrring the nrtrsiring veemr in V M, the corresponding nonzero indices
are stored in the I/l register, The i/"L register indicates the length of the vector being tested.

The grrnlrer, setrrrer, and nrtrsiring instructions are very useful in handling sparse vectors or sparse matrices
often encountered in practical vectorprocessing applications. Sparse matrices are those in which most ofthe
entries are zeros. Advanced vector processors implement these instructiorrs directly in hardware.

The above instruction types cover the most. important ones. A given specific vector processor may
implement an instruction set containing only a subset or even a superset ofthe above instructions.

8.1.1 Veet:or\-Access Memory Schemes
The flow of vector operands between the main memory and vector registers is usually pipelined with multiple
access paths. In this section, we specify vector operands and describe three vector-access schemes from
interleaved memory modules allowing overlapped memory accesses.

Vector Oponnnd Spaeiflecltiom Vector operands may have arbitrary length. Vcc tor elements are not
necessarily stored in contiguous memory locations. For example, the entries in a matrix may be stored in row
major or in column major order. Each row. column, or diagonal of the matrbc can be used as a vector.

When row elements are stored in contiguous locations with a unit stride, the column elements are stored
with a stride ofn, where n is the matrix order. Similarly, the diagonal elements are also separated by a stride
ofn + l.

To access a vector in memory, one must specify its hose trddress, srriob, and length. Since each vector
register has a fixed number of component registers, only a segment of the vector can be loaded into the vector
register in a fixed number of cycles. Long vectors must be segmented and processed one segment at a time.

Vector operands should be stored in memory to allow pipelined or parallel access. The memory system for
a vector processor must he specifically designed to enable fast vector access. The access rate should match
the pipeline rate. In fact, the access path is often itselfpipclined and is called an fl('Ct’.iS]Ji]J£’. These vector-
aecess memory organizations are desc-ribed below.
C-rflcces: Memory Drghnimtion The in-way low-order interleaved memory structure shown in
Figs. 5.15:: and 5.16 allows m memory words to be accessed concurrently in an overlapped manner. This
eoneurrtrm‘ access has been called C.‘-net-ass as illuslntted in Fig. 5.lt5b.

The access cycles in different memory modules are staggered. The low-order tr bits select the modules,
and thehigh-ordcrb hits select the word within each module, where m = L" and rr+ b = n is the address length.

To access a vector with a stride of I, successive addresses are latched in the address buffer at the rate of
one per cycle. Effectively it takes m minor cycles to fetch m words, which equals one (major) memory cycle
as stated in Eq. 5.4 and Fig. 5.l6b.

If the stride is 1, the successive accesses must be separated by two minor cycles in order to avoid access
conflicts. This reduces the memory throughput by one-half. if the stride is 3, there is no module conflict and
the maximtun throughput (m words) results. In general, C-access will yield the maximum throughput of m
words per memory cycle ifthe stride is relatively prime to m, the number ofinterleaved memory modules.

_ H‘-r Mclinrw Hm I-|Il‘l‘.l]|lj.I.ll|f\
340 1- I Admrl-cad campuurnmmwam

S-Access Nlamory Orgflnization The low-order interleaved memory can be rearranged to allow
sinlrllrflmnris access, or S-rimrss, as illustrated in Fig. 8.3a. In this case, all memory modules are accessed
simultaneously in a sgmchmnimecl manner. Again the high-order (n — a) hits scloct thc same nfikct wnrcl from
each mnclu lc.

PiFatd-icycla-i-u-I-i Accasscycla Z-l

Data Latch
Single vmrd

I W"Mdtflzlexelrj0%
HI

{Hi
high-Orderaddess ms

mnuuiaI I
Raadhvlita a Low-order

adckasa bite:
-[al S-aoc-ass crganiiun for an m-way inleflaavad ma may

1. Memory Modliaa

FEE-I1 'l FB‘lI.i'l 2 FEE-11 3 . . .
M.-in

I A:;oess1 I Acce552 I Acc|e$3 I

H1
Fai:.h'1 Febc.h2 Fat-h3 ...

I Access‘! I h|:=|:.esa2 I Ac,c|ass3 I

Ffibh ‘l Ffllflh 2 Fflth 3
Mu

I Aooa5s'l I 15059552 I Acc|esa3 I

m wnrda m words mwcrds
A A A

Cycla1 l C5rda2 l Dg,rda3 T cyan l11;e
{bl Snacmmhre vecto‘ acicassasuaing mrcliappad iabh and anc-asscydas

Fig. 8.3 The S-access inmrlcavcd memory for vocmr cplnncls acons

At the and of each rnumury cyclc [Fig. 8.31:}, Hi = 2“ ccmsccutivc words an: latched in thc data buficn;
simultaneously. The low-order ri bits are than used to multiplex the m wnrds nut, mic pcr cach minor cycle.

,,.,,,.,.,,,,_,,,,,.5.,,D..,,,,,,,, _ H,
lfthc minorcyclc is chosen to be lfrrr ofthe major memory cycle {Eq. 5.4}, then it takes two memory cycles
to access m consecutive words.

However, if thc access phase of the last access is overlapped with the fetch phase of the eurrem access
(Fig. 8,:-lb), effectively m words take only one memory cycle to access. If the stride is greater than 1 , then the
throughput decreases, roughly proportionally to the stride.

CIS-Access Memory Organization A memory organization in which the C-access and S-access are
combined is called C.r‘lS'-or'ees.s. This scheme is shown in Fig. 8.4, where n access buses are used with m
interleaved memory modules attached to each bus. The m modules on each bus are m-way interleaved to
allow C-access. The rt buses operate in parallel to allow S-access. In each memory cycle, at most m - rt words
are fetched if the n buses are fully used with pipelined memory accesses.

P'°'°9sS°'5 i Memories
@ | BoPO M60 .. .

System Moo Mo; Mom
@ I |nter- Bo

1 MC‘ OCll'll'lBC'l

I . l'~"|1,o l~"|1,1 Mir-*1
' {Crossbar J : 1 1

® ' an-1
PM MC 6 6 ..

Mi Mm ,o Mn-,1 Mm;-.-1

Fig. B-4 The US rnerno-ry orpniaation with irr = it {Courtesy of D.K. Panda. 1990]

The CIS-access memory is suitable for use in vector multiprocessor configurations. it provides parallel
pipelinod access ofa vector data set with high bandwidth. .-‘Especial vector eoeire design is needed within each
processor in order to guarantee smooth data movement between the memory and multiple vector processors.

8.1.3 Early Supertumputers
This section introduces five early supercomputer families, including the Cray Research series, the CDC!
ETA series. fire Fujitsu VP series, the NBC SX series. and die Hitachi B20 series (Table 3.1). The relative
perfo rmance ofthesc machines for vector processing are compared with scalar processing at the end.

The Cray Research Series Seymour Cray founded Cray Research. Inc. in l9'i'2. Since then, hundreds
units of Cray supercomputers have br:r::r1 produced and installed worldwide. As we shall sec in Chapter 13,
the company has gone through a change ofname and evolution ofpmduct line.

The Cray 1 was introduced in i9'i'5. An enhanced version. the Cray IS, was produced in 19T9. it was the
first ECL-based strpercomputcr with a 12.5-as clock cycle. High degrees ofpipelining and vector processing
were the major features of these machines.

rt» Mecmw iirttt-...s-,..i.t.¢. '
Ms — _

Table 8.1 Summary ofE.r.trly Sttpcrcotrlputcrs

Adrovrced Computerhrchitecture

511.: tern
model‘

Maximum mnfigaration.
clock rote, GS/Compiler

Uniquefeamres
and remarks

Cray 1S Uniproccssor with 10 pipelines. 12.5
ns. COSIC-F'l"l' 2.1.

First ECL-based super. introduced in
l9T6.

Cray 25
."-l-256

4 processors with 256M-word memory,
4.1 ns. COS or UNIX ICFT7 3.0.

l6l{-word local memory, ported
UNIX V introduced in I985.

Cray X-
416

MP 4 processors with 16M-word memory,
and l2BM-word BSD, 8.5 ns, COS
CFTT 5.0.

Using shared register clusters for
IPC, itflroduced in 1933.

832

Cray Y-MP 8 processors with lllllvl-word
memory. 6 as, EFT! 5.0.

Enhanced fi'om X-ME introduced in
1951‘-8.

C-9!]

Cray Y-MP I6 processors with 2 vector pip-espcr
processor, 4.2 us, UNIOOSICF Tl’ 5.0.

Thc Largest Cray machine, introduced
in 15191.

205
CDC Cyber Uniproeessor with 4 pipelines, 20 ns,

virtual OSIFTN 200.
Met11ory-to-memory architecture.
introduced in I932.

ETA lll E. Uniprooessor tvith 10.5 ns,
ETAVIFTN 200

Successor to Cyber 205, introduced
in i985.

SX-X1‘
NEC

44
4 processors with 4 sets of pipelines
per processor, 2.9 ns, I-i'T?SX.

Succeeded by SX-X Series,
introduced in l9'9l.

Fujitsu
Vl"lfi-CH] ilt)

Unipmeessor with S vector pipes and
dual scalar processors, 3.2 res,
MS?-EX FFT? EX -‘VP.

Used reconfigurable vector registers
and masking, introduced in l99l.

Hitachi
S202’ RD

l3 fitltctionnl pipelines in a
uniprocessor with 512 Mbytes
memory 4 ns, FORT 1?!HAP
V23-~OC.

Introduced in 193? with 64 I.-D
channels providing a maximum
of 288 It-'lhytes."s transfer.

Ten functional pipelines could run simultaneously in the Cray IS to achieve a computing power equivalent
to that of ID IBM 3033's or CDC Cyb-er 1600's. Only batch processing with a single user was allowed when
the Cray I was initially introduced using the Cray Operating System [COS] with a Fortran T7 compiler (CF
T? Version 2.1).

The Cray X-MP Series introduced multiprocessor configurations in I 983. Steve Chen led the effort at Cray
Research in developing this series using one to four Cray I-equivalent CPLls with shared meme-1'y.A unique
feature introduced with the X~MP models was shared register clusters for fast interprocessor eommtmications
without going through the shared memory.

Besides 123 Mbytes of shared memory, the X-MP system had 1 Gbyte of.soi'id-stttre sr-sreg’ {SSD) as
extended shared memory. The clock rate was also reduced to 8.5 ns. The peak performance of the X-MP-
4lti was 840 Mflops when eight vector pipelines for add and multiply were used simultaneously across four
PFDEC-SSCIFS.

,,,,,,,,,,,,,,,._,,,,,,,,,,,,, _ ,,,
The successor to the Cray X-MP was thc Cray Y-MP introduced in 1988 with up to eight processors in a

single system using rt 6-us clock rate and 256 Mbytes of shared memory.
The Cray Y-MP C—9(l was introduced in 199!) to ofi'er an integrated system with 16 processors using a

4.2-ns clock. We will stttdy models Y-MP B16 and C-90 in detail in the next section.
Another product line was the Cray 2S introduced in I985. The system allowed up to four processors with

2 Gbytes of shared memory and a 4.1-ns clock. A major contribution of the Cray 2 was to switch from the
hatch processing, COS to multiuser UNIX System V on a supercomputer. This led to the UNICOS operating
system, derived from the UNIXIV and Berkeley 4.3 BSD, variants ofwhich are currently in use in some Cray
DCll"l'l]IlLIlI1'_T S}'SlI'l'_‘l'!TS.

The CyberiETA Series Control Data Corporation (CDC) introduced its first supercomputer, the STAR-I00,
in 1973. Cyber 205 was the successor produced in I932. The Cyber 205 ran at a 2D—ns clock rate, using up to
four vector pipelines in a uniprocessor configuration.

Different from thc register-to-register architecture used in Cray and other supercomputers, the Cyber
205 and its successor, the ETA It), had memory-to-memory architecture with longer vector instructions
containing mcmory addrcsscs.

The largest ETA It) consisted of B CPUs sharing memory and 18 HO processors. The peak performance
of thc ETA lD was targeted for IO Gflops. Both tl'|e Cyber and the ETA Series are no longer in production but
wcrt: in use ibr many years at scvcral supcrcomputcrccntcrs.

Japanese Supercomputer: NEC produced the SX-X Series with a claimed peak performance of22 Gflops
in 1991. Fujitsu produced the VP-2000 Series with a 5-Gtlops peak performance at the same time. These two
machines used 2.9- and 3-.2-ns clocks, respectively.

Shared communication registers and reconfigurable vector registers were special features in these
machines. Hitachi offered the 820 Series providing a 3-Gllops peak performance. Japanese supercomputers
were at one time strong in high—specd hardware and interactive vectorizing compilers.

The NEE SK-X 44 NEC claimed that this machine was the fastest vector supercomputer £22 Gflops peak]
ever huiltup to 1992. The architecture is shown in Fig. 8.5. One ofthe major contributions to this performance
was the use of a 2.9-ns clock cycle based on VLSI and high-density packaging.

There were four arithmetic processors commtmicating through either the shared registers or via the shared
memory of 2 Gbytes. There were four sets of vector pipelines per processor, each set consisting of two add!
shift and two mulfiplyflogical pipelines. Therefore, 6-4-way parallelism was obtained wifit four processors,
similar to that in thc C-9t]-.

Besides the vector unit, a high-speed scalar unit employed RISC architecture with 123 scalar registers.
Instruction reordering was supported to exploit higher parallelism. The main memory was l024~way
interleaved. The extended memory of up to I6 Ghytes provided 21 maximum transfer rate. of 2.75 Ghytes.-’s.

Amaatimtun of four l IO processors could be configured to accommodate a l-Gbytefs data transfer rate per
l/U processor. The system could provide a maztimutn of 256 channels for high-speed network, graphics, and
peripheral operations. The support included l00—l'vll:ytests channels.

.3511 i Advorrced Computerhrchitecture

o Masklaw“ "“°‘°’ iMair

—iTI “’==
_- ii|QP - Z MMU i Vector

“’ 1 Wis "°“‘" —i
CPM2* Y1Dcp Mbytes -

-‘i Scalar .Ii. Cache Hegs_ Scalar Prpo

Scalar unit

Captions:
XMU: Extended memory unit
IOP: |.I'O processors [4]
DCP: Data central processors [2]
AP: Arithmetic processors {4}
MMU: Main memory unit
GPM: Data oentrsl processor memory
Each set consists of rt pipeiln-es for adclfshlft
and multlplyfio-gical vector operations

Fig.8.! The NEE. S24-X 44 vector supummnpuuer archirectuns (Cournasy oi NEE, 1991}

Relative 'fl:ctorIScn.lnIr Performance Let r hc the voctorriscalar speed ratio an-t1ftl1e vcctorization ratio.
By Amdal'1l’s law in Section 3.3.], the following reloriveperforrrmnce can be defined:

P = = -%- (3.111
{1—fl+f»'r (1—_f.ir+_f

This relative performance indicates thc speedup performance of vcctnr processing ovcr scalar processing.
The hardware speed ratio r is the designer’s choice. The vectorization ratiof reflects the percentage of code
in a user program which is vectcriwed

The relative performance is rather sensitive to the value off This value can be increased by using a
better vectorizzing compiler or through user program transformations. The following ¢}LBIfl]J|l: shows the IBM
experience in vector processing with the 3090?»/F computer system.

I»)
lg Example 8.2 The vectorfscalar relative performance of

the IBM 3090!VF
Figure 8.6 plots the relative performance P as a filncticn ofr with fas a t‘u.tt.t1i.ng parameter. The highcr thc

,,.,,,.,,,,,,,,,,.,5,.,,M,,,,,,,,, _ _ an
value off; the highcr the relative speedup. The IBM 3094] with vector facility (VF) was a high-end mainframe
with add-on voctorhardwarc.

{Pl
B .._._

Veciorlzation Ratio [f]
34190 VF Igileslgn Point 90%

5-— —.i
t

&—

8-0%

3 _

i"Cl%

2__

r _ sos
_____ 30%

1 I I I I I I I I I lrl
1 2 3 4 5 6 1' 8- 9 10

Fl} I-G Speedup performance -of vector processing over scalar processing in the IBM JDBDNF (Courtesy
of lBl"'l Corporation, W35}

The designers of the 309tL'VF chose a speed ratio in the range 3 £ r 2 5 because IBM wanoed a balance
between business and scientific applications. when the program is 70% vcctorizcd, one expects a maxirnurn
speedup cfll However, forffi 311%, the speedup is reduced to less than 1.3.

The IBM designers did not ehoose a high speed ratio because they did not expect user programs to be
highly vcctorimlllle. When fis low, the speedup cannot bc high, even with a very high r. In fact, the limiting
case is-P—> l iff —>t"J.

On thc other hand, P —> r when f -1 I. Scientific supercomputer designers like Cray and Japanese
manufacrtlnrrs often chose a much highcr speed ratio, say, I'll S r S 25, because they expected a, higher
vectorizarion ratioIin user programs, or they used better vectnrizers to increase the ratio to a desired level.

Huge advances have taken place in the underlying technologies and especially in VLSI technology
over the last two decades. We shall see that these advances, summarized in brief in Chapter 13, have dcfincd
the direction of advances in computer architecture over this period. Powerful single-chip processors—as
also multi-core s_t=srerns-on—n-c'!rip—prrwidc High Peaffmnarrce Corrrputing [HPC] today. Such I-TPC systems
typically make use of MIMI) auditor SPMD coniigurations with a large number of processors.

Advent of superscalar processors has resulted in vector processing instructiorts being built into powerful
processors, rather than as specialized processors. Thus the ideas we have studied in this section have made

Ff» Mtfirnii H'l'Iit'mn;|wm-\' _
351 i Advanced Contplrterhrdritecture

their appearance in capabilities such as Streaming SIMD Exrensr'ons (SSE) in processors Chapter l3).
We may say that the concepts of vector processing remain valid today, but their int;-Jfcmerrr¢rrr'mw varies with
advances in technology.

MULTIVECTOR MU LTIPROCESSORS

— The architectural design of supercomputers continues to be upgraded based on advances
in technology and past experience. Design rules are provided for high perfomiance, and

we review these rules in ease studies of well-lmown early supercomputers, high-end mainframes, and
niinisupercomputers. The trends toward scalable architectures in building MPP systems for supcreomputing
are also assessed, while recent developments will he discussed in Chapter I3.

8.1.1 Performance-Directed Design Rules
Supercomputers are targeted toward large-scale scientific and engineering problerns.They should provide the
highest performance constrained only by current technology. In addition, they must be programmable and
accessible in a multiuserenvironmcnt.

Supercomputer a.r'cl1itectu;re design rules are presented below. These rules are driven by flie desire to offer
the highest available performance in a variety ofrespects, including processor, rnernory, and HO performance,
capacities, and bandwidths in all subsystems.

Architecture Design Goals Smith, Hsu, and Hsi1.u1g(l99D) identified the following four major challenges
in the development of future general-purpose supercomputers:

* Maintaining a good vector!scalar performance balance.
r Supporting scalability with an increasing number of processors.
' Increasing memory system capacity and performance.
* Providing high—performance I10 and an easy-access network.

Balanced H:ct7orl'ScuI-ur Ratio In a supercomputer, separate hardware resotuces with different speeds are
dedicated to concurrent vector and scalar operations. Scalar processing is indispcrisahlc for general-purpose
architectures. Vector processing is needed for regularly structured parallelism in scientific and engineering
computations. These two types of computations must be balanced.

The vector bnlnm-e point is defined as the percentage of vector code in a program required to achieve
equal utilization of vector and scalar hardware. In other words, we expect equal time spent in vector and
scalar hardware so that no resources will be idle.

Ir)
égl Example 8.3 Vectorfscalar balance point in supercomputer

design (Smith,Hsu,and Hsiung,1990)

If a system is capable of 9 Mflops in vector mode and l Mfiops in scalar mode, equal time will be spent in
each mode if the code is 90% vector and 10% scalar, resulting in a vector balance point of 0.9.

.,,,,,,,,,,,,,,,,._,,,,,,,,,,,,, _ ,5,
lt may not he optimal for a system to spend equal time in vector and scalar modes. However, the vector

balance point should be maintained sufficiently high, matching the level of vectorization in user programs.

l'‘vector peribmiance can be enhanced with replicated firnctional unit pipelines in each processor. Another
approach is to apply dceperpipelining on voctorunits with a double or triple clock rate with respect to scalar
pipeline operations. Longer vectors are required to really achieve the target performance.

Hretoriicelor Performance In Figs. 8.7:: and 8.71:, the single-processor vector performance and scalar
performance are shown, based on running Livermore Fortran loops on Cray Research and Japanese
supercomputers of the 1980-s and early 1990s. The scalar performance of these supercomputers increases
along the dashed lines in the figure.

Cine of thc contributing factors to vector capability is the high clock rate, and other iactors include use of
a betner compiler and the optimization support provided.

Table 8.2 compares the vector and scalar perliorrnartces in seven supercomputers of that period. Note
that these supercomputers have a 90% or higher vector balance point. The higher the vectortscalar ratio, the
heavier the dependence on a high degree of vectoiization in the object code.

Table 8.2 Vector and Senior Performance of itirious Ecrty Superoampurers

.'l'frrc'Irinc' f.'ra_t' Crcrv f_'rr.r_y
IS 25' X-MP

Crcrv
}i.'i1fP

Hitachi
S820

NEC
S.3't'_7’

Fujitsu
l"P4't‘]|t'J

Vector
pcrtorrnanoc 85.0 151.5 143-.3 201.6 137.3 424.2 202.1
tM11fl|1-st
Senior
pcrforrnancc
{Mflops}

Vector
balance 0.90 0.93 0.92 0.92 0.98 0.98 0.9?

9.8 11.2 13-.1 12.0 l'7.8 9.5 6.6

point

Source: I Srnith et al., Future General-Purpose Supercomputing Conference, IEEE .§'Irps'rt'amptu1ir|g Carpérence, 1990.

The above approach is quite different fiom the design in comparable IBM vector machines which
maintained a low vectorfscalar ratio between 3 and 5. The idea was to make a good compromise between the
demands of scalar and veetorproecssing forgeneral-pt.n'pose application s.

HO and Networking Perfnnnunce Vt-"ith the aggregate speed of supercomputers increasing at least
three to five times each generation, problem size has been increasing accordingly, as have U0 bandwidth
requirements. Figure 8.7c illustrates the aggregate U0 bandwidths supported by supercomputer systems of
the period up to the early 1990s.

l'h1'Ml.'I;Ifl\l|r' HI" l'n¢r.q|r_.u||rr|

354 1 Advanced Compumerhrchitacture

lulfloprs = Mfloprs
8-O'D— 5 —

ir H|taehlS-820 _,
100- ss~—

HE‘.

"'-.

60G—— __,-‘K 30-— __
: I I!

5m- 5 .-"‘ 25- .-"
.=" ,-*"

40°‘ .»" ,5’ 2°‘ \r"-I-iitachl sazo
.-" ' _,-“ “+1 CrayY-MP

30°‘ .»"'rFuJfl>srr .1’ 15- __ __ .4 iCray X-MPI4
.~"" .-"

2nG__ 1". vp40G'l'CI3!|'Y-MP 1n,__‘_.-"""-. : cr3§|'*20
.-"'1/‘ ___:-"'6"BlI‘-9 Cray-1 “EC 5392

1m._.|"‘-- 4' C-rayx-MPI4 5... " Fr1li1$11VP4430
Gray“ clay x-MPr2 Year Year

a l la l I cl I I I i l I cl
19i"fi 1$D 198-4 193-B 1992 1996 2000 19i"6 193-D 1934 193-B 1992 1996 2000

[a] Uniprooessor vector porforrnan-be [bi Scalar performmce

.|'_Ulb]||"l$.iS Gray Y_MP .

2500-

2nm_ Cray-2 '

1500-

nsc sxo 1
1000- Fujitsu VP2flGrD 0Cray Y-MP '
500“ Cray X-MPI4 4.

NEG 51.2 ' ' Hltaci-|lSFB2rD
Cray-1 Ftiltsu \r'P2UJ 0

7' 1 r r r r r I Year
1976 1978 1980 1962 1964 1966 198-B 1990

[cl U0 perfo1'1'rra.nee

Fig.8.? Some reported supercomputer perforntance data (Source: Smith. Hsu. and Haiung. IEEE
Superuernpu1:ir1gConIermce.1'?9rD}

The HO is defined as the trmrsfer of data between the processorimemory and peripherals or a network. In
the earlier generation ofsupercomputers, IEO bandwidths were not always wcll correlated with computational
performance. U0 processor architectures were implemented by Cray Research with two different approaches.

The first approach is exemplified by the Cray Y-MP l/D subsystem, which used U0 processors that were
flexible and could do complex processing. The second approach was used in the Cray 2. where a simple
Emnt-cod processor controlled high-speed channels with most of tbc 1:13 managerncnt being done by the
mainframe‘s operating system.

,,,,,,,,,,,,,,,,,,,,.,,,,,,,,,,,,, _ 355
Today more than aggregate 100-Gbytesfs [I0 transfer rate are needed in supercomputers eonriected to

high-speed disk arrays and networks. Support for high-speed networking has become a major component of
the HO architectilre in supercomputers.

Memory Dar-ncnd The main memory sizes and extended memory sizes of supercomputers of l9tiUs and
early 19905 are shown in Fig. 8.8. A large—sc-ale memory system must provide a low latency for scalar
processing, a high bandwidth for vector and parallel processing, and a large size for grand challenge problems
and throughput.

Mbytes Mbytes

was 0,3}; _ HltachiS-B20, '- NEG 3,,_3 1sss4- use Sit-2 - Fujitsu vP2o-no
C‘-raii-2 ' Fujitsu "u"P'2tIiCiO" '

m24_ NECSX-2 ‘ CrayY-MP I 4595- Cray Y_Mp 0

Hitachi 5-B-20'_ Fujitsu \t'P2DDa _256 cm, XMPM . 0 1i12* Fujitsu \ri=2oo-
craji Y-lii'lP Cray it-MPH '

s=t— zes-
i3j;_-,y)(_|-urjpjrg u Craylt-MPI2 0

16-E I54-
Cray-1

4 i i i i i -i i Year 15- i i i i i -i i Year
197619-1'8 1930 19-B2 1954 1955 19831950 1Q-7619?B19&O 11432 1984198-B193-B1990

[at Main memory capacity {bi Extended memory capacity

Fig-ll-B 5i.ip-ercompi.rter memory capacities (Source: Smith, Hsiu,and Hsiung, IEEE iipflmmpuflfig Coifémflffl.
two;

To achieve the above goals, an effective memory hierarchy is necessary. Atypical hierarchy may consist of
data files or disks, extended memory in dynarnie RAMs, a fast shared memory in static RAMs, and a eache!
local memory using RAM on arrays.

Over the last two decades, with advances in VLSI technology, the processing power available on a chip
has tended to double every two years or so. Memory sizes available on a chip have also grown rapidly;
however, as we shall sec in Chapter 13, the i'nt'i'irior1'i* speeds achicw-'ablc—i.c. read and writc cycle timi:s—
have grown much less rapidly than processor performance. Therefore the rcinrir-c speed mismatch bctwccn
processors and mcmo ry, which has been a feature of oomputcr systems iinm their carlici-it days, has w idcncd
much further over the last two decades. This has necessitated the development ofmore sophisticated memory
latency hiding techniques, such as wider memory access paths and rnulti-level cache memories.
Supporting Scalability Multiprocessor stlpctcomputcrs must be designed to support thc triad of scalar,
vector, and parallel processing. Thc dominant scalability problem involves support of shared incrnory wii:h
an increasing numbcrofptoccssots and memory ports. Increasing memory-access latcncy and iritcrptoccssor
communication ovcrhcad imposc additional constraints on scalability.

Scalable architectures include multistage interconnection networks in fiat systems, hierarchical clustered
systems, and multidimensional spanning buses, ring, mesh, or torus networks with a distrflziut-cd shared
memory. Table 3,3 summarizes the key features of three representative mullivector supercomputers of 19905.

War MIGIIILH H“ r'mr:-;|un|n

355 i ' Adrovrced Computerhrchitecture

8.1.1 Cray‘?-HE C-90, and MPP

We study below the architectures ofthe Cray Research Y-MP, C-90, and MPP. Besides architectural features,
we examine the operating systems, languagesfeompilers, and target performance of these machines.

Table 8.3 A:chltea:w'nlChoiucterls-tics o_|" Three Su rn tors ofthe 7990:WWW
.1-fac'irine'

(!cri.r.ric.r
t’:'ru_r
C96.-" J’ 6256

.v.1_-tr."
sx-x Sertax

ii:-fiiiili
PP-2000 sure.1

Nntnher of
processors

16 C-P'l.Fs 4 arithmetic
processors

I for \1'P2t'ilIl!1fl, 2
for \"'P11OO.I'4{]

Machine cycle
time

4,2 its 2.9 n5 3.2 I15

Max. memory 256M words (2
Gbytes).

2 Gbytcs, 1624-way
interleaving.

] or 3 Ghytes of
SRAM.

Dptional SSD
memory

512M, 1024M, or
2043M words (16
Gbytcs).

16 Gbytes with 2.".-'5
Gbyt.-‘s transfer
rate.

32 Gbytes of
extended memory.

Processor
architecture:
vector pipelines,
functional and
scalar tmits

Two vector pipes and
two functional units
per CPU. delivering
+54 vector results per
clock period.

Four sets ofvector
pipelines
per processor. each
set with two
aeiderfshift and two
multiplyflu/gieal
pipelines. A separate
scalar pipeline.

Two loariistore pipes
and S functional
pipes per vector unit,
I or 2 vector units,
2 scalar units could be
attached to each
vector unit.

Operating system UNICOS derived
from UNlX.|"\-' and
B-SD.

Super-U34! based on
UNIX System V and
4.3 BSD.

UXPIM and
MSPIEX enhanced
for vector processing.

Front-ends IBM. CDC. DEC.
Univae, Apollo,
Honeywell.

Built-in contru]
processor and 4110
processors.

IBM-compatible
hosts.

Vechurizing
languages I
compilers

Fortran T1‘, C. CFTT
5.0, Cray C release
3.0

Fortran T?/SK.
Vectorizerixfl,
Pu:|.a1yzer."SX.

Fortran T? EXFVP.
CNP compiler with
interactive
vectnrizer.

Peak performance
and U0
ifril11r1lJ\'it1T]'l

16 Gflops,
13.6 Gbytesls.

22 Gfiops, 1 Gbyteis
pct HO processor.

5 Gflops, 2 Ghytefs
with 256 channels.

rr-r-M o irm-.-...-.._.-.-..r. _.. ,-.,,.,,,,,,,,,,,,,,_,M,,,,,,,., 3,,
‘Hrs Cmy Y-MP 816 A schematic bio-ck diagram of the Y-MP S is shown in Fig. 8.9. The system could
be configured to have one, two, four, or eight processors. The eight CP'Us of the Y-MP shared the central
memory, the IEO section, the ittterp'roces5flT communication section, and the real-time clock.

interprocessor
Communications

Roar-tinio Clock F""""""""""" ' '
[B4 bits] C-PU1

V Registers
B registers
64 B4~hit
elements Winter

per register Mask
{B4 hits]

Vector
Lsngtii
[B hits]

Registers
{BB4 bits] S
mglsleis Registers

[B64 hits]
registers

b--Ir'CP'U24-—'l-

ilP-I-CP'l_.|3"'—I4

-1¢—~CPU4<—i-

Contra Memory
or

0--CF"L.i5

Reg isters A‘*“'Im'=~*=> Registers-st MH "M"i
i
iI

1|-I-CP'U-E»-'-—*

iii To Eittornai Devices

Fig.8.! CreyT-l"‘|F B16 system crganiuticn [Courtesy cit Cray Research, 1991]

I-iii

Vector
F onctional Units
Aeirii'Suhstrar1

Shit, Logic
Population

[64- hit arithmetic]

 “
Fioating-point

F uneiionai Units
Add/substract

Multip-ty
Reciprocal

appworthnation
[64-bit arithmetic]
at

Seaiar
Functional Units
Aod.i‘S-ohstract

Shift, Logic,
Population

[32-bit arithmetic]
 J
 H

Add-rose
F unctionai Units

AdclISuhtract
M uitip-iy

[2-2-hit arithmetic]Instruction J
. euros mm,“ i

_ "_'_"' {s12 16-hit lam
'._,,, cpu 1 .__‘. li‘Bt|1.iCibi'i Rflglstms

Pa“-“*5 Performance
prqyammame Monitor

QCFZ}

‘ Exchange Sflflfibfl

Parameter Sums
Raglfieis I IIO Control I Register

"ii

>"-.i‘s-ctor
S-action

S-caiarissoon

> Address
Section

C-iocir{1!-2 bits] J > ‘5°"“°‘

F?» Mtfiruw HI! r'».-rqiwtnw
353 i Aduwtced Ccmptrterhrchitsctura

The central memory was divided into 256 interleaved banks. Overlapping memory access was made
possible through memory interleaving via four memory-access ports per CPU. A 6-ns clock period was used
in the CPU design.

The central memory offered 16M-, 32M-, 64M-, and 128M-word options with a maximum size of
I Gbyte. The SSD options were from 32M to 512M words or up to 4 Gbytes.

The four memory-access ports allowed each CPU to perfonn two scalar and vectorfetches, one store, and
one independent Ht) simultaneously. These parallel memory accesses were also pipelined to make the w-:~ro.-
rend and vector write possible.

The system had built-in resolution hardware to minimize the delays caused by memory conflicts. To
protect data, single-error correction {double-error detection (S ECDED] logic was used in central memory and
on the data channels to and fipm cemral memory.

The CPU computation section consisted of I4 functional units divided into vector, scalar, address, and
control sections (Fig. 8.9}. Both scalar and vector instructions could be executed in parallel. All arithmetic
was register-to-register. Eight out ofthe 14 functional units could be used by vector instructions.

Large numbers of address, scalar, vector, intermediate, and temporary registers were used. Flexible
chaining of functional pipelines was made possible through the use of registers and multiple memory-access
and arithmeticflogic pipelines. Both 64-bit floating-point and 64-bit integer arithmetic were performed.
Large instruction caches (buffers) were used to hold 512 16-bit instruction parcels at the same time.

The interprocessor communication section of the mainframe contained clusters of shared registers for fast
synchronization purposes. Each cluster consisted of shared address, shared scalar, and semaphore registers.
Note that vector data communication among the CPLls was done through the shared memory.

The real-time clock consisted of a 64-bit counter that advanced one count each clock period. Because the
clock advanced synchronously with program execution, it could he used to time the execution to an exact
clock count.

The HO section supported three channel types with transfer rates of 6 Mbytesfs, 100 Mbytests, and
l Gbyte.-’s. The 10$ and SSD were high—speed data transfer devices designed to support the mainframe
processing by eight cac hes.

ll)
lg Example 8.4 The multistage crossbar network in the Cray

Y-MP B16
The interconnections between the 8 CPUs and 256 memory hanks in the Cray Y-MP it I t5 were implemented
with a multistage crossbar network, logically depicted in Fig. 3.10. The building blocks were 4 >< 4 and 8 >< B
crossbar switches and l >< 3 demultiplexers.

,,,,,,,,,,,_,,,,,,,,,._,,,,,,,,,,,,, _ 35,

“D =s
PR

2

Pro-c
3

Pro-c
4

Pro-c
5

|t|tttBEit7
Proc.

s3

4:1|» I ,
=Q$ll't:l$i= .I tag!
_ so

4%

r l as

E§]‘_i"\'*lF -
r \ [ELslag

X '&8.3 .

=.
lllil

Mm~1

it a s
file

Subsections
1 0, 4, s as

32, 60
64,63, 7'2... 92ill!-.

224, 228- 252

I1 1,5,8...29
IE“

225. ass 25s
2.s.1o...so

22s, zso 254
s,r, 11 s1

-15er» ttt|||EllP?‘I
ins
il!I=l 221. 231 255

Fig.8.“! S-c|'|omatlt: logic diagram o'l'd1o crossbar network botwocrt B processors and 256 mernory banks in
the CrayY-HF‘ B16

The network was controlled by a fonn of circuit switching where all conflicts were worked out early in the
memory-access process and all requests from a given port returned to the port in order.

The use of a multistage network instead of a single-stage crossbar for interprocessor memory connections
was aimed at enhancing scalability in the building of cven larger systems with 64 or 1024 processors.

However, crossbar networks work only for small systems. To entrance scalability, emphasis should be given
to data routing, heavier reliance on processor-based local memory (as in the Cray 2), or the use of clustered
structures (as in the Cedar multiprocessor) to offset any increased latency when system sine increases.
The C-90 ond Cluster: The C-90 was further enhanced in technology and scaled in sine from the Y-MP
Series. The architectural features of C-9th'l625t5 are summarized in Table 8.3. The system was built with
I6 CPUs, each of which was similar to that used in the Y-MP. The system used up to 256 megawords
(2 Gbytcs] of shared main memory among the 16 processors. Up to 16 Gbytes of BSD memory was available

F|'>r'MfGJ'|Ili' H“ I'm-l!I;|(1rHt\

NU i _ Advanced Computcrhrchitecturc

as optional secondary main memory. In each cycle, two vector pipes and two functional units could operate in
parallel, producing four vector results per clock. This implied a four-way parallelism within each processor.
Thus I6 processors could deliver a maximum of 6-4 vector results per clock cycle.

The C-90 used the UNICUS operating system, which was extended from the UNIX system V and Berkeley
BSD 4.3. 'l‘he C-90 could be driven by a number of host machines. Vectorizing compilers were available for
Fortran 77 and C on the system. The 64-way parallelism, coupled with a 4.2-its clock cycle, lead to a peak
perfonnance of l 6 Gllops. The system had a maximum [ID bandwidth of 13.6 Gbytesfs.

Multiple C-5lCI‘s could be used in a clustered configuration in order to solve large-scale problems. As
illustrated in Fig. 8.11, four C-90 clusters were connected to a group of SSDs via 1000 lvlbytesfs channels.
Each C-90 cluster was allowed to access only its own main memory. However, they shared the access of
the SSDs. In other words, large data sets in the SSD could be shared by four clusters ol‘C-90’s. The clusters
could also communicate with each other through a shared semaphore unit. Only syncluonlzation and control
information was passed via the semaphore unit. In this sense, the C-9D clusters were loosely coupled, but
collectively they could provide a ITlfl.Kl1'l1l11'l'l of 256-way parallelism. For computations which were well
partitioned and balanced among the clusters. a maximum peak performance of 64 Gflops was possible for a
four-cluster configuration.

C90 CQO
{1B P's] [16 P's]

i Solldetatoéltorago Dovloo [BSD] 1

C90 CQID
[16 P'sf| [16 P's)

Fig. IL11 Four CrayY-HP C.-90': connected to a common SSD forming a loosely coupled 6-II-way parallel system

The Ci-nryiMPP System Massively parallel processing (MPP) systems have the potential for tackling
highly parallel problems. Standard oft‘-the-shelf microprocessors may have deficiencies when used as
building blocks of an NIP? system. Wliat is needed is a balanced system that matches fast processor speed
with fast L"D, fast incrnory access, and capable software. Cray Research announced its MPP development in
October I992. The development plan sheds some light on the trend towards MPP from the standpoint of a
major supercomputer manufacnirer.

Most of the early RISE microprocessors lacked the connnunication, memory, and synchronization
features needed for efficient MPP systems. Cray Research planned to circumvent these shortcomings by
surrounding the RISC chip with powerful communications hardware, besides exploiting Cray’s expertise
in supercomputer packaging and cooling. in this way, thousands of commodity RISC processors would
be transformed into a supercomputer-class MPP system that could address terabytes of memory, minimize
communication overhead, and provide flexible, lightweight synchronization in a Ul"~lIX environment.

,,,,,,.,,,.m,,,,,,5,._m,,.,,,,,t, _ “I
Gray's first MPP system was eodesnamed T3D because a three-dimensional, dense torus network was

used to interconnect the machine resources. The heart ofCray’s T31) was a scalable macroarehitecttire that
combined die DEC Alpha microprocessors through a low-latency interconnect network that had a bisection
bandwidth an order ofmagnitude greater than that of existing MPP systems. The T3D system was designed
to work jointly with the Cray Y-MP C-90 or the large-memory M-90 in a closely coupled fashion. Specific
features ofthe MPP macroarchitectirre are summarized below:

(I) The T3D was an MIMD machine that could be dynamically partitioned to emulate SIMD or
multicomputer IVHMD operations. The 3-D torus operated at a 150-MHZ clo-ck matching that of
the Alpha chips. High-speed bidirectional switching nodes were built into the T3D network so that
interprocessor communications could be handled without interrupting the PEs attached to the nodes.
The TBD network was designed to be scalable from tens to thousands of PEs.

{2} The system used a globally addressable, physically distributed memory. Because the memory was
logically shared, any PE could access the memory of any other processing element without explicit
message passing and without involving the remote PE. As a result, the system could be sealed to
address terabytes of memory. Latency hiding {to be studied in Chapter Qj was supported by data
prefetching, fast syricllronization, and parallel IEO. These were supported by dedicated hardware. For
example, special remote-access hardware was provided to hide the long latency in memory accesses.
Fast synchronization support included special primitives for data-parallel and message-passing
programming paradigms.

(3) The CrayfMPP used a Mach-based rnicrolcemel operating system. Each PE had a microlternel that
managed communications with other PEs and with the closely coupled Y-MP vector processors.
Software portability was a rnajor design goal inthe C-rayfli-[PP Series. Software-oortfigurable redundant
hardware was included so that processing could continue in the event of a PE failure.

(4) The Cray CFTTT compiler was modified with extended directives for MPP applications. Program
debugging and performance tools were developed.

CmyH\i'lFP Deweloplnent Phase: The Phase lll "‘j;::;f;‘$§;p‘;““
original Crayi'MPP program was planned to HQQH Psfiflmaofls
have three phases as illustrated in Fig. 8.12. 5.
The T3Di‘ MPP was attached to the Cray Y-MP A ' fi ii
as a back-end accelerator engine. Besides {1g;;_5fg'§|m with 1Tc§;l,?;Baaknn
hardware development, the biggest challenge F'°'f°"“a"°°
in any MPP development is the software f
environment and availability. The Cray mfipmwsm
T3D programming model was based on an miifigiiiatiim with aoo
Ii-IIMD—oriented concept. Both the Connection Gm”? peak PM I
Machine CM-5 {lobe describedin EB|2.'l'lDI'1 as] {1gg3.";“w5,
and tiie Cray T3D emphasized this model, in cm, Y_HP 1@24_pmm_,_a

{irdudiog C90 =1 Oorlfig-lration with -isoorder to broaden the application spectrum for
their machines. More recent developments in
Cray supercomputer systems are reviewed in
ChaPl'i-"1'13- Flg.II.12 The detreioprnent phases of the original Cny.il*'lPF'

systnem {Courtesy of Cray Research. 1992)

M90) Gflops peak

Hifil ciay MPP (ram

HM‘ MIGIIIIH Hnlifiu-i!I;|r1riit\

HI i _ iidrorlced Coimpiitcrhrciritccture

8.1.3 Fujit:suVF'1DU'D and VFP5 DU

Multivector multiproccssors from Fujitsu Ltd. arc reviewed in this section as supercomputer design examples.
The VP2iIi0iIl Series offered one- or two-processor configurations. The VPPSOG Series offered from 7 to
222 processing elements (PEs) in a single MPP system. The two systems could be used jointly in solving
largo-scale problems. We describe below the functional specifications and technology bases of thc Fujitsu
supercomputers.

The Fujitsu VP! tlilll Figure 8.13 shows the architecture of the VP-2l500i'i 0 uniprocessor system. The
system could be expanded to have dual processors (thc VP-2400340). The system clock was 3.2 ns. the main
memory unit was of l or 2 Gbytes, and the system storage unit provided up to 32 Gbytes ofextended memory.

Each vector processing unit consisted of two ioadfstore pipelines, three functional pipelines, and two
mask pipelines. Two scalar units could bc attached to each vcctor unit, making a maximum of four scalar
units in the dual-processor configuration. The maximum vector perforrnance ranged fiom 0.5 to 5 Gflops
across iii different models of the i/P2000 Series.

Vector Processing Unit [\i"F*U)

Vector Units Mask "name
1.

M kMask
registerMain

.. .. 5*°"aQ° Multiply a
Sygtgm J Lsgdif-l:1~'@ II Add.ti_oigical pipeline
Storage F‘ 9° '3 ‘doctorU H I Multiply iii
[SSW mare iflqlslei _ .iu:|d.tLo<_:|ical pipeline

slimline L Divide pipeline

Charnol I i
Processor Scalar “nus Bufim, Scalar

i [CH Pl | GidflfldunEton

Fig. 5.13 The Fu|irsu VP2000 Series superoompucer architecture {Courtesy of Fulirsu, 1991}

I/)
Cg Example 8.5 Reconfigurable vector register file in the

Fujitsu VP2000
Vector registers in Cray and Fujitsu machines are illustrated in Fig. 8.14. Cray machines used 8 vector
registers, and each had a fixed length of 64 component registers. Each cornponeznt register was 64 bits wide
as shown in Fig. i§.14a.

-r M I; H If '||rr.- |r_.I.I||r\M ,,M,,,,,, Sm[Mm 1,, M

$2

VFGCI
5&1

VRO
VH1

‘UR?

64 Component mglstets I.
I

0
0 1 I e

11,12’ 0 n u u 53

[a]Elghtve-nztorre-glsters(B:-<54:<54h|ts]onGraymaehlnes

6;-<3 2a» ;-t1 >< 6:-<51 X102 /Mum
DB-1'

t;I‘w‘M‘M‘M‘w‘1/
A component counter was built within each Cray vector register to keep track of the number of vector

elements fetched or procmsod. A segrhent of a 64-element suhvoetor was held as :1 package in each vector
register. Long vectors had to he divided into 64-element segments before they could he processed m a
pipelinod fashion.

In an early model of the Fujitsu VP2000, the vector registers were reconfigurable to have variable lengths

[h] Vector registers configurations in the Fujitsu VPZOIDID

Fig. IL14 veneer register file in Cray and F|.|ji|.eu sup-ermrnpuum

component
register

The p|n"p-use was to dynarniealiy match the register length with the vector length being processed.

Thu‘ Ml.'I;Ifllb' HI" l'n¢r.q|r_.u|»r\ -
H4 i Advanced Coinpumerfirdtitecturs

As illustrated in Fig. 3.l4h, a total of 64 Khytes in the register file could he configured into 8, lo, 32, 154,
128, and 256 vector registers with 1024, 512, 256, 128, 64, and 32 component registers, respectively. All
component registers were 64 hits in lengfli.

In the following Fortran Do loop operations, the three-dimertsional vectors are indexed by 1 with oonstant
values ofJ and K in the second and third dimensions.

lll! lll I = 0, 3]
330(1) = Ui1J,K) — Uii,J — 1.10
ZZIU) = V'[l.J,Kl — VUJ — LKII

1'-Z34t1l= WiLJ,Kl — WUJ — l,1'~'-l
ltl Continue

The program can he vectorized to have 1'10 input vectors and 35 output vectors with a vector length of 32
elements [l = D to 3 I }, Therefore, the optimal partition is to configtlre the register file as 2.56 vector registers
with 32 components each.

Soflware support for parallel and vector processing in such supercomputers will be treated in Part TV.
This includes multitasking, mscrotasking, microtssking, autotasking, and interactive compiler optimization
techniques for vectorization or paralleiization.
The VPP Sill! This was a latter supercomputer seties from Fujitsu, called terror parallel pm:-c'ss0r. The
architecture of the VPPSCID was scalable from ? to 2.22 PEs, offering a highly parallel MIMD rnultivector
system. The peak performance was targeted for 335 Gfiops. Figure 8.15 shows the architecture ofthe VPP500
used as a back-end machine attached to a \-"P2000 or a VPX 200 host.

VPP 503 Prooeosiig Elunent

I 22¢ >< 224 Crossbar Named; ,1’ I Data TH-Itflfsr Urit |

1 2 1 .~' _ ' _
can Data can ' Dam I """"“ 51"“? Um |

Trarotor Tranerler Trmstor ,’ -|-(Mme, ",
|._k'lrl _ Lhil Lktrl " U51 ‘
mam Mam Mam ‘F min u u

Storage Storage Storage Storage
'4'" '-1"", '-*1" “M ‘Cache Loan Stare

Soda‘ Soda‘ Sada‘ Lil"! Sada‘ Uritl I Pitflllfle Plpflliflfium Urit ‘Hoot! um _ Hector um ;

Lhlt

_,.-
r I s

Conrol Plooeosiig ‘K Proosmisg ,3’
Processors Element '-,_%e|‘it,»' Reiiun

\~--

‘ Masko.-.\ \ Vector Registers VH5?-sun 1

Sysbm Sbraga Liit ~"~__ 5633
in E"B“".“°“ —l 1

54

‘-‘ Dm-do fgfé Mul-iflll‘ Mast
VPQIXI) Cl‘ VP}-(E SBCCI‘ldHy p|pfl|-flg e pqpiglmg pqflllmgswag, seem

Fig. 8.15 Tin Fulhzsu 'v'F'P"..iDfl ard1lucmro{Cotu-easy olFu[|rsu,1992)

,,,u,M,,,,,,,d5,._,,.,C,,,,,,,,t_., . _ M
Each PE had a peak processing speed of L6 Gllops, implemented with 256K—gate Galas and BiCMOS

LSI circuits. Up to two control processors coordinated the activities of the PEs through a crossbar network.
The data transfer units in each PE handled inter-PE communications. Each PE. had its own memory with up
to 256 Mbytes of static RAM. The system applied the global shared virtual memory concept. [n other words,
the collection of local memories physically distributed over the PEs formed a single address space. The entire
system could have up to 55 Gbytes of main memory collectively.

Each PE had a scalar unit and a vector unit operating in parallel. These functional pipelines were very
similar to those built into the VP2000 (Fig. 8.13), but the pipeline fiinctions were modified. We have seen the
224 >< 224 crossbar design in Fig. 2.26b. This was by far t.he largest crossbar built into a commercial MPP
system. The crossbar network is conflict-free, since only one crosspoint switch is on in each row or column
ofthe crossbar switch array.

The VPPSDI] ran jointly with its host the UNIX System V Release 4-based UXPIVPP operating system
with support for closely coupled MIMD operations. The optimization functions of the Fortran T? compiler
worked with the parallel scheduling function of the UNIX-based OS to exploit the maximum capability of
thc vcctor parallel architccturc.

The data transfer unit in each PE provided 400 Mbytesrs unidirectional and SUI) Mbytesrs bidirectional
data exchange among PEs. 'l‘he unit translated logical addresses to physical addresses to facilitate access to
the virtual global memory. The unit was also equipped with special hardware for fast barrier synchronization.
We will further review the software environment for the 1.-"PP5l]{l in Chapter ll.

The system was scalable with an incremental control structure. A single control processor was suflicient to
control up to 9 PEs. Two control processors were used to coordinate a VPP with 30 to 222. PEs. The system
performance was scalable with the number of PEs spanning a peak performance range from l l to 335 Gflops
and a memory capacity of 1.8 to 55 Gbytes.

8.1.4 Mainfrarries and Hinisupemcomputers
In the early l9'9Ds, several high-end mainfrarnes, rninisupercomputers, and supcreomputing workstations
were introduced. Besides summarizing these systems, we examine the architecture designs of the VAX 9000
and Stardent 3000 as case studies. The LINPACK results compiled by Dongarra (1992) are presented to
compare a range of these computers for solving linear systems of equations.

High-End Mainframe Supercomputer: This class of supercomputers have been called ncar-
supcrr-o.-rzpurer.r. In the early 1990s, they offered a peak performance of several hundreds of Mflops to
2.4 Gflops as listed in Table 8.4. These machines were not designed entirely for number crunching. Their
main applications were in business and transaction processing. The floating-point capability was only an add-
on optional icaturc ofthesc rnainframc rnachincs.

The number of CPUs ranged from one to six in a single system among the IBM ESEFJDUU, VAX 9000, and
Cybcr 2001] listed in Table 8.4. 'l'he main memory was between 32 Mbytes and 1 Gbyte. Extended memory
could be as large as 8 Gbytes in the ES.-@000.

‘v'cctor hardwarc was an optimal fcaturc which could bc uscd concurrcntly with thc scalar units. Most
vector units consisted of an add pipeline and a multiply pipeline. The clock rates were between 9 and 3!] ns
in these machines. The IEO subsystems were rather sophisticated due to the need to support large database
processing applications in a network environment.

DEC FAX 9000 Even though the VAX 9-00!) did not provide Gflop performance, the design represented a
typical maiofiame approach to high-perfonnance computing. The architecture is shown in Fig. 8.1-Ga.

F?» Mtfiruw HI! r'».-rqiwinw
Hi i Adnwrced Computerhrchitactora

Multichip packing technology was used to build the VAX 9000. It offered 40 times the VAJUTBD
perfonnanee per processor. With a four-processor configuration, this implied 15? times the ll/780
performance. When used for transaction processing, T0 TFS was reported on a uniprocessor. The peak vector
processing rate ranged from 125 to SUD Mflops.

The system control unit utilized a crossbar switch providing ['otu' simultaneous SUD-Mbytesfs data
transfers. Besides incorporating intcn:orm-cct logic, the crossbar was designed to monitor thc contents of
ca-chc memories, tracking thc most up-to-date cache content to maintain cohcrcncc.

Up to 512 Mbytes of main memory were available using I-Mhit DR.AMs on 64-Mbyte arrays. Up to
2 Ghytcs of extended memory were available using 4-Mhit DRAMs. Various [I0 channels provided an
aggregate data transfer rate of 320 Mbytes/s. The crossbar had eight ports to four processors, two memory
modules, and two UCI controllers. Each port ltad a maximum transfer rate of l Ghytefs, much higher than in
bus-con nccted sy stem s.

Table 8.4 High-end Mulnjharne Supercomputers

(.'hcrrac'!r.':'i.\1‘ icr

Machine " '}alti'E;§i'§oi1ii'
-9l'lfll"F'

DEC FAX
Qllllfl.-"4-r‘|'i' VP

raps
Cesar zoos V

Number ofprocessors 6 processors each
attached to a vector
facility

4 processors with vector
boxes

2 central processors
with vector hardware

Machine cycle time Qns 16ns 9ns
Masimum memory | Gbyte 512 lvlb)-tes 512 Mbytes
Extended memory 8 Gbytcs 2 Gbytes ltifi 77
Processor
architecture: vector.
scalar, and other
functional units

Vector facility (‘I/F]
attached to each
processor, delivering 4
floating-point results
per cyclic.

Vector processor
(VBOXI connected to a
scalar Two vector
pipelin per VB-OX.
Four flltl£Ilt'ltt£\ll.tl1ll_‘i in
scalar CPL’.

l-‘PU for add and
multiply, scalar unit
with divide and
multiply, integer unit
mat husiims data
handler per processor.

lit) subsystem 256 ESCCIN fiber optic
channels.

4 XMI I.-"CI buses and
14 VAXBI I."O buses.

I8 HO processors with
optional 18 additional
U0 processors.

Operating system MVSEESA, VMFESA,
\-"SE-'ESA

V MS or U LTRIX NDSNE

vectoriztng
languagesr
compilers

Fcflrart V2 with
interactive
vcctorization.

VAX Fortran compiler
supporting concurrent
scalar and vcctor
processing.

Gyher 2000 Fortran V2.

Peak perfonnanee
and rernurks

2.4 Gflops SOD Mflops peak. 210 lutflops per
processor.

Each vector processor UJBOX) was equipped with an add and a multiply pipeline using vector registers
and a rnask!'adcl.ress generator as sltowrt in Fig. E.16b. Vector l.|l.5l]'I.1Cl.'lD‘I!S were fetched through the memory

,_.m,..,,,,,,,5,._..,.,,,,,,,m_., ; _, m
unit (MBDX), decoded in the IBOX, and issued to the VBDX by the EBOX. Scalar operations were directly
executed in the EBOX.

Memory Memory

to 1 Gbyto to 1 Gbyti

‘II

Samoa I I
Processor 53‘5""“Cclrtlrctl Cache your“Y‘ or “cc

CPU 1 Crossbar Switch
Wflfll El H‘ Gar 2 GB)‘:

Processor 1 5 -HJ4
Cache .

C no

CPU 2 4 Rteadfwrite Paths
,_-,1“ Gl'lEI|"i* fill] MBI's each

.. _. H33“ t
1 GE!s

ID
Control

Up ti 12
LPO lntorfaoo

per Khlll

1 Gflfs

l"'D
Gonlml

Up to 12
IID Interface

per XMI

{at The VAX QIHII mulliprocesscir sys/ham

‘Vector
oontml-

Fltegistor
I Unit are

‘vector

H: 1
{hJTho vector prooossor {VEDXJ

FIg.II.1i The DEC VAX 9090 syscarn architecture and voccor processor design (Courcasy of Digital
Equipment Corporation, 1991)

F?» Mtfirpw Hllltltmpwtnw
H3 i Adewrced Comptrterhrchitecture

The vector register file consisted of ts >< 64 >< 64 bits, divided into sixteen 64—element vector registers. No
instruction took more than five cycles. The vector processor generated two 64-bit results per cycle, and the
vector pip-clincs could be chained for dot-product opctations.

The VAX 9000 could run with either VIVIS or ULTRIX operating system. The sectvice processor in
Fig. 3.I6a used four MieroVAX processors devoted to system, disk/tape, and user interface control and to
monitoring 20,000 scan points throughout thc system for tcliablc operation and fault diagnosis.

Minisupereomp uter: These were a class of low-cost supercomputer systems with a performance of about
5 to 15% and tt cost of 3 to 10% of that of a full-scale supercomputer. Representative systems of the early
l990s include the Convex C series, Alliant FX series, Encore Multirnatt series, and Sequent Symmetry series.

Some of these minisupercomputers have been introduced in Chapters l and T. Most of fltetn had an open
architecture using standard ofi’-the-shelf processors and UNIX systems.

Both scalar and vcctorproccssing was supported in thcsc multiptoccsstirsystcnis with shared tncmo ry and
peripherals. Most of these systems were built witl:t a graphics subsystem for visualization and perforntance—
tunirtg purposes.

Supercomp uting Workstation: In the early 1990s, high-perforrnance workstations were being produced
by Sim Microsystents, IBM, DEC, HF, Silicon Graphics, and Stardent using the state-of-tl'|e-art superscalar
RISC processors introduced in Chapters 4 and 6, Most of these workstations had a uniprocessor configuration
with built-in graphics support but no vector hardware.

Silicon Graphics produced the 4-D Series using four R3000 CPLTs in a single workstation without vector
hardware. Stardent Computer Systems produced a departmental supercomputer, called the Stardent 3000,
with custom-designed vcctor hardwatc.

The Stardom 3000 The Stardent 3000 was a multiprocessor workstation that evolved from the TITAN
architecture developed by Ardent Computer Corporation. The architecture and graphics subsystern of the
Stardent 3000 are depicted in Fig. 8.17. Two buses were used for commtutication between the four CPUs,
memory, HO, and graphics subsystems (Fig. E.l'.|'a).

The system featured R3000 /R3010 processorsffloatingpoint units. The vector processors were custom-
designed. A 32-MI-lz clock was used. There were 128 Kbytes of cache; one halfwas used for instructions and
thc other half for data.

The buses carried 32-bit addresses and 64-bit data and operated at 16 MHz. They were rated at
I28 Mbytesfs each. The R-bus was dedicated to data transfers from memory to the vector processor, and the
S-bus handled all other transfers. The system could support a maximum of 5 12 Mbytes ofmemory.

A filll graphics subsystem is shown in Fig. S. 17b. It consisted of two boards that were tightly coupled to
bofll the CPUs and memory. These boards incorporated rasterizers (pixel and polygon processors), frame
bufifcrs, Z-bufiiers, and additional overlay and control planes.

,,,,,,;,,d,,,,,,‘,5,,,,M,,,,,,,,, _ _ W
Scalar mm Main Memory

Pro-oeeoeor Processor [B MB — 512 MBII

- 5-El-us [128-I'u1B.1'Sec]

I R-Bus [12BI'u'|Bl‘S-ac]

Cola Monltor Ham Grapncs fieyboaérfia 5C.s| Bug
Boa cl °‘-‘G9 Board' Other Perlpherals 5CS'B‘“

Graphics Expansion VME Expanslon
NTSC E1I|1BI'11B'T “ME Bvideo Signm Board [optlonalj Board [optional] "5

[a] The Stardent 3000 system architecture

System Bus

61-h~It
IIIMA

Channel

DMA
Channel

essorBus

Base Gra phlcs
Board

SystemIInterface
3.2-hlt

Pixel and Polygon
Pm-ce-ssors

Image

Frame Buffer
Z-Buffer Me mory

[8 Planes]

I lay Memo
[23 Planes)

Com-el Pla

Dlsplay Interface

Ree Gree Blue

[DC

PlacedandPolygonP

Graphl-as Ex pension
Board

Plnel and polygon
prooeesere

Image

Image

Expert-slon Frame Buffer

Image M
[16 Plan

gi2%5%Im
[16

Flg.lI.11' The Stardam 3000 vinmlimtiun departmental sup-erccmtputer {Coureesy of Stmzlam Campuuur
1990]

[bl The graphics subsystem arehttectue

F?» Mtfirun-I Hllitlimpwrnw
BTU P Advlelrrced Compirterhrchitactura

The Stardent system was designed for numerically intensive computing with two— and tliree-dimensional
rendering graphics. One to two IEO processors were connected to SCSI or VME buses and other peripherals
or Ethernet connections. 'The peak performance was estimated at 32 to I 23 MIPS, I 6 to 64 scalar Mfiops, and
32 to I28 vector Mflops. Scoreboard, crossbar switch, and arithmetic pipelines were implemented in each
vector proccssor.

Gordon Bell, chief architect ofthe VAX Series and ofthe TITANr’Stardent architecture, identified ll rules
of minisupercomputer design in 1939. These rules require performance-directed design, balanced scalar!
vcctor operations, avoiding ho lcs in thc pcrfotrnancc space, achicving peaks in pcrforrnancc cvcn on a singlc
program, providing a decade of addressing space, making a computer easy to use, building on others’ work,
always looking ahead to the next generation, and expecting the unexpected with slack resources.

The LIHPACK Result: This is a general-purpose Fortran library of mathematical software for solving
dense linear systems ofequations oforder I00 or higher. LINPACK is very sensitive to vector operations and
the degree of vectorization by the compiler. [t has been used to predict computer performance in scientific
and cnginccring areas.

Many published Mflops and Gflops results are based on running the LINPACK code with prespecified
compilers. LINPACK programs can be characterized as having a high percentage of floating-point arithmetic
opcration s.

ln solving a lincar systcm ofn equations, the total number cl‘ arithmetic operations involved is estimated
35 2n3I'3 + 2,5, whcrc H = tom in the LINPACK. experiments.

Ovcr many ycars, Dongarra comparcd thc pcrformancc ofvatious computcr systems in solving dcnsc
systems of linear equations. His performance experiments involved about IUD computers.

The timing information presented in this report reflects the floating-point, parallel, and vector processing
capabilities of l.l1e machines tested. Since the original reports are quite long, only brief excerpts are quoted
in Table 8.5.

The second column reports LINPACK performance results based on a matrix oforder n = I00 in a Fortran
environment, The third column shows the results of solving a system of equations of order n = lt"l'Dl] with no
restriction on the method or its implementation. The last column lists the theoretical peak performance of the
machines.

The LINPACK results reported in the second column of Table 3.5 were for a small problem size of
I04] unknowns. No changes were made in the LINPACK software to exploit vector capabilities on multiple
processors in the machines being evaluated. The compilers of some machines might generate optimized code
that itsclfacccsscd spccial hardware fcaturcs.

The third column corresponds to a much larger problem size of ltltltl unknowns. All possible optimization
means, including user optimimtions of the software, were allowed to achieve as high an execution rate as
possib lc, callcd thc bes'f-cflbrt Mflops.

The theoretical peak can easily be calculated by counting the maximum number of floating-point additions
and multiplications that can be complctcd during a period oftimc, usually thc cyclc timc ofthc machinc.

,,,,,,M_,,,,,¢,,,,5,,,,M£,,,,,,,,, _ _ 3,“
Table 8.5 Perfiarmmce in Solving u Sptun o]"L|nonr Equations

Model
Computer LINPACK Benchmark

n-I00
OS/Compiler; Mflnpe

Hes:-qfion Tlioomric
fMfFfl.v-W) PM
'1 =' PW fhfflviw

Cray Y-MP C90
(16 pron, 4.2 ns)

CF7? 5.0 -31:
-Wt!-H58 419 V 9115 16000

NEC SK-3H4
(1 prom, 2.9 ns}

ii msxnzn
R! .11. —pi“' 3-14 4511 5500

Fujitsu VP2400.I' I0
(4 nit)

Fottnu1T7 EX :"VP
‘Vll L10 179 1688 2009

Convex C38-Ill)
(4 pron, l6.’.~' us)

ii emu -lm 1:38 -03
-<:p -cls -is 75 425 480

IBM ESI9000-520VF
(1 proc_, 9 ns}

vast-2Y\?§
Fortran V2124 69 333 444-

FPS 5105 MCPTB?
('7 |iroc., 25 ns}

Pg;f7T -D4
—Minlim: 33 134 230

Alliant FX/2800-200
(14 processors)

**rm*i.i.:i
-O -inline 31 325 565]

DEC VAX9000.-‘4lBVP
(1 pron, I6 ns)

HPO V 1 .3-— I 63V,
D'X?v'[L 22 89 125

coc Cybcr ans
<4 vim)

11' 195 45!]
seam 2.040 " 3.0 -inlinu

—nmu -= 300 12 '77 123
sun S-Pi\RC5tatiun 2 111 1.4363

-cgB9 -dalign 4 NIA NIA
IBM P'C."AT
with 3023'?

" Microsofi NM.
0.009] NIA

NM
NIA

Source: Jack Dongarra, "1'-‘erfonnance of Various Computers Using Standard Linear Equations S-ofiware,” Computer
Science Dept, Univ. ni'Ttm.nesscc, Knoxville, TN 3‘I9'945-I301 , March 1992.

39
CrayY-MPIB

Example 8.6 Peak performance calculation for the

The Cray Y-MPIB had a cycle time offi ns. During a cycle, the results of both an addition and a multiplication
could be completed Furthermore, there were eight processors operating sirnultanoo Ll.'i|]p’ without interference
in the best ease. Thus, we calculate the peak pcrfonnancc of the Cray Y-MPIS as follows:

FM Mtfirpw H'lllt'n.-rq|onn1'
IT! E ' .-ldeonced Compurterfirchitectoro

 ><g >< B processors = 2667 Mflops = 2.6 Gflops (3.12)
1 cvclc 6 >< 10"“ s

The peak performance is often cited by manufacturers. It provides an upper botmd on the real perfonnanee.
Comparing the results in the mend and third columns with the peak values, only 2.9 to 36.3% ofthe peak was
achieved in these runs. This implies that the peak performance cannot represent sustained real performance in
most cases. Often, only about 10% of the peak perfonnance is achievable.

COMPOUNDVECTOR PROCESSING

1 In this section, we study compotmd vectoropcratiotts. Multipipcline chaining and nctworlcing
techniques are described and design examples given. A g1'aph traiisfonnation approach

is presented for setting up pipeline networks to implement compound vector iilnctions, which an: either
specified by the programmer or detected by an intelligent compiler.

8.3.1 Compound Vector Operations
A compound vecrorjhncfion (Ci.-’F] is defined as a composite function of vector operations convened from a
looping structure oflinlted scalar operations. The following example clarifies tin: concept.

5?)
SAXPY code

Consider the following Fortran type loop of a sequence of five scalar operations to be executed N times:

Do ll] l= 1, N
Load R1, X(1)
Load R2, Y(I)
Multiply R1, S (8.13)
Add R2, R1
Store YQI}, R2

10 Continue

Example 8.7 A compound vector function called the

where X(I} and Y{I), I =1, 2, ..., N, arc two source vectors originally residing in the memory. Afier the
computation, the resulting vector is stored hack to the memory. 5 is an immediate constant supplied to the
multiply instruction.

Afier vectoriaation, the above scalar SAXPY code is converted to a sequence of five vector instructions:

M [it : it + N — 1) -3- ‘v'l i-ireror fmtri
M [y : y + N — l] —> V2 iiv.~mr Invnf

S >< 'v'l —> ‘s-'1 lire-For mufrijrJ[}-‘ (8.l-4|}

,,,,,,,,,,,,_,,,,,,,.,,,,,,,,,,,, _ m
V2 + \-'1 —> V2 lircfor unit!

V2 —> M(y : y + N — 1) literor store

The same vector notation used in Eq. 4.l is applied here, where it and y are the stoning I‘l'|GII'|0'l'y addresses
of the X and Y vectors, respectively; V1 and V2 are two l“~l~element vector registers in the vector processor.

The vector code in Eq. 8.14 can be expressed as a CVF as follows, using Fortran 90 notation:
Y(l:N)=S><X(l1N]+Y(l:N_) (3.15)

For simplicity, we write the above expression for a CVF as follows:

Y(l) = S >< X[l) + Y(l_] {H.161}

where the index l implies that all vector operations involve N elements.

Compound Vector Function: "liable 8.6 lists a number of example CW5 involving one-dimensional
vectors indexed by I. The same concept can be generalized to multidimensional vectors with multiple indexes.
For simplicity, we discuss only CVFs defined over one-dimensional vectors. Typical operations appearing
in these C\"Fs include land, stem, nm!n]n!__v, dr'v.ide, fogtrni, and shgritng vector operations. We use "slash" to
represent the .n‘ivr'r.ft= operations. All vector operations are defined on a component-wise basis unless otherwise
specified.

The purpose of studying C"v’Fs is to explore opportunities for concurrent processing of linked vector
operations. The numbers of available vector registers and functional pipelines impose some limitations on
how many C"v'Fs can he executed simultaneously.

Tabla 8.5 Repnsontntlvo Compound ltsctor Ftmcdom

One-dimertriorrai compound vectorfunctions Maximum ehrriningdegree

V1 {ll " VIII) * V311} X V4-[I] 2

V1(I} = any + cm 3
.='t{l} "v"l{|}><S+B(l] 4

AH} — v1tn+ on; + en) 5
sin am-s><C(1) s
sin = any + en) + on) is
not o><v|(nnz><ot1;-cot) 1
nit} n{|}><c{|)+o(1)><v1t't) 7
AH}=Vl{l)+{1 r.s(1)+t iB(I}+Log(V2{l)) ti
not ,iv2n) + sintnn) - can + van) 8
not nt_n><c{|)+n(o>< a(t)><s 9
Ail‘) {Ail} - nn}><c(n + om) ><n_t to

Note: Vifl) are vector registers in the processor. Ml}. Bfl]-, Cit], DH]-, and EH) are vectors in tnemory. Scalars
indicated as Q, R, and S an: available From sealer registers in the processor. The choosing degrees include both
memory-access and titnctional pipeline operations.

The Mtfirnii H'["I'nrl!q|;lrlII'\' _
314 i .-tdmnced Contplrterhrdritectore

8.3.2 Vector Loops and Cl-raining
Vector pipelining and chaining are an integral part of all vector processors. Concurrent processing of scvcral
vector arithmetic, logic, shift, and memory-access operations require the chaining of multiple pipelines in a
linear cascade. The idea of chaining is an extension of the technique of internal data forwarding practiced in
a scalar processor (Fig. 5.15), and also leads to Stream Processing (sec Chapter 13).

Chaining affects the specd of vector processors. Each of the CVFs listed in Table 8.5 is potentially a
candidate for chaining. However, tl1c implementation may hinge on the particular architecture of a vector
machine. Principal concepts and implementations of vector looping, chaining, and recursion are dcscrib-ed
below.

Hactor Loop: or Strip-mining When a vector has a length greater than that of the vector registers,
segmentation of the long vector into fixed-length segrricnrr is necessary. This technique has been called
strip-raining. One vector segment [one surface of the mine field) is processed at a time. In the case of Cray
computers. the vector segment length is 64 elements.

Until all the vector elements in each segment are processed, the vector register cannot be assigned to
another vector operation. Strip-mining is restricted by the number of available vector registers and so is
vector chaining. In the Fujitsu VP Series. the vector registers can be reconfigured to match the vector length.
This allows SlJ'ip—mining to be done more dynamically with a different “depth” in different applications.

The program construct for processing long vectors is called a vector Imp. ‘vector segmentation is done by
machine hardware under sottware control and should be transparent to the programmer. The loop count is
determined at compile time or at run time, depending on the index value. inside a loop, all vector operands
have equal length, equal to that of the vector register.
Functional Unit: lndepen-deuce [n order lor vector operations to be linked, they must follow a linear data
flow pattern, and all functional pipeline tmits employed must be independent of each other. Thc same unit
cannot he assigned to execute more than one instruction in the same chain.

l-"urthcrmore, vector registers must be lined up as interfaces between functional pipelines. The successive
output results of a pipeline unit are fed into a vector register, one element per cycle. This vector register is
then used as an input register for the next pipeline unit in the chain.

With the requirement of continuous data flow in the successive pipelines, the interface registers must be
able to pass one vector clcrncnt per cycle between adjacent pipelines. There may be transition time delays
between loading the successive vector segrncrtts into the interface registers.

To avoid conflicts among different vector operations, the vector registers and fiinctional pipelines must
be reserved before a vector chain can be established. The vector chaining and the timing relationship are
illustrated in Figs. 3. l S and S19 for executing the vcctorized SAXPY code specified in Eq. 3.14.

P)
[<2] Example 8.8 Pipeline chaining on Cray Supercomputers

and on the Crayx-MP (Courtesy offiray Research,
lnc.,19ll5)

The Cray 1 had one memoryotceess pipe for either load or store but not for both at the same time. The Cray
X-MP had three memory-access pipes, two for t-‘actor food and one tor vector smre. These three access pipes
could be used simultaneously.

,.m,.,,,,,,_,5,._,.,C,,,,,,L,,, m
To implement the SAXPY cod: on the Cray i, thc fivc voclor opcrali-:ms arc dividcd into ihrcc chains: Thc

first chain has only one vector operation, fond 1’. The second chain links the fond X in scalar-vccfinr mu!n‘pi_1-
(S X) -npcnitinns and ihcn to thc vector addopcration. Thc last chain is for smrc 1" as illustrated in Fig. 8.1821.

Thc same set of vector opemlions was implemented on the Cray X-MP in a single chain, as shown in
Fig. 8.181;, bccausc thro: memory-aoccss pipes are used simultaneously. The chain links five vector opcralions
in a singlc connected cascade.

Roadmnte port
Road port 1 Read port 2

vecto: st
Mad Y3 -LlM 1 Access Anon-as

W-B_ 1 mm

B [Load X) Load Y]
i

Vecior register
K V2

2
ii-0&6 Kl E

Eo

<:§_§:

llllIIIIIIIIII%§%§§§ lll’
llll

I-*1
Scalar register

E:1h-=:2%4%IIII||:||llll

“<1

EInE&

E %§

%E

-'..~I = IP13!
i Scalarragistm V1

is‘; i Multiply 1

_

<1 no

Wflddi V41
i‘~'P~dfiiE

j Access
H09

{S-{OTB Y] ! [Smm Y]

RB"-HC|J'Wi'iI& B011 wmg pg“

[a] Lhnited chaining using only one rnemory'- [hi Co-rnp-iene chaining u-sing three memory/~
aoceos pipe in the Cray 1 amass pipes in the Cray X-MP

IIIn
Flg.B.1l Huilipipeiine chaining on Clay 1 and Cmy X-H“ for -mmcutii1g the SAXPY code:Y[1:N) = S X

X,{1.~i\l} +Y[1:N) (Courmsy oi Cray Resnarch.1935}

-an ‘XI ' Advwi-cod Comptmerhrdtitecture

To compare the time required for chaining these pipelines, Fig, 8.19:1 shows that roughly Sn cycles are
needed to perform the vector operations sequentially without any overlapping or any chaining. The Cray l
requires about 3n cycles no execute, corresponding to about n cycles for each vector chain. The Cray X-MP
requires about n cycles to execute.

|~__ n _b ' Time I-

LD it ‘Z I 3, {Memory ninei
to Y"'ls stil iMem-Jar nine!

PIP-Be 5 * [Mullins Piflel
+ rim! @i»°~dderr>1nei
st Y ‘la Sit {Merrwrr nine}

[aj Sequential emecution without chaining

to x s'\1\.i'“'°""°‘Y Pl-“Q1
to Y sltnmwPip“!

Pinfil 5 * }‘3haifl m IMHHIW ninei
* em iA*‘-“W Pipfll
ST Y Sm [Memory pipe)

[bi Chaining of arithmetic pipes with oniy one memory pipe

LD Jt calm“ mp“ ll Cap-tione:are s@*~c-1>in - =
sing: S * mlmumply pip“) n = Time to pro-once n elements,
chain + s‘iiAdde=rt>1nei one no woe

ST Y s‘i.lS"°'“ ml
[cl Chaining in two toad pipers, two arithmetic pipes, and one store pipe

Fig-I-19 Timing for cheating the SAXPT co-deY{1 :N] = S X Xi‘! :N]i + 'l'{1:l'~l} under diiienent memory-
acoess capabilities (Cournesy of Cray Research. 1935)

In Fig. 8.19, the pipeline flow-through latencies {stariup delays} are denoted as s, m, anda for thc memory-
acccss pipe, the multiply pipe, and the add pipe, respectively. These latencies equal the lengths of individual
pipelines. The exact cycle counts can be slightly greater than the counts of Sn, 3n, and n due to these extra
delays.

The above example clearly demonstrates the advantages of sector chaining. A meaningful chain must
linb: two or more pipelines. As tar as thc amount oftirnc is conccmed, thc longcr the chaining, thc better the

,,,,,,,.,,,,,,,,,,._.,,,,,,,,,,, _ 3,,
performance. The degree ofcbaa'nr'ng is indicated by thc number ofdistinct pipeline units that can be linked
togcthcr.

‘v'c-ctor chaining eficctivcly increases thc overall pipeline length by adding thc pipeline stages of all
fttnctitrnal units in the chain to form a single long pipeline. The potential speedup of this long pipeline is
certainly greater according to Eq. 5.5.
Chaining Limitation: The number ofvector operations in a CVF must be small enough to make chaining
po ssib lc. Vectorchain irtg is limited by the small ntlrnbcrofiitnctional pipelines available in avector processor.
Furthermore, the limited number of vector registers also imposes an additional limit on chaining.

For example, the Cray Y-MP had only eight vector registers. Suppose all memory pipes are used in a
vector chain. These require that three vector registers (two for vector rand and one for vector srortrj be
reserved at the beginning and end of the chaining operations. The remaining five vector registers are used for
arithmetic, logic, and shift operations.

The number of interface registers required between two adjacent pipeline units is at least one and sometimes
two for two source vectors. Thus, the number of nott-rnernory-access vector operations implementable with
the remaining five vector registers cannot be greater than five. in practice, this number is between two and
three.

The actual degree of chaining depends on how many ofthe vector operations involved are binary or unary
and how many use scalar or vector registers. If they are all binary operations, each requiring two source
vector registers, then only two or three vector operations can be sandwiched between the memory-access
operations. Thus a single chain on the Crayi'Y—lv[P could link at most five or six vector operations including
the memory-access operations.

Hector Recurrence These are a special class of vector loops in which the outputs or“ a functional pipeline
may fccd back into one ofits own source vcctorrcgistcrs. in other words, a vector rcgistcr is used for holding
the source operands and thc rcsult clcmcnts simultaneously.

This has been done on Cray machines rising a corrtponertr cormrer associated with each vector regi ster. ln
each pipeline cycle, thc vector reg is icr is used like a shift regi stcr at the component level. When a component
operand is “shifted" out of the vector register and enters the functional pipeline, a result component can enter
the vacated component register during the same cycle. The component counter must keep track ofthe shifting
operations until all 64 components of the result are loaded into the vector register.

Recursive vector summation is often needed in scientific and statistical computations. For example. the
dot product oftwo vectors, .~i - B = _| tr, >< b,-, can be implernented using recursion. Another example is
polynomial cvaluation over vector operand s.

Summary Ciurdiscussion ofvector and pipeline chaining is based on a load-store architecture using vector
registers in all vector instructions. The number of functional units increases steadily in supercomputers; both
the Dray C-90 and tl'|e NEC SX-X offered I6-way parallelism within each processor.

The degree of chaining can certainly increase if the vector register file becomes larger and scoreboarding
techniques are applied to ensure fitnctional unit independence and to resolve data dependence or resource
dependence problems. The use of rnulliport memory is crucial to enabling large vector chains.

F?» Mtfiruw Hilitlimpwinw
BTU i Adnwrced Compirtcrhrchitccturc

‘Vector looping, chaining, and recursion represent the state of the art in extending pipelining for vector
processing. Furthermore, one can use naisiting, st-otter, and gather instructions to manipulate sparse vectors
or sparse matrices containing a large numberofdummy zero entries. A vector processor cannot be considered
versatile unless it is designed to handle both dense and sparse vectors efieetively.

8.3.3 Multipipeline Networking
The idea of linking vector operations can be generalized to a tnultipipeline networking concept. instead
of linking vector operations into a linear chain, one can build a pipenet by introducing multiple functional
pipelines with inserted delays to achieve st-'src!ie eoniputnrricln OTCVFS.

ln 1978, Kung and Leiserson introduced systolic arrays for special-purpose computing. Their idea was
to map a specific algorithm into a fixed architecture, A s_t‘s'Ioi'i'e arm}-' is formed with a nct"wccrk of functional
units which are locally connected and operates synchronously with multidimensional pipelining. We explain
below how a pipeline net can be extended irom the systolic array concept to build a dynamic vector processor
for efficient execution of various Cl/Fs.
Pipeline Net {Pipenetj Systolic arrays are built with fixed connectivity among the processing cells. This
restriction is removed in a pipeline net. A pipcnet has programmable connectivity as illustrated in Fig. 8.20.
lt is constructed from interconnecting multiple jirmtrionof pipelines ('FPs] through two bujfizred cmssbar
m=rwor.ls (BCNs] which are themselves pipelinod.

A two-level pipeline architecture is seen in a pipeline net. The lower level corresponds to pipelining
within each functional unit. The higher level is the pipelining ofFPs through the BCNs. A genetic model of a
pipeline net is shown in Fig. 3.2l]\d. The register file includes scalar and vector registers, as found in a typical
\-'CCl{lT]I1TDCC55ClT.

The set oi‘ functional pipelines should be able to handle important vector arithmetic, logic, shifting, and
masking operations. Each FP, is pipclined with l:,- stages. The output terminals of each BEN are buffered with
programmable delays. BCNI is used to establish the dynamic connections between the register file and the
FPs. BCN2 sets up the dynamic connections among the FPs.

For simplicity, we call a pipeline network a pr}-Janet. Conventional pipelines or pipeline chains are special
cases of pipcnets. Note that a pipenet is progrannnable with dynamic connectivity. This represents the
fitndamental cl.ifi'erence between a static systolic array and a dynamic pipenet I11 a way, one can visualize
pipenets as programmable systolic arrays. The prograrnrnability sets up the dynamic connections, as well as
the number ofdelays along some connection paths.

Setup ofthe Pip-en-et Figures Blilathmugh S.2t"Jd show how to convert from a program graph to a pipenct.
Whenever a CVF is to be evaluated, the crossbar networks are programmed to set up a connectivity pattern
among the FPs that matches the data flow pattern in the CVF.

The program graph represents the data flow pattern in a given CVF. Nodes on the graph correspond to
vector operators, and edges show the data dependence, with delays properly labeled, among the operators.

The program graph in Fig. S.2Da corresponds to the following CVF:

Ell) = loll) '>< Bill + Bill >< Cilll *' [Bill >< (Jill >< lclll + Dillll (3-17]
for l = 1, 2, n. This CVF has Four input vectors AU), Bil), Ctl), and D(l} and one output vector EH) which
demand five memory-access operations. In addition. there are seven vector aritlimetic operations involved.

,,._,,,,,,,,,,,,,,,,,,,,,,,,,,,,, _ _, m

Etll

9

0:: 1}

sass&,,

‘+3
Alli Bill Gill Dill

tfllflsmsram crash

aem

Y

_-

in

_

Etll

ii
may -

MFYADD I
-. 9°“!

MPY E -

Pill Bill Bill Dill

{ti} The piperneil

FF1 BC“?

FF2

FF3

FF4

-emto-= 11 a.1.¢o|

X

— E'4il-IButtered E Q Buffered
Reg-‘Gr Crossbar Crossbar

Nebvoflt hletworlt
0 F55 with 'n'iI1 q
I Frog ratrmabla Fmgrannrtatle
I Delays Delays

(BCN1) {BENZ}

El I I El

(djwtgenoralized piponet model

Flg.ll.1ll The concept of a plponet: and in Implunnrieaslon modal (Rnprlrtud from Hwang and Xu, JEEE
Trmsaaluns on Con-iputers, jan. 19%}

% ' 2

II 4

6

{olfltcrnsfiaar implementation

MP

FM Mtfiruw Hll ritmpurtns
BBO i ' .-ltdmncad 'CtIh"l‘lPtl.IIvl!.l'.5t.tCHI|EC£l.rJ'E

ln other words, the above CVF demands a chaining degree of ll if one considers implementing it with a
chain of memory-access and arithmetic pipelines. This high degree of chaining is very difficult to implement
with a limited number of FPs and vector registers. However. the Cl/F can be easily implemented with a
pipenct as shown in Fig. 8.3{lb.

Sis. FPs are employed to implement the seven vector operations because the product vector Bil) >< CH),
once generated. can he used in both the denominator and the numerator. We assume two, four. and six
pipeline stages in the ADD, MPY, and DIV units, respectively. Two noncompute delays are being inserted,
each with two clock delays, along two of the connecting paths. The purpose is to equalize all the path delays
from the input end to the output end.

The cortnections among the FPs and the two inserted delays are shown in Fig. B.2th: for a crossbar-
connected vector processor. The feedback connections are identified by numbers. The delays are set up in the
appropriate bulTe:rs at the output terminals identified as 4 and 5. Usually, these bu ffers allow a range of delays
to be set up at thc time thc resources arc scheduled.

The program graph can be specified either by the programmer or by a compiler. Various connection patterns
in tl'te crossbar networks can he prestored for implementing each CVF type. Once the CVF is decoded, the
connect pattern is enabled for setup dynamically.

Program Graph Tmmformorions The program in Fig. 8.20s is acyclic or loopfree without feedback
connections. An almost trivial mapping is used to establish the pipenct (Fig. E.2(lb). In generaL thc mapping
cannot be obtained directly without some graph transfortrtations. We describe these transibrrnations below
with a concrete example CVF, corresponding to a cyclic graph shown in Fig. Ella.

On a directed program graph, nodal delays correspond to the appropriate FPs. and edge delays are the
signal flow delays along the connecting path between FPs. For simplicity, each delay is counted as one
pipeline clock cycle.

A c'_1-‘dc in a graph is a sequence of nodes and edges whish starts and ends with the same node. We will
consider a It-graph, a .s_1-m."-hmnous pmgrnm grqtuh in which all nodes have a delay ofk cycles. A O-graph is
called a .s_1-'.s'!ol'ie program graph.

The following two lemmas provide basic tools for converting a given program graph into an equivalent
graph. The equivalence is defined up to graph isomorphism and with the same input toutpul behaviors.
Lemma 1: Adding kd-clays to any node in a systolic program graph and then subtracting It delays from all
incoming edges to that node will produce an equivalent program graph.
Lemma 2: An equivalent program graph is generated if all nodal and edge delays are multiplied by the same
positive integer, called the .seni'ing eonsrrirtr.

To implement a CVF by setting up a pipenct in a vector processor, one needs first to represent the CVF
as a systolic graph with zero delays and positive edge delays. Only a systolic graph can be converted to a
pipenet as exernplilied below.

I/l
63 Example 8.9 Program graph transformation to set up a

pipenct (Hwang and)t'.u,1988)
Consider ’rhe systolic program graph in Fig. 5.2 I a. This graph represents the following set of CVFs:

,,.,,,.,,,,,_,,,,,.5,.,,M,,,,,,,,, _ _ W
Em = [Btu >< can + 10(1) >< D011
F(I) = [C(I_) >< D{I)] >< [CU — 2) X DH — 2}] (8.18)
GU] = [F[l_}lfF(l — 1}] >< G(I — 4)

Two multiply operators (MPY1 and MPY2) and one add operator {ADD} are applied to evaluate the vector
EH) from the input end (Vin) to thc output cnd t"tfi.,,,,) in Fig. 8.21:1. The same operator MP2 is applied twice,
with different delays [four and six cycles}, before it is multiplied by MPY3 to generate the output vector F(I_‘,l.
Finally, the divide {DIV} and multiply {MPY 4'} operators are applied to generate the output vec-lor Gil).

Applying Lemma l, we add Your-cycle delays to each operator node and subtract four-cycle delays from
all incoming edges. The transforrned graph is obtained in Fig. 8.2lb. This is a 4-graph with all nodal delays
equal to four cyclefi. Therefore, one can construct a pipenet with all FF‘s having four pipeline stages as shown
in Fig. 8.2111. The two graphs shown in Figs. 8.2lb and 8.21:: are indeed isomorphic.

® . 9 D
3 MPY2 li MPY2E MPY3 4 D 2 MPY3W 0-0 W o-o5 10 1 0 3 Q
* Qt 0 l 9 0

MPY4 MPH
O Q D Q

[a] Asystolle prog ram graph [b]Af\s=r graph iransfotrnafion

Delay

llll "'1 llll llll
new = mpvs DIV M

DelayQ.----Illl ||t||||| @
MPY2 ADD
Delay
nu ml llll
ll" MPY1
Delay

{cl Plp-met lrnplemerttatlon with Inserted delays between plpellnee

Fig-3-11 Frvom synchmnuus program graph tan pipenet implementation (Pteprintned from Hwartg and Xu,
IEEE Tmnsecflons on Computers, far; 1988)

F?» Mtfiruw Hlllrllmpwtnw
BIZ O Aduwrced Comptrtcrhrchitecturc

The inserted delays correspond to the edge delays on the transformed graph. These delays can be
implemented with programmable delays in the buffered crossbar networks shown in Fig. 8.20:1. Note that the
only self-reflecting cycle at node MFY4 represents the recursion defined in the equation for vector G{]). No
scaling is applicd in this graph transformation.

Tl1e systolic program graph in Fig. Ella can be obtained by intuitive reasoning and delay analysis as
shown above. Systematic procedures needed to convert any set of Cl.-'Fs into systolic program graphs were
reported in the original paper by I-lwang and Xu (1 988].

[fthc systolic graph so obtaincd docs not havc cnough odgc dclays to bc transfcrrcd into thc opcrator
nodcs, wc havc to multiply thc cdgc dclays by a scaling constant s, applying Lemma 2. Then the pipenct
clock rate must bc rcduccd by .s times. This means that successive vector elements entering the pipenct must
bc separated by s‘ cycles to avoid collisions in thc rcspcctivc pipclincs.

Perfbrmance Evaluation The above graph transformation technique has been applied in developing
various pipenets for implementing L‘VFs embedded in L-iverrnore loops. Speedup improvements oi‘ between
2 and 12 wcrc obtained, as compared with implcmcnting thcm on vcctor harrlwarc without chaining or
networking.

[n ortlcr to build into iitturc vcctor processors thc capabilitics of multipipclinc nctworlcing dcscribcd
above, Fortran and other vector languages must be extended to represent CVFs under various conditions.

Automatic compiler techniques need to be developed to convert from vector expressions to systolic
graphs and then to pipeline nets. Therefore, new hardware and software mechanisms are needed to support
compound vector processing. This hardware approach can be one or two orders of magnitude faster than the
softwarc implcmcntation.

SIMD COMPUTER ORGANIZATIONS

— Vector processing can also be carried out by SIMD computers as introduced in Section 1.3.
Implementation models and two example SIMD machines are presented below. We examine

their interconnection networks, processing elements, memo-ry, and IID structures.

Note 8.1 Current stratus of the SIMD system model

Hugc advanccs irt proccssor tcchnology and proccssor irttcrconncct tcchnology havc takcn placc ovcr
the last two decades. These advances have resulted in the dominance ofMIMD and SPl\-ID architectures
lor high pcrfortnancc systcms, rathcr than thc SIMD architccturc which was dcvclopcd at an carlicr
stage. As a case study, this shift can be seen in how the erstwhile Thinking Machines Corporation
changed its architectural model as it went from Ch-‘I-2 to CM—5 (see Sub-section 8.4.2 and Section 3.5).

Possibly other than in specialized research platfonns, no computer system of the original SIMD
model is in operation today. Howcvcr, a study ofthis modcl ofcomputcr systcm can still scrvc thc
twin purposc of bringing out (ii thc basic SIMD conccpt and its rclatcd issucs, and (iii an important
historical perspective on the development of computer architecture. Of course, in a specific course on
the subject of oomputer architecture, the teacher must make the final decision on the a.mount oftime to
be dcvotcd to this particular modcl of computation.

,,,,,,.,.,,,,_,,,,,.5,,,.,C.,,,,,,,,, _ m
8.4.1 Implementation Models
Two SIMD oornputcr mo-dcls arc clcscribod bclow basocl on thc o1c:n1o1}' distribution and acldrcssing schcmc
used. Moot SIMD computers use a single control unit and distributed memories, except for a few that use
asmciativc rncmoric!-2.

The instruction set of an SIMD computer is decoded by the array control unit. Thc prncmsing clcmcntr
(PEs) in thc SIMD array arc passive A.LUs cxocuting instructions broadcast from thc control unit. All PEs
must operate in loclrstcp, synchronized by thc same array controller.
Distributed-Nlemory Model Spatial parallelism is exploited among thc PEs in an SIMD computer. A
distributed-mcmory SIMD computcr consists of an array of PEs which arc controllcd by thc samc array
control unit. as shown in 1-‘lg. 8.229.. Program and data are loaded imo the control memory through the host

515$ MW
Smla lnsiuctiorrs

oomputcr.

Network

'3°"l“"' Arlay I l Conhnlflemay I Hod no
Cunlmlunit |n51I_ {Progamand Datal Corn-pulel {U591}

Voctcr l,
|"5i“-"5'fi°“5 Broadcaat Biis

{InstructionsH mdwm-»: H Data
PE=P=m*-=Element
LM: Local

Memory
Data Routingfiatwcrk I

{all Using disiiblilod locd mon1orio5(o.g. the liac IV)

Mass
Stclaga

Coniol Memcly Sula’ Sada
--——- Arlay Control Unit Instr. P|'°¢-B55"tum:

Broadoad Bus
{Vocbr Instructions) E

~| Al ignmont Network I

Data Bu5

-[bl Uang *:J\a'od-memory modules {o.g. the BSPj|

n I

Fig. 8.22 Two rnodets for constructing SJHD sup-arcomputers

F?» Mrfirow HI! r'».-npwinw
BB4 i Admncod 'l:iIh"l‘lP\i.IIvl!-I’-"l|.rCtl'tiI|Et'1t.rJ'E

An instruction is scnt to the control unit for decoding. lfit is a scalar orprogram control operation, it will
be directly executed by a scalar processor attached to the control unit. If the decoded instruction is a vector
operation, it will be broadcast to all the PEs for parallel execution.

Partitioned data sets are distributed to all the local memories attached to the PEs through a vector data bus.
The PEs are interconnected by a data-routing network which performs inter-PE data communications such
as shifting, permutation, and other routing operations. The data—routing network is under program control
through the control unit. The PEs are synchronized in hardware by t.he control unit.

ln other words, the same instruction is executed by all the PEs in the same cycle. However, masking logic
is providod to enable or disable any PE from participation in a given instruction cycle. The llliac l'v' was such
an early SIMD machine consisting of 64 PEs with local memories interconnected by an B >< B mesh with
wraparound connections (Fig. 2.1 Eb].

Almost all SIMD machines built have been based on thc distributed-memory model. Various SIMD
machines differ mainly in the data—routing network chosen for inter—PE communications. The four-neighbor
mesh architecture has been the most popular choice in the past. Besides llliac IV, the Goodyear MPP and
AMT DAPGID were also implemented with the two-dimensional mesh. Variations from the mesh are the
hypercube embedded in a mesh implemented in the CM-2, and the X-Net plus a multistage crossbar router
implemented in the MasPar MP-1.
Siorcd-Nlemory Model In Fig, Bllb, we show a variation ofthe SIMD computer using shared memory
among the PEs. An alignment network is used as the inter-PE memory communication network. Again this
network is controlled by thc control unit.

The Burroughs Scientific Processor (ESP) had adopted this architecture, with n = 16 PEs updating
m = 1? shared-memory modules through a 16 >< 17 alignment network. It should be noted that the value m is
often chosen to bc relatively primc with rcspoct to n, so that parallel memory access can bc achieved through
skewing without conflicts.

The alignment network must be properly set to avoid access conflicts. Most SIMD computers were built
with distributed memories. Some SIMD computers used bit-slice PEs, such as the DAPGID and CM I200.
Both bit-slicc and tvtird-parallel SI MD computers are studied bclow.

SIMD Instruction: SIMD computers execute vector instructions for arithmetic, logic, data-routing, and
masking operations over vector quantities. ln bit-slice SIMD machines, the vectors are nothing but binary
vectors. In word-parallel SIMD machines, the vector components are 4- or 3-byte numerical values.

All SIMD instructions must use vector operands of equal length n, when: ri is the number of PEs. SIMD
instructions are similar to those used in pipelined vector processors, except that temporal parallelism in
pipelines is replaced by spatial parallelism in multiple PEs.

The data-routing instructions include permutations. broadcasts, multicasts, and various rotate and shift
operations. Masking operations are used to enable or disable a subset of PEs in any instmction cycle.

Hon and I ID All UCI activities are handled by the host computer in the above SIMD organizations. A
special control memory is used between the host and the an'ay control unit. This is a staging memory for
holding programs and data.

Divided data sets arc distributed to thc local memories (Fig. Ella] orto tl1c shared memory modules (Fig.
3.221;} before starting the program execution. The host manages the mass storage and graphics display of
computational results. The scalar processor operates concurrezntly with the PE array under the coordination
ofthe control unit.

,,,,,m,,‘,,,‘,5,,_,M,,,,,,,,, _; M
8.4.1 The CH-Lfirchitectune

The Connection Machine CM-2 produced by Thinking Machines Corporation was a fine-grain MPPeo111pute:r
using thousands of hit-sliee PEs in parallel to achieve a peak processing speed of above ll] Gflops. We
describe the parallel architecture built into the CM-2. Parallel sofiware developed with the CM-2 will be
discussed in Chapter ID.

Program Execution Florodigm All programs started execution on a fmnr—end, which issued
mieroinstruetions to the bacloend processing array when data-parallel operations were desired. The sequencer
broke down those microinstructions and broadcast them to all data pmeessor.s in the array.

Data sets and results could be exchanged between the fironz-end and the processing array in one of three
ways: lJrr1m‘m.s!r'ng, global conrbining, and senior rrwrrsory bus as depleted in Fig, 3,23, Broadcasting was
carried out through thc broadcast bus to all data processors at once.

fromito Front-and Computer

Gbhal R55 "ll 5'15 Scalar Memory Bus

lrietruehon Broadcast Bus

.m.M_I

o I: o IIProcessors

Ill u u n
I Routoo‘NE'u'HSJ'Seannmg ‘

VD U0
l Controller l Comrollar Framenufiar

IID Bus ID Bus Frame hufiar Out

Flg.lI.23 Tho arelmocrune of the Connection Machine CM-2 (Courtesy of‘l11ink|ng Machines Corporation, 1990}

rm‘ I Ifllli t'm'rIq|r_.\.I|n*\ _

355 i Advanced Ctnnpurterflnrchitccturc

Global combining allowed the fiont-end to obtain the sum, largest value, logical DR, etc., of values, one
from each processor. The scalar ‘bus allowed the front-end to read or to write one 32—bit value at a time from
or to the memories attached to the data processors. Boflt VAX and Syrnbolics Machines were used as the
fiont-end and as hosts.

The Processing Army The CM-2 was a back-end machine for data—parallel computation. The processing
array contained from 4K to 64K bit-sliee data processors (or PEs), all ofwhich were controlled by a sequencer
as shown in Fig. 8.23.

The sequencer decoded micnoinstructions from the front-end and broadcast nanoinstructions to the
processors in the array. All processors could access their memories simultaneously. All processors executed
the broadcast iristructions in a locitstep manner.

The processors exchanged data among themselves in parallel through the mutter, NE W5‘ grids, ora scanning
mechanism. These network elements were also connected to I/‘O interfaces. A mass storage subsystem, called
the rioro wriiir, was connected through the HO for storing up to 60 Gbytes of data.

Poo:-tossing Node: Figure 3.24 shows the CM-2 processor chips with memory and floating-point chips.
Each data processing node contained 32 bit-slice data processors, an optional floating~point aeceleravor,
and interfaces for interprocessor eonitrtunicatiuri. Each data processor was implemented with a 3-input and
2-output bit-slice ALU and associated latches and a memory interface. This ALU could perform bit-serial
filll-adder and Boolean logic operations.

gob: bus instruction bus

H h11othorc.hips to'l1othe|ehips

iiiiiiiiiiiiiI
EEEE EEEE

I
NEWS.
Router
Hypelcube
Intorlaoa

EEEE
@EEE
EEEE

EEEE
EEEE
EEEE

NEWS.
Router
Hypaluiba
lrrtelhco

22 22

Memory

Fl:-ll-14 A CH-I processing node co-misting oftwo processor chips and some memory and floating-point

l
adcioss

Floating-Point 32 Floating-F'on'|t
Executionand Momcly .13 ‘med {Sinqo cl Double

3°“ Precision)

ehips [Couroasy ofThlnlting Machines Corporatlon.199D}

,,,,,,,,,,,,,,,,,._,,,,,,,,,.,,, . _ ,,,
Thc processor chips were paired in each node sharing a group of memory chips. Each processor chip

contained 16 processors. The parallel instruction set, called Paris, included nanoinstnlctions for memory load
and store, arithmetic and logical, and control of the router, NEWS grid, and hypercube interface, floating~
point, HG, and diagnostic operations.

Thc memory data path was 22 bits (I6 data and 6 ECC] per processor chip. The lll-bit memory address
allowed 2'“ = 256K memory words (512 Kbytes of rlataj shared by 32 processors. The floating-point chip
handled 32-bit operations at a time. Intermediate computational results could be stored back into die memory
for subsequent use. Note that integer arithmetic was carried out directly by the processors in a bit-serial
fashion.

Hyper-cube Router: Special hardware was built on each processor chip lor data routing among the
processors. Thc router nodes on all processor chips were wired together to form a Boolean n-cube. A
full configuration of CM-2 had 4096 router nodes on processor chips interconnected as a I2-dimensional
hypcrcuhe.

Each router node was connected to I2 othcr router nodes, including its paired node (Fig. 3.24]. All 16
processors belonging to the same node were equally capable of sending a message from one vertex to any
other processor at another vertex of the 12-cube. The following example clarifies this message-passing
ooncept.

bl
[<5 Example 8.10 Message routing on the CM-2 hypercube

(Thinking Machines Corporation,199D)

On each vertex ofthe l2-cube, the processors are numbered 0 through 15. The hypercube routers are numbered
O through 4095 at the 4-D96 vcrriccs. Processor 5 on router node T is thus identified as the l l7th processor in
the entire system because ts>< 7 + 5 = 117.

Suppose processor ll? wants to send a message to processor 361, which is located at processor 9 on router
node 22 {I6 >< 22 + 9 " 3151}. Since router node 7 " [tllllltllltltltltll 1 I); and router node 22 = {'-[ltlt')DOOtll0l lO}2,
they differ at dimension D and dimension 4.

This message must traverse dimensions D and 4 to reach its destination. From router node T, the message
is first directed to router node fi = (UDDOOOUDI lll); through dimension O and then to router node E2 through
dimension 4, if there is no contention for hypercube wires. On the other hand, if router 7 has another
message using the dimension 0 wire, the message can be routed first through dimension 4 to router 23 =
(tltlfitlfltl-[Il[H 1 1 '1; and then to the final destination through dimension 0 to avoid channel conflicts.

The NEWS Grid Within each processor chip, the I15 physical processors could be arranged as an 8 >< 2,
l >< [6, 4 >< 4, 4 >< 2 >< 2, or 2 >< 2 >< 2 >< 2 grid, and so on, Sixty four t-'irm¢n'pmee.s.sors could be assigned to
each physical processor. These 64 virtual processors could be imagined to form a B >< El grid within the chip.

The “NEWS” grid was based on the fact that each processor has a north, east, west, and south neighbor in
the various grid configurations. Furthermore, a subset of the hypercube wires could be chosen to connect the
E13 nodes {chips} as a two-dimensional grid ofany shape, 6-4 >< 64h-eing one of the possible grid configurations.

F?» Mtfiruw HI! r'».-rqiwrnw
BBB i Adnwrced Compirterhrehirceturc

By coupling the internal grid configuration within each node with the global grid configuration, one could
arrange the processors in NEWS grids of any shape involving any number of dimensions. These flexible
interconnections among the processors made it very efiicient to route data on dedicated grid configurations
based on the application requirements.
Scanning and Spread Mechanism: Besides dynamic reconfiguration in NEWS grids through the
hypercube routers, the CM-2 had been built with special hardware support for scanning or spreading across
NEWS grids. These were very powerful parallel operations For Fast data combining or spreading throughout
the entire array.

Scanning on NEWS grids combined communication and computation. The operation could simultaneously
scan in every row ofa grid along a particular dimension tor the partial sum ofthat row, the largest or smallest
value, or bitwise OR, AND, or exclusive OR. Scanning operations could be expanded to cover all elements
of an array.

Spreading could send a value to all other processors across the ehips. A single-bit value could be spread
from one chip to all other chips along the hypercube wires in only 7'5 steps. Variants of scans and spreads
were built into the Paris instructions for ease of access.
HO and Data their The Connection Machine emphasized massive parallelism in computing as well as in
visualization of computational results. High-speed HO channels were available from 2 to lo channels for data
andfor image U0 operations. Peripheral devices attached to HO channels included a data vault, CM-HIPPI
system, CM-IDP system, and Vh-'lEbus interface controller as illustrated in Fig. 3.2.3. The data vault was a
disk-based mass storage system for storing program files and large data bases.

Major Application: Tl1e CM-2 was applied in almost all the MPP and grand challenge applications
introduced in Chapter 3. Specifically, the Connection Machine Series was applied in document retrieval
using relevance feedback, in memory-based reasoning as in the medical diagnostic system called QUACK
tor simulating the diagnosis ofa disease, and in bulk processing of natural languages.

Other applications of the CM-2 included SPICE-like VLSI circuit analysis and layout, computational
fluid dynamics, signal fitnage-Ivision processing and integration. neural network simulation and connectionist
modeling, dynamic programming, contest-free parsing, ray tracing graphics, and computational geometry
problems. As the CM-2 was upgraded to the CM-5, the applications domain was expected to expand
accordingly.

3.4.3 The MasPar MP-1 Architecture
This was a medium-grain SIMD computer, quite different from the Clvl-2. Parallel architecture and
MP-1 hardware design are described below. Special attention is paid to its interprocessor communication
mechanisms.

The .Ma:Par MP-1 The MP-l architecture consisted of four subsystems: the PE rrrrrrv, the arrn__\-' control
rmir (ACUII, a UNIXsubsy.stem with standard IIO, and a highspeed U0 srrbsjysrern as depicted in Fig. 8.25s.
The UNIX subsystem handled traditional serial processing. The highasp-eed HO, working together with the
PE array, handled massively parallel computing.

The MP-1 faintly included configurations with 1024, 4096, and up to 1s,3s4 processors. The peak
performance of the 16K-processor configuration was 26,000 MIPS in 32-bit RISC integer operations. The

,,,,,m,,‘,,,‘,5,,_,M,,,,,,,,, _; M
syslerrl also had a peak floating-poinl capability of 1.5 Gflops i11 singleqircoision and 650 Mflops in double-
prccision operations.

Army Control Unit The ACU was a 1-1-MIPS scalar IUSC processor using :1 demand-paging instruction
memory. The ACU fetched and decoded MP-l instructions, computed addresses and scalar dala values,
issued control signals to the PE array, and monitored the status of the PE array.

Like the sequencer in CM-2, the ACU was microcoded to achieve horizontal control ofthe PE anay. Most
scalar ACU instructions executed in one: 70-ns clock. The whole ACU was implemented on one PC hoard.

An implemented Functional unit, called a ow.-norjs .-ma-hine, was used in parallel wilh the ACU. The
memory machine performed PE array load and store operations, while the ACU broadcast aritlimetic, logic,
and routing instructions to the PEs for parallel execofiou.

K 'I'i1l.'ldO'l'
COHSDE

Dish: may
‘I I

Arraj,1Oor|\'o| um:
--‘II. UQEFDEMEG
II... VG

ma ‘II. 2 FDDI °p"°"“'Hgn-Speed
HPPI 1'0 Devices

III.-IIIIIII U-'“"'*'

High-Speed
oramimEherrel Q
_

u|-axbeyelmi
IIIIIIII IIIIIIII IIIIIII

I““IIIIpgIIIIIIIEll‘ll_“_IIIII IIIII IIIII
HghSpeedO

Su

{al|MP-1Sys1m1 Buck ti-agmm

2 5 cm‘; 1A ,o: ago0.0 -- - 4r.0}fl- io‘ @‘o A
qniarm of PE cbeleis

Fig. 8.15 The Mas9ar HP-I architecture (Couroesy of H=asPar Computer Cn|1:rorafiun, 1990}

-3'10 ‘XI Admn-cad compuwaicmzeom

‘Hie PE Array Each processor board had 1024 PEs and associated memory arranged as 64 PE clusters
[PEC] with 16 PEs per cluster. Figure 8.25b shows the inter-PEJC connections on each processor board.
Each PEC chip was connected to eight neighbors via the X-Net mesh and a global multistage crossbar router
network, labeled S1, S2, and S3 in Fig. E.25b.

Router Rmm,
mar = PE1 PE15 mar

Broadcast _ REDUCTIONInmlm @

[a] A PE cluster

JLNET IN COMM QQMM JILNET GLIT
ROUTER as “PUT OUTPUT ROUTER s1

16-bit E-it-in-It ¢_b1 1.4;
EJCPONENT MANTISSA ALU FLAGS Lqqm

um own e e e e
masts sus l

an aus 1 _ .

man ' F‘-Mam s2-on
ADDRESS mmecc REGISTERS

uurr um my

C°"TR°'- aoonocssr

PM EM ,
EKTERNAL MEMO” mam UCTI-UN REDUCTION

[ls] Processor element and memory

F1} 3-I-it Processing element: and memory design in die l"la.sPI.r MP-I (Cottrtnesy of l"'ll.sPIr Computer
Corpor-atton,1990]

 |:_i_

,.,,,,,.,m,,,,,.,,,._,,,,..,,.,,,,,., _ 3,,
Each PE cluster (Fig. 8.I'.6a_] was composed of Io PEs and lo processor memories (_PEMs). The PEs were

logically arranged as a 4 >< 4 array for the X-Net two-dimensional mesh interconnections. The 16 PEs in a
clustcr shan:-d an acccss port to thc multistage crossbar routcr. lntcrproccssor communications wcrc carried
out via three mechanisms:

(1') ACU-PE array oomrnunications.
{2} X-Nct ncarcst-ncighbor communications.
('31 Global crossbar routcr communications.

The first mechanism supported ACU instruction/‘data broadcasts to all PEs in the array simultaneously
and perforrned global reductions on parallel data to recover scalar values from the array. The other two IPC
mcchanisms arc dcscribcd separately bclow.

X-Her Nlerh Interconnect The X-Net interconnect directly connected each PE with its eight neighbors
in the two-dimensional mesh. Each PE had four connections at its diagonal corners, forming an X pattem
similar to the BLITZEN X grid network (Davis and Rcif, 1986). A tn‘-state node at each X intersection
pemiitted communication with any of eight neighbors using only four wires per PE.

The connections to the PE array edges were wrapped around to fomr a 2-D toms. The toms smtcture
is symmetric and facilitates several important matrix algorithms and can emulate a one-dimensional ring
with two-X-Net steps. The aggregate X-Net corrununication bandwidth was 18 Gbytesfs in the largest MP-l
configuration.

Multistage Crossbar Interconnect The network provided global communication between all PEs and
formed the basis for the MP-l I10 system. The three router stages implemented the function ofa 1024 >< 1024
crossbar switch. Three router chips were used on each processor board.

Each PE cluster shared an originating port connected to router stage SI and a target port connected to
router stage S3. Connections were established fi'om an originating PE through stages S1, S2. and S3 and then
to the target PE. The full MP-l configtrration had H124 PE clusters, so each stage had 102.4 router ports. The
router supported up to 1024 simultaneous connections with an aggregate bandwidth of 1.3 Gbytests.
Processor Elements and Mu-rrory The PE design had mostly data path logic and no instruction fetch or
decode logic. The design is detailed in Fig. 3.2-fib. Both integer and floating-point computations executed in
each PE with a register-based RJSC architecture. Load and store instructions moved data between the FEM
and thc rcgistcr set.

Each PE had forty 32-bit registers available to the programmer and eight 32-bit registers for system use.
The registers were bit and byte addressable. Each PE had a 4-bit integer AL-U, a 1-bit logic unit, a 64-bit
mantissa unit. a 16-bit exponent unit, and a flag unit. The NIBBLE bus was four bits wide and the BIT bus
was one bit wide. The FEM could be directly or indirectly addressed with a tI'lH.XlITll.ll'l1 aggregated memory
bandwidth of I2 Gbytesfs.

Most data movement with each PE occurred on the NIBBLE bus and the BIT bus. Dit'1‘erent functional
units within the PE could be simultaneously active during each microstep. In other words, integer, Boolean,
and floating-point operations could all perform at the same time. Each PE ran with a slow clock, while the
system speed was obtained through massive parallelism like that implemented in the CM-2.

Ff» Mtfirnii H'l'Ht'mn;|wm-\' _
392 i .-tduonced Cmmplrterhrdritecturc

Plomllel Disk Army: Another feature worthy of mention is the massively parallel IIO architecture
implemented in the MP-l. The PE array (Fig. 8.25s] communicated with a parallel disk array through the
high-speed HO subsystem, which was essentially implemented by the l.3 Gbytesfs global router network.

The disk array provided up to 17.3 Gbytes of formatted capacity with a 9-Mbytesis sustained disk I10
rate. The parallel disk array was a necessity to support dam-parallel computation and provide file system
trarisparency and multilevel fault tolerance.

i THE CONNECTION MACHINE cm-5

Note 8.2 'l"hinIri.ng Machine: Corpomtion

Thinking Machines Corporation {TMC), of Cambridge, Massachusettes, developed its initial SIMD
systems CM-I and CM-2 on the basis of ideas originally developed at MIT and aimed at artificial
inrefiigern-c [Al] applications. The company went out of operation in the mid—199'0s. Two innovative
computer systems developed by this company are reviewed in this chapter". CM-2 (in Sub-section
3.4.2} and CM-5 (in Section 8.5]. From a commercial point of view, none of these systems can be
considered successiill. However, it would be worthwhile studying the architecture from the point oi"
view of learning about -[ii innovative system ideas, {ii} the shiit from SIMD to the i'vIlMD system
architecture of CM-5, and {iii} the use of a standard RES-C processor in an MIMD system with a large
number of processors. Many key designers who worked at TMC later worked for other companies,
including Sim Microsystem s.

The grand challenge applications drive the development of present and future MPP systems to achieve
higher and higher performance goals. The Connection Machine model CM-5 was the most innovative et‘t‘ort
of Thinking Machines Corporation toward this end. We describe below the innovations surrounding the
CM-5 architectural development, its building blocks, and the application paradigms.

8.5.1 A Synchronized MIMD Machine
The CM-2 and its predecessors were criticized for having a rigid SIMD architecture, limiting general-purpose
applications. The CM-5 designers liberated themselves by choosing a universal architecture, which combines
the advantages oi" both SIMD and MIMD machines.

Traditionally, supercomputer programmers were forced to choose between MIMD and SIMD computers.
An MIMI} machine is good at independent branching but bad at synchronization and communication. U11
the other hand, an SIMD machine is good at synchronization and communication but poor at branching. The
CM—5 was designed with a synchronized MIMD structure to support both styles ofparallcl computation.

The Building Block: The CM-5 architectiue is shown in Fig. 8.27. The machine was designed to contain
from 32 lo 16,3-34 processing nodes, each of which could have a 32-MHZ. SPARC processor, 32-Mbytes of
memory, and a 128-Mllops vector processing unit capable of perfonning 64-bit floating-point and integer
operations.

lnstead ofusinga single sequencer (as in the CM-2], the system used a number ofmnrmfpm:-cssrlrs, which
were Sim Microsystems workstation computers. The number of control processors, varying with ditTerent
configurations, ranged from one to several tens. Each control processor was configured with memory and
disk based on the ncods.

,,,,,,,,,,,,,,,,,,,,._,,,,,,,,,,,,, .i _ m

Control Network

DiagnosticNatvuork

Datahlotwodr

I I

N N N
P P P P cP cP
M M M ru M M
\i\/i/ %,-—" +,—*’

pfajegjng DCrl‘lllOl _ U0
ngdgg processors interfaces

Flg.tI.1‘l' The network arehieecurro of the Connection Machine CH-5 {Courtesy of Leisersoo or al.
Thlnidng Machines Corporation. 1991}

input and output were provided via high-bandwidth I.-‘O .in.tcrfaces to graphics devices, mass secondary
storage such as a data vault, and hignperformance networks. Additional low-speed Ill) was provided by
Ethemet connections to the control processors. The largest configuration was expected to occupy :1 space of
30 111 >< 30 n1, and was designed for a pcak pcrf'orrnancc of over] Tflops.

The Network Function: The building blocks were interconnected by three networks: a dun: m=m'orlr,
a r:-ommf nc'nvor.i:__ and a dirrgno.s'rfc network. The data network provided high-performance, point-ID-point
data communications between the processing nodes. The control network provided cooperative operations,
including broadcast, synchronization, and scans, as well as system management functions.

The diagnostic network allowed “back-door" access to all system hardware to test system integrity and
to detect and isolate errors. The data and control networks wcrc connected to processing nodes, control
processors, and U0 channels via .t1E£n*0rkinI8!_1'l2t?e.£.

The CM-5 architecture was considered universal because it was optimized for data-parallel processing
of large and complex problems. The data parallelism could be implemented in either SIMD mode, multiple
SIMD mode, or synchronized MIMD mode.

The data and control networks were designed to have good scuruhihrv, making the machine size limited
by thc affordable cost but not by any architectural or engineering constraint. In other words, the networks
depended on no specific types of processors. When new technological advances arrived, they could be easily
incorporated into the architecture. The network interfaces were designed to provide an abstract view of the
networks.

Tlse Syn-ern D1:-er'rrtion: The system operated one or more rrscr pnrtr'rr'c-ns. Each partition consisted of a
control processor, a collection ofproccssing nodes, and dedicated portions ofthe data and comrol networks.
Figure 8.28 illustrates the distributed control on the CM-5 obtained through the dynamic use of the two
interprocessor commtmication networks. Major system management fitnctions. sesrvices, and data distribution
arc surnrnariz.cd in this diagram

l'P.\r' Ml.'I;Ifllb' HI" l'n¢r.q|r_.u|»r\

IPH T Advanced 'l:0lTlPl.lDE|'-"l!Ci'hlIrEClU!E

I UNIX GS So-rvlcos
pmmms Partition Management i: ' Cm“ Mmaflemenl

I Partition Services

L1sorPro-oesslng { ' lliglph mp“ °l

P3"l|li°" "/ Current Data

Partition 2 //“:1/"
Partition r

'[1 In-use datasots

Data Network
and

Contra Network

File systems,
Ir‘-D Management ¢9"-"B9 UMBE-

Interfaces

ethomet

“O Available Data

Storage and -Conneethrityr { D33 V3 '11- Hippi-

{ Users‘ data store

Fig.8.!!! Distrihutasd con-tro-I on the CH-5 widt concurr-en: user par1'il:ions and HO 1r::l\ritios{Co-ureesy oi
Thinking Machines Corp-on|tion.1992j

The partitioning of resources was managed by a system executive. The control processor assigned to
ca-ch partition behaved like :1 p.nrr‘irirm nromger. Each user process executed on a single partition but could
exchange data with processes on other partitions. Since all pat-citions utilized UNIX time-sharing and security
features, each allowed multiple users to access the partition, while ensuring no conflicts or interferences.

Access to system functions was classified as either]Jri7viie'ge'olDF no-rprivileged. Privileged system fimctions
included access to data and control networks. These accesses could he executed directly by user code without
system calls. Thus, OS kernel overhead could be eliminated in network communication witlztin a user task.
Access to the diagnostic network, to shared [I0 resources, and to other partitions was also privileged and
could only he accomplished 1.-'ia system calls.

Some control processors in the CM-5 were assigned to manage the U0 devices and interfaces. This
organization allowed a process on any partition to access any LID device, and ensured that access to one
device does not impede access to -other devices. Functionally, the system operations, as depicted in Fig. 8.28,

,.,,,.,,,,,,,,,,,.,,,,,,,,,,,, . _ ,,,
were divided into user-oriented partitions, U0 services based upon system calls, dynamic control of the data
and comrol networks, and system management and diagnostics.

The two networks could download user code from a control processor to the processing nodes, puss
1/0 requests, transfer messages of all sorts between control processors, and transfer data among nodes
and U0 devices, either in a single partition or among differ-ent partitions. The U0 capacity could he scaled
with increasing numbers of processing nodes or of control partitions. The CM-5 embodied the features of
hardware modularity, dis1:ributed control, latency tolerance, and user abstraction; all of these are needed for
scrrirrbic computing.

8.5.1 The CM-5 NetworkArchitect:ure
The date network was based on thcfsr-tree concept introduced by Leiserson {I985}. We explain below how it
is applied in CM-5 construction. Then we describe the major operations on t1'|e control network. Finally, the
structure ofthe diagnostic network is discussed.

For Trees A fat tree is more like a real tree in that it becomes thicker as it acquires more leaves. Processing
nodes, control processors, and HO channels are located at the leaves of a fat tree. A binoryjirr tree was
illustrated in Fig. 2.] Tc. The intemal nodes are switches. Unlike an ordinary binary tree, the channel capacities
of a fat trcc increase as we ascend from icat-es to root.

The hierarchical nature of a fat tree can be exploited to give each user partition a dedicated suhtree, which
cannot he interfered with by any other partition's message trallic. The CM-5 data network was actually
implemented with a 4-ary fat tree as shown in Fig. 8.29. Each of the internal switch nodes was made up of
several router chips. Each router chip was connected to four child chips and either two or four parent chips.

‘III’ ‘I:I’ ‘III’-_ III’ J

r'1"5'i"
“fill ‘W1

-1-»Q»I
tvififiQziiy1‘;1'¢""ili""‘\0‘...-rt’\ Osail:35?

Fig.8}! CH-5 data network implemented wldt a -l-cry far. tree {Courtesy of Leiserson er. il.Thinltirtg
Machines Corpontlort. 1991}

To implement the partitions, one could allocate different suhtrecs to handle diliercnt partitions. The size
of the subtrecs varied with different partition demands. The IIO channels were assigned to another subtree,
which was not devoted to any user partition. The I/D sulnree was accessed as shared system resource. In
many ways, the data network functioned like a hierarchical system bus, except that there was no interference
among partitioned subtrees. All leaf nodes had unique physical addresses.

FM Mtfirpw Hlllrbmyiwtns
395 i ' .-ltdaonced Compurterhrehlteeture

The Dara Network To route a message from one processor node to another, the message was sent up the
tree to the least common ancestor ofthe two processors and then down to the destination.

ln the 4-ary fat-tree implementation (Fig. 8.29) of the data network, each connection provided a link to
another chip with a raw bandwidth of 20 Mhytesfs in each direction. By selecting at each level of the tree
whether two or four parent links are used, the bandwidths between nodes in the fat tree could be adjusted.
Flow control was provided on each link.

Each processor had two connections to the data network, corresponding to a raw bandwidth of4D Mbytes."s
in and out of each leaf node. in the first two levels, each router chip used only two parent connections to the
next higher level, yielding an aggregate bandwidth of 160 Mbytes.-‘s out of a subtree with 16 leaf nodes. All
router chips hig her than the second level used fourparent connections, which yielded an aggregate bandwidth
of 10 Gbytes/s in each direction, from one half ofa 2K-node system to the other.

The bandwidth continued to scale linearly up to 16,384 nodes, the largest CM-5 configuration planned.
In larger machines, transmission-line techniques were to be used to pipeline bits across long wires, thereby
overeoming the bandwidth limitation that would otherwise be imposed by wire latency.

As a message went up the tree, it would have several choices as to which parent connection to take. The
decision was resolved by pseudo-randomly selecting from among those links that wen: unobstructed by otl1er
messages. After reaching the least common ancestor of the source and destination nodes, the message took a
single available path of links down to the destination. Tl1e pseudo-random choice at each level automatically
balanced the load on the network and avoided undue congestion caused by pathological message sets.

The data network chips were driven by a 40-MI—lz clock. The first two levels were routed through
backplanes. The wires on higher levels were routed through cables, which could be either 9 or 26 ft in length.
Message routing was based on the wonnhole eonoept discussed in S-eetion T4.

Faulty processor nodes or connection links could be mapped out of the system and quarantined. This
allowed the system to remain functional while servicing and testing the mapped-out portion. The data
network was acyclic from input to output, which precluded deadktck from occurring ifthe network promised
to eventually deliver all messages injected into it and the processors promised to eventually remove all
messages from the network after they were successfully delivered.

The Control Network The architecture of the control network was that of a complete binary tree with all
system components at the leaves. Each user partition was assigned to a subtree of the network. Processing
nodes were located at leaves ofthe subtrec, and a control processor was mapped into the partition at an
additional leaf. The control processor executed scalar part of the code, while the processing nodes executed
the data-parallel part.

Unlike the variable-length messages transmitted by the data network, control network packets had a fixed
length of65 him. There were three-major types ofoperations on the control network: broodemring, mt-rahi'm‘ng,
and gloom’ r:pcmrr'ons. These operations provided interprocessor communications. Separate FIFCls in the
network interface were assigned to each type ofeontrol operations.

The control network provided the mechanisms allowing data-parallel code to be executed efficiently
and supported MIMI) execution for general-purpose applications. The binary tree architecture made the
control network simpler to implement t:l'tan the fat tree used in the data network. The control network had the
additional switching capability to map around iaults and to connect any ofthe control processors to any user
partition using an ol"T-line routing strategy.

,,.,,,.,.,,,,,,,,,,5,.,,m,,,,,,,, _ M
The Diagnostic Network This network was needed for upgrading system availability. Built-in testability
was achieved with scan—bascd diagnostics. Again, this network was organized as a (not necessarily complete)
binary tree for its simplicity" in addressing. One or more diagnostic processors were at tl'|e root. The leaves
were pods, and each pod was a physical system, such as a board or a backplane. There was a unique path from
tl1-e root to each pod being tested.

The diagnostic network allowed groups of pods to be addressed according to a “hypercube-address"
scheme. A special diagnostic interface was designed to form an in-system check of the integrity of all CM-5
chips that supported the ITAG (Joint Test Action Group) standard and all networks. It provided scan access
to all chips supporting the ITAG standard and programmable ad hoe access to non-JTAG chips. The network
itsclfwas completely testable and diagnosable. It was able to map out and ignore iisulty or power-down parts
of the machine.

8.5.3 Control Processors and Processing Nodes
The functional architecture of the control processors and of the processing nodes is described in this
subsection.

Control Procmmr As shown in Fig. 3.3 E}, the basic control processor consisted of a RISC microprocessor
(CPU), memory subsystem, HO with local disks and Ethernet connections, and a CM-5 network interface.
This was equivalent to a standard off-the-shell‘ workstation-class computer system. The network interface
connected the control processor to the rest ofthe system through the eontml network and the data network.

Control Network Data Network

W as-:;:

I.-‘O
C PU IIG

Standard Com putor

LAN Connection

Fig. 5.30 The control processor in the CH-5 [Cour-tiny ofTl1inldng Maelt-ines Corporation. 1991}

Par MIGIITLH Hi" l'mt'JI||r_.u|i¢\ :

Advanced Cornpmerflnrchitecture

Each control processor ran Cl\='lOST,aU‘l'~l[X-based OS with extensions for managing the parallel processing
resources ofthe CM-5. Some control processors managed computational resources in user partitions. Others
were used to manage l."0 resources. Control processors specialized in mariageiial fimctions rather than
computational functions. Forthis reason, high-performance arithmetic accelerators were not needed. Instead,
additional U0 connections were provided in control processors.

Processing Node: Figure 3.31 shows lite basic stmcture of a processing node. lt was a SPARC-based
processor with a memory subsystem, consisting of a memory controller and 8, I6, or 32 Mbytes of DRAM
memory. The internal bus was 64 hits wide.

Mam Memory Memory Memory
BMW“; Bl-ilhytas Blulhytos Blvlb-ytoo

[optional] [optional] [optlcnall

6-Hilt paths
[plus ECG]

Memory
Controller

RISC Hotwo-rlr
processor lntorfaoo

Control Network Data Network

64-blt bus

Flfl-B-31 The processing node in die CM-5 [Courtesy ofThinking Plachirles Corporation, 1992}

The SPARE! processor was chosen for its multiwindow feature to facilitate fast context switching. This
was very crucial to the dynamic use of the processing nodes in different user partitions at different times. The
network interface connected thc node to thc rest ofthe system through the control and data networks. The use
of a hardware arithmetic accelerator to augment the processor was optional.

Hector Unit: its illustrated in Fig, 8.32:1, vector units could be added between the memory bank and the
system bus as an optional feature. The vector units would replace the memory controller in Fig. 8.31. Each
vector unit had a dedicated 72-hit path to its attached memory hank, providing a peak memory bandwidth of
I28 Mhynesfs per vector unit.

The vector unit executed vector instructions issued by the scalar processor and pcrfonnod all functions of
a memory controller, including generation and check of ECC [error correcting code) hits. As detailed in Fig.
S.32.b, each vector unit had a vector instruction decoder. a pipelined ALU, and sixty-four 64-bit registers like
a conventional vector processor.

,,,,,,,,,,_,,,,,,,.,,,,,,,,,,,, _ 3,,
MBue

Memory Memory Memory Memory
B i~.-lnytes B lttlnytes B Mtrytes B Mbytes

B4-nit paths
H [plus ECG)

Hector ‘Vector ‘vector Uecnr ‘steam lngtr |_|¢:[|cm
|..l nit Uri it U mt Lin it Decoder

E Ii]:

MEl|.|e Interface

64-bit bus

RISC Netimrit
processor lnte rlaoe

Controt Data Memory
Network Network

i Pipetmed Haggai Memory I
ALI.) X 64 Ms Gontrolter

[a] Precesemg node with vector uruts [ti] Vector umt functional architecture

Fig.8.}! The processing node with vector units in the CM-5 {Courtesy oiThinking Machiriei Cerpo|atien.1992)

Each vector instruction could be Esued to a specific vector unit or pairs of units or broadcast to all four
units at once. The scalar processor took care of address translation and loop control, overlapping them
with vector unit operations. Together, the vector units provided 512 Mbytes/s rnernory bandwidth and
I28 Milops 64»-bit peak performance per node. tn this sense, each processing node of the CM-5 was
itself a supercomputer. Collectively, 16K processing nodes would yield a peak performance of‘ EM >< 27 =
22' Mfiops = 2 Tflops.

lnitialljy, SPARC processors were being used in implementing the control processors and processing nodes.
As processor technology advanced. other new processors could be also combined in the system. The network
architecture was designed to be independent ofthe processors chosen except for the network interfaces which
would need some minor rrtodifieations when new processors were used.

8.5.4 lnterproeesser Communications
We have described the high-speed scanning and spreading mechanisms built into the CM-2. In the CM-5,
these mechanisms were designed to be Further upgraded into four categories ofinterprocessor communication:
nrpiicrrrion, rcriircrrirrn, rrcrnrrtrarrhn, parallel prefix.

These operations could be applied to regular or irregular data sets including vectors, matrices,
multidimensional arrays, variable-length vectors, linked lists, and completely irregular pattems. In this
section. we describe the key concepts behind these IPC operations. The role of the control network is also
identified in these operations.

Fhrtulffiffllli H["l'|>rrIq|r_r.I|n*\ ‘I _
an i Advanced Computerfltrchitecture

Replication Recall the broadcast operation, where a single value may be replicated to as many copies and
distributed to all processors, as illustrated in Fig. 8.33:1. Other duplication operations include the spreading
of a column vector into all the eoltunns of a matrix (Fig. 8.3-3h], the expansion ofa short vector into a long
vector (Fig. B.33c}, and a completely irregular duplication (Fig. 8.3311).

He~H

IIII
2 2 2 2,.. .llllll W B

IIIIIIIIIIEIIII
[a] Broadcasting [tr] Spreading

H I II
I

1 2 c -t |

. I
11122aacea4¢-t B

[cjl-tarlabte-tent_:|tl1 vectors [d] Comptetety irregular

Ftg.lt.33 Replication operations for il'I|ZEl‘|Il‘DCH$$CIl' communications on CH-5 {Courtesy of Thinking
Machine: Corporation. 1991}

Replication plays a fundamental role in matrix arithmetic and vector processing, especially on a data-
parallel machine. Replication is carried out through the control network in four kinds ofbroadcasting schemes:
riser broatirasr, sr.1pcrvi.sor broan'ca.st, interrupt broaa'cast, and utii'it_j|-' broadcast. These op-eratiotts can he
used to download code and to distribute dam. to implement fast barrier synchronization, and to configure
partitions through the CIS.

Reduction Vector reduction was implemented on the CM-2 by first scanning, and on the CM-5 the
mectianisrn was funiicr generalized as the opposite of replication. As illustrated in Fig. 8.34, ginbai tt"tl'1iC‘r.’
produces the sum of vector components (Fig. 334a]. Similarly, the rowtcolurnn reductions produce the sums
per each row or column of a matrix (Fig. S.34b}.

,,,,,,,,,,_,,,,,,,,,,_,,,,,,,,,,,,, _, M
"v'ariahle—le:ngth vectors were reduced in chunks ofa long vector (Fig. 8.34-c). The same idea was applied

to a oomplelely irregular set as well (Fig. B.34d_]. In general, reduction functions include the maximum, the
minimum, the average, the dot. product, the sum, logical AND, logical UR, etc. Fast scanning and combining
are necessities in implementing these operation

n nuns
2 2IIIIIII I ‘ EEE

BEBE E
[a] Global reduction [bl Ftcwloolumn rodnenon

MM

E mu m
3615202-476572611 H B

.1‘? T ? 12 i B
[cl Vanablo-ton-gth vectors {dj Corrplototy urogtlar

Fig-I-34 Reduction operations on the CH-5 (Courtesy ofThinking Machines Coqsontion, 1991}

Four types of oombining operations, reduerirm, forward scan {parallel prefix), bnelru-rim‘ scan {parallel
suffix), and router done, were supported by the control network. We will describe parallel prefix shortly.
Homer dam: refers to the detection of completion of a message-routing cycle, based on l<Lirehofi"s current
law, in that the network interfaces keep track of the number of messages entering and leaving the data
network. When a round of message sending and aelmowledging is eomplete, the net "current" (messages) in
and out of a port should be zero.

Flermurotinn Data-parallel computing relies on permutation for fast exchange of data among processing
nodes. Figure 3.35 illustrates four cases of permutations performed on the CM—5. These permutation
operations are often needed in matrix transpose, reversing a vector, shifting s multidimensional grid, and
FFT butterfly operations.

_402

BEBE
Illllll “1|||||| E'
rants E E

{at 1D nearest neighbor (shift) {bl 2D rowteolumn shllt

E4?-h
ntanrala 5 Jvy \;I Qat. '

Advorrcod Cormputerhrchitectura

Fig.B.35 Prnuanfion operations for lnuerprvoolssor commtailcaflorts on the CH-5 [Courtesy ofThlnldng
Machines Corporation. 1991)

Parallel Proflx This is a kind of combining operation supported by the control network. A pamltelprfi
operation delivers to the ith processor the result of applying one of the five reduction operators to the values
in the preceding r' —l processors, in the linear order given by data address.

The idea is illustrated in Fig. 3.36 with four examples. Figure 8.31521 shows the one-dimensional sum-
prcfix, in which for example the fourth output 12 is the sum of the first four input elements (1 + 2+5—4 =
I 2). The two-dimensional rowfcolumn sum-prefix (Fig. 8.36b) can be similarly performed using the forward-
scanning mcchan is m.

Figure 3.364: computes the one-dimensional prefix-sum on sections of a long vector independently.
Figure 8.36d shows the forward scanning along linked lists to produce the prefix-sums as outputs.

Many prefix and suflix scanning operations appear to he inherently sequential processes. But the scanning
and combining mechanisms on the CM-5 could malre the process approximately log; n faster, where n is the
array length involved. For example, on the CM-5 a parallel prefix operation on a vector of I000 entries could
be finished in ll) steps instead of 1000 steps.

,.,,J,.,,,€,,,,,,,,d5,,,,D.:£,,,,,,,,m _ M

B
1 -D 1 } 1 1 1 2

2 B 11 20 22

El E B
[a) 1-D sum-prefix [bi 2-D rowfoolunin sum-prefix

IIHBE

l B 5

B
|ae1|52lu2~¢e5|2e¢|

—-
|s91o|51|o2-24e|2s12|

[c] Variable-length vectors [cl] Linked Ilene

Fig. 8.3-6 Parallel prefix operations on the Cl’-1-5 (Cour-eesy ofThinlting Machines Corporation, 1991]

|| '_“‘\

K 4'} _, Summary

By around 191-'0, computer systems based on the basic single-processor von Neumann architecture had
become well established, with products from several computer companies available in the market In
the search for higher processing power. especially for scientific and engineering appliations. the earliest
supercomputers made heavy use of vector processing concepts, while the concepts of sl'1ared—bus multi-
proccssors and SIMD systems were also beginning to emerge at around that time.

We started this chapter with a study of the basic vector processing concepts, vector instruction types,
and interleaved vector memory access schemes.Vector instruction types include vector-vector. vector-
scalir. vector-memory. vector reduction, gather and scatter. and masking operations. Examples were
studied of the early supercomputers based on vector procmsing concepts, including systems produced
by the tvvo pioneer supercomputer companies Cray and CDC.

Our study of multivector computer-s——i.e. systems based on multiple vector processors——l:egan with
the basic system design rules for achieving the target per-lormance.These design rules can be related
to processing power, IICI and networldrig, memory bandwidth, and scalability. As specific examples,
rnultivector systems and early massively parallel processing (MPP) systems introduced by Cray were
studied, as were Fujitsu multivector systems Also reviewed in brief were mainfiame systems provided
with vector processing capability, and the so-called mini-supercomputers which emerged widi advances
in electronic technology

H G-rm-vHIiI'I'M if I241-r-womri a
404 i‘ Advanced Compurterfirchitecture

The concept of compound vector pnocessing arises from the search for more efiicient processing of
vector data. Scientific and engineering applications make use of such vector operations, and therefore
system architects have always looked for ways to map them efficiently onto the underlying vector
processing hardware.'l11e concepts of vector loops and chaining, and of multi-pipeline networldng. have
also been developed 'WllIl'I the aim of providing efficlent support for compound vector processing.

SIMD computer systems may be of one of two basic type.s—witl1 distributed memory modules
and with shared memory modules. Specific examples were discussed of two innovative SIMD systems:
Connection Machine 2 [CM-2). with processors based on bit-slice technology. and l‘1asFar MP-1,with
its specially designed processors. Bodi systems used sophisticated system interconnects and had the
capability to connect thousands of processors. However. For good technological reasons. the architectural
trend later turned away from SIMD systems and cowards massively parallel MIMD (or SFMD] systems.

Connection Machine 5 [CM-5} represents the shift towards massively parallel MIMD architecture
which occurred in die mid-199Ds.The ma.in factor behind this shift was the availability of low-cost but
powerful pro-cessors,made possible by rapid advances in the underlyingVL5i technology. CM-5 innovations
included the use of a large number oi RISC processors, a sophisticated data network {using a fat tree].
and special hardware features to support efficient and versatile interprocessor communicafion~wl1lch
included useful operations such as replication. reduction and permutation.

Cg
Exercises

Problem B.1 Explain the structural and
operational differences between register-to-register
and memory-to-memory ardiitectures in building

lb) C-access memory organization.
(cl C15-access memory organization.

multipipelined supercomputers for vector processing.
Comment on the advantages and disadvantages in
using SIMD computers as compared with the use
of pipelined supercomputers for vector processing.

Problem B.2 Explain the following terms related
to vector processing;

(a) Vector and scalar balance point
(bl Vectorization ratio in user code.
(cl 'v'-ectorization compiler or vectorizer.
{d} Vector reduction instructions.
(e) Gather and scatter instructions.
ll} Sparse matrix and masking instruction.

Problem B.3 Explain the following memory
organizations for vector accesses:

{3} 5-access memory organltion.

Problem 8.4 Distinguish among the following
vector processing machinu in terms of architecture,
performance range. and cost-effectiveness:

(a} Full-scale vector supercomputers.
[bl High-endmainframesornear-supercomputers.
(c) Minisupercomputers or supercomputing work-

stations.
Problem 8.5 Explain the following terms
associated with compound vector processing:

(a} Compound vector functions.
[bl Vector loops and pipeline chaining.
(cl Systolic program graphs.
(d) Pipeline network or pipenets.

Problem 8.6 Answer the following questions
related to the ardiitecture and operalions of the
Connection Machine CM-I:

,.,....,...,.,,....,,,...,,,.,,,,.. _ 405
(a) Describe the processing node architecture.

including the processor. memory. floating-
point unit. and network interface.

lb) Describe the hypercube router and the
NEVVS grid and explain their uses.

(c) Bqalain the scanning and spread mechanisms
and their applications on the CM-2.

(d) Explain the concepts of broadcasting. global
combining, and virtual processors in the use
of the CH-1

Problem 8.7 Answer the following questions
about the l"1asPar MP-1:

la) Explain the X-Net mesh interconnect {the PE
array] built into the MP-1.

lb} Eaqalain how the multistage crossbar router
works for global communication between all
PEs.

lc) Explain the computing granularity on PEs and
how fast HO is performed on the MP-1.

Problem B.B Answer d1e following questions
about the Connection Machine CH-S:

la) What is a fat tree and its application in
constructing the data network in the CM-5*!

lb} What are user partitions and their nesouroes
requirements?

(c) Explain the functions ofthe control processors
of the control network and of the diagnostic
network.

(d) Explain how vector processing is supported
in each processing node.

Problem 8.9 Give exampleadiffcrent from those
in Figs. 8.33 through 8.36, to explain the concepts
of replication. reduction, permutation. and parallel
prefix operations on the CM-5. Check the Technical
Summary of CM-5 published by Thinking Machines
Corporation if additional reading is needed.
Problem 8.10 On a Fuiitsu VFZODO. the vector
processing unit was equipped with two loadfstore
pipelines plus five functional pipelines as shown in
Fig. 8.13. Consider the execution of the following
compound vector function:

All] = Bill] :>< C{|) + D{l] :>< Ell} + F(l) :>< Gil)
for I = 1. 2. N. initially. all vector operands are in
memory. and the final vector result must be stored
in memory.

fa) Show a pipeline-chaining diagram. similar to
Fig. 8.1 B. for executing this cvr.

(b) Show a space-time diagram. similar to
Fig. 3.1 9, for pipelined execution of the Cl/E
None d1at two vector loads can be carried
out simultaneously on the two vector-access
pipes.At the end of computation. one of the
two access pipes is used for storing the A
array.

Problem 8.11 The following sequence of
compound vector function is to be executed on a
Cray X-MP type vector processor:

All) = Bll) + s >< Cll}
Dill) = s >< B{l) >< C(l]
Em = cm >< (cm - Bllii

where Bll} and Cfl) are each 64-element vectors
originally stored in memory. The resulting vectors
Ail). D(l).and Ell} must be stored back into memory
after the computation.

(a) Wfite 11 vector instructions in proper order
to execute the above C\"Fs on a Cray X-MP
type vector processor with two vector-load
pipes and one vectoostone pipe which can
be used simultaneously with the remaining
functional pipelines.

lb) Show a space-time diagram. similar to Fig.
8.19, for achieving maximally chained vector
operations for executing the above CVFs ln
minimum time.

(c) Show the potential speedup of the above
vecnor chaining operations over the chaining
operations on the Cray 1. which had only one
memory-access pipe.

Problem B.11 Consider a vector computer
which can operate in one of two execution modes
at a time: one is the vector mode with an execution
rate of R, = 2000 Mflops. and the other is the scolor

40s

mode with an execution rate of R, = 200 Mllops. Let
rr be the percentage of code that is vectorizable in a
typical program mix for this computer.

{a} Derive an expression for die overoge execution
rote R. for this computer.

(b) Plot Rn as a function of rr in the range [(1.1].
(c) Determine the vectorization ratio tr needed

in order to achieve an average execution rate
of it, = isno Mflops.

(d) Suppose (I = 0.?.What value of R, is needed
to achieve R, = 400 Mllops?

Problem 8.13 Describe an algorithm using odd,
multiply, and doto-muting operations to compute the
expressions =A1><B1+A; ><.Bq + +A3;><El;;wid1
minimum time in each of the following two computer
systems. It is assumed that add and multiply require
two and four time units. nespectivelyt The time
required for instructionfdata fetches from memory
and decoding delays ane ignored.All instructions and
data are assumed already loaded into the relevant
PEs. Determine the minimum compute time in each
CHSB.

(a) A serial computer with a processor equipped
with one adder and one multiplier. only one of
which can be used at a time. No data-routing
operation is needed in this uniprocessor
machine.

(b) An 5ll'lD computer with eight PEs (PEG.
PE1. PE;). which are connected by a
bidirectional circular ririg. Each PE can directly
mute its data to its neighbors in one time unit.
The operands A. and B. are initially stored in
PE,-mods for i = 1.1, 31. Each PE can odd or
multiply at different times.

Problem 8.14 Calculate the peak performance in
Gflops with reasoning in each of the following two
vector supercomputers.

(a) The Cray Y-MP C-90 with 16 vector
processors.

(b) The NEC EX-X with 4 vector processors.
(cl Explain why both machines offered a

TM liliffirmil-' Hflllfomponm
_ Adi-winced Computernrchitecture

maximum 64-way parallelism in their vector
operations.

Problem 8.15 Devise a minimum-time algorithm
to multiply two 64 >< 64 matrices. A = la,-ii and B =
(by). on an SIMD machine consisting of 64 PEs with
local memory. The 64 PEs are interconnected by a
2D B >< B torus with bidirectional links.

(a) Show the initial distribudon of the input
matrix elements [op and {by} on the PE
I‘l"lef‘l"lOl"l'ES.

lb) Specify the SIMD instructions needed to
carry out the matrix multiplication. Assume
that each PE can perform one multiply. one
odd, or one shifi (shifting data to one of its
four neighbors] operation per cycle.
You should first compute all the multiply and
add operations on local data before starting to
route data to neighboring PEs.The SIMD shift
operations can be either east. west. south. or
north with wraparound connections on the
lIOI'US.

(c) Estimate the total number of SIMD instruction
cycles needed to compute the matrix
multiplication.The time includes all arithmetic
and data-routing operations.The final product
elements C = A >< B = (c,-I-} end up in various
PE memories without duplication.

(d) Suppose data duplication is allowed initially by
loading the same data element into multiple
PE memories. Devise a new algon'thm to
further reduce the SIMD execution time.The
initial data duplimtion time. using either data
broadcast instructions or data muting [shifting]
instructions. must be counted. Again. each
result element cg ends up in only one PE
memory.

Problem 8.16 Compare the Connection Machines
CM-1 and CM-5 in their architectures, operation
modes. functional capabilities. and potential perfor-
mance. from the viewpoints of a computer architect
and of a machine programmer.

,,.,,.,...,,,,,...._..,..,.,,.,._., _ M
Problem 8.17 Consider the use of a multivector
multiprocessor system for computing the following
linear combination of n vectors:

I013

y= Zojxxj
r=<r

where r = ira l"'1- Yionlr and 1. = isa. 11,-.
.... x,,m,5.)T for D £ j £ 1013 are column vectors:
{oflfl 5 j s 1023} are scalar constants. You are
asked to implement the above computations on a
four-processor system with shared memory. Each
processor is equipped with a vector-add pipeline
and a vector-multiply pipeline.Assume four pipeline
stages in each functional pipeline.

la) Design a minimum-time parallel algorithm to
perform concurrent vector operations on the
given muitipnocessor. ignoring all memory-
access and I10 operations.

(b) Compare the performance of the multipro-
cessor algorithm with that of a sequential al-
gorithm on a uniprocessor without die pipe-
lined vector hardware.

Problem 8.18 The Bumaughs Scientific Processor
(H-SP] was built as an SIMD computer consisting of
16 PEs accessing 17 shared memory modules. Prove
that conflict-free memory access can be achieved
on the BSP for vectors of an arbitrary length with a
stride which is not a multiple of 17.

rh- l||lcG-mu urn IZ4vr-went-I s

_ _

Scalable, Multithreaded, and
Dataflow Architectures

'l'his chapter discusses innovative computers built with scalable, multlthreadedor dataflow architectures.
These architectures generated and validated many research ideas which led to the latter developrnent of
massively parallel processing {MPP} sy's'tems.Therefore. the material is presented with a strung research
flavor benefiting mostly researchers. designers. and graduate sbudems. More recent developments of
these ideas are presented in Chapter 13.

Major research issues covered include latency-hiding tedsniques. principles of multiehreading.
multidimensional scalability, rnulfithreaded architectures, fine-grain multicomputers, datafievw, and hybrid
architecmra. Example systems studied include the Stanford Da.sh,Wlsconsin Muldcube, USCJOMF, KER»
1,Tera, MIT Alewife and j-Machine, Caltech Mosaic C, ETL EM-4. and MlTl‘l"'lotor'cila *'[

LATENCFHIDINGTECHNIQUES

1 Massively parallel and scalable systems may typically use distributed shared memory. The
access of remote memory significantly increases memory latency. Fr.u1.l1em1ore, the processor

speed has been increasing at a much faster rate than memory speeds. Thus any scalable multiprocessor or
large-scale multicomputer must rely on the use of latency-reducing, -tolerating, or —hiding inechanlsms. Four
latency-hiding mcchanismsarc studied below lbrenhancing scalability and programmability.

Latency hiding can be accomplished through ihur complementary approaches: {ii using prjerr-hr'ng
rec-hnr'qrms' which bring instnictions or data close to the processor before they arc actually needed; {iij using
r-ofrervrrr cor-hes supported by hardware to reduce cache misses; {iiij using refitted rrrerrmrjv r-onsisrerrey
models by allowing bufiiering and pipelining of memory references; and -[ivj using nrrrfriple-er;-nrevrs support
to allow a processor to switch from one contest to another when a long-latency operation is encountered.

The first three mechanisms are described in this section, supported by simulation results obtained by
Stanford researchers. Multiple contexts will be treated with multithreaded proec ssorsand systemarc hitectures
in Sections 9.2 and 9.4. However, the effect of multiple contests is shown here in combination with other
latency-hiding mechanisms.

9.1.1 Shared Virtual Memory
Single-address-space multiproccssors.-‘multicomputers m|.|st use shared virtual memory. We present a model
of such an architectural environment based on the Stanlhrd Dash cspericnoe. Then we esaminc several
shared-virtual-memory systems developed at Stanford, Yale, Camegit:-Mellon, and Princeton universities.

smrate,Muruo|-=md.m ,,.,
The Architecture Environment The Dash architecture was a largeecalc, cache-coherent, NUlvlA
rnuitiprocessor system, as depicted in Fig. 9.1. lt consisted of multiple multiprocessor clusters connected
through a scalable, low-latency interconnection network. Physical memory was distributed among the
processing nodes in various clusters. The distributed memory formed a global address space.

as
Cache

“ads Stor

1 Wine:
_ Buff-er'

Secondary Cache

l I’
\ I

Cluster 1 't\ ,’ Cluster n
‘ |'

\

‘rno Directory ‘r Directory
Cache Cache me moo ‘I Cache Cache mommy

Remote 9 |' 5 Remoterte WeCache Cache

I Interconnection Network i

55
E

E

.-‘T_--_--__-

I I I I I I I I I I I I I I I I I I

-.,_'

.,.-____-__

-
J

|¢ \-..

-—-

“-0-..___
I.. I

Flg.9.1 A scahbie coherent cache multiprocessor with dlscflbuoed shared metnory modeled after the
Sranlord Dash (Courtesy ofhnoup Gupta en al, Prue I991 Ann Int. Symp. Conpumrfla-ch}

Cache coherence was maintained using an invalidating, distributed directory-based protocol (Section
7.2.3). For each memory block, the directory kept track of remote nodes cacheing It. when a write occurred,
point-to-point messages were sent to invalidate remote copies of the block. Acknowledgment messages were
used to inform the originating node when an invalidation was completed.

Two levels of local cache were used per processing node. Loads and writes were separated with the Lise
of n-'rir‘e buffers for implementing weaker memory consistency models. The main mommy was shared by all

rocessl nodes in the same cluster To facilitate prefetching and the directory-based coherence protocol,P '18 -
directory memory and remote-access cac hes were used for each cluster. The remote-access cache was shared
by all processors irI the cluster

-4| ll i Adi-wiccd Cmnputerfluchitecturc

The SVM Concept Figure 9.2 shows the structure of a distributed shared memory. A global virtual address
space is shared among processors residing at a large number of loosely coupled processing nodes. This
shared virnml nienioiy (SVM) concept was introduced in Section 4.4.]. Implementation and management
issues of SVM are discussed below.

CPU

I2I2C(1)I
_.

itf ILI \I

if

‘t1';1A

Node U

.\ ___“
emery ‘~__ -._

-s,‘ ‘R
\,_ "Ht .

o ‘,--"

l \. \
"~

'-.
-\.

"\-
__,.»' Shared

I I Virtual
Memory Nodat I " WWW

if/I "- 2‘ I 1. Node I -=-
' /If / svin
I 1' /. I I. PBQG T3lJlE Vmual Addm!-.5

z 2' BMW,.- Address
/ Space ,..~

ltilamory Nndg ,1 _ _
(ml. naad_miy,wrli.ai:|ie]

{a) Distributed shared mernory {h)S1'iared virtual memory mapping

Ill
l

Fig.1} The concept of dlsrrlh-uted sltared memory with a global vlrnsal address space shared among all
processors on loosely coupled processing nodes in a massively parallel arch.ltec1:ure {Courtesy of
Kai Li. 1992]

Shared virtual memory was first developed in a Ph.D. thesis by Li (1986) at Yale University. The idea is
to implement coherent shared memory on a network of processors without physically shared memory. The
coherent mapping of SVM on a message-passing multicomputer architecture is shown in Fig. 9.lb. The
system uses virtual addresses instead ofphysical addresses for memory references.

Each virtual address space can be as large as a single node can provide and is shared by all nodes in the
system. Li (1938) implemented the first SVM system, IVY, on a network ofApollo workstations. The SVM
address space is organized in pages which can be accused by any node in the systcm. A memory-mapping
manager on each node views its local memory as a large cache ofpages lor its associated processor

Page Swapping According to Kai Li (1992). pages that are marked read-only can have copies residing
in thc physical mcmorics of other processors. A page cumcntly bcing written may rcsidc in only one local
memory. When a processor writes a page that is also on other processors, it must update the page and then
invalidate all copies on the other processors. Li described thc page swapping as ihllows:

A memory rcfcrcncc causes a page fault when thc page containing thc mcmory location is not in a
processofis local memory. When a page fault occurs, the memory manager retrieves the missing page from
the memory of another processor. lf there is a page frame available on the receiving node, the page is moved

$stn.,tus....-,ts..o -— .,,,
in. Otherwise, the SVM system uses page replacement policies to find an available page frame. swapping its
contentsto the sending node.

A hardware MMU can set the access rights (riff, rerm‘-only, n'rirrihIc'] so that a memory access violating
memory coherence will cause a page fault. The memory coherence problem is solved in IVY through
distributed fault handlers and their servers. To client programs, this mechanism is completely transparent.

The large virtual address space allows programs to be larger in code and data space than the physical
memory on a single node. This SVM approach oifers the case of shared -variable programming in a message-
passing environment. In addition, it improves software portability and enhances system scalability through
modular memory growth.

Example SVM System: Nitzberg and Lo [I99 I) conducted a survey of SVM research systems. Excerpted
from their stnvey, descriptions of four representative SUM systems are suinrnarized in Table 9.1. Dash
implemented SVNI with a directory-based coherence protocol. Linda ofiercd a shared associative object
rnernory with access Fttnctions. Plus used a write-update coherence protocol and performed replication only
by program request. Shiva extended the IVY system for the lntel iPSU2 hypercube. In using SVM systems,
there exists a tendency to use large block (page) sizes as units of coherence. This tends to increase false»
sharing activity.

Table 9.1 Representative SVM Research Systerns {Excerpts fiwrr Nitzherg and Lo, IEEE Cumptttaduglrst 1991]

.5}'.t rem
and

El? t'e'i'op¢'r

Irnpieme"rr.fuI ion
and

Sim-etrrns

(.'0.ir¢'r"e'rrr;'e'
5<;"munI lies and

Phituc01$

t§r?¢'r.'iuf ll-’le‘e'frurrie.r
jor Pt-rfo-rmum~e

and .'§_Wrt'Irrrmrhutirm

Stanford Dash
{Ler|.oslti, Landon,
Gharachorloo. Gupta.
and Hennessy, 1988-].

Meal:-connected networlt
of Siiieon Graphics 4Di'34t'.l
workstations with added
hardware. for ooherent
caches and prefetching.

Release memory consistency
with write-iniralidate
protocol.

Relaxed coherence,
prefetehing, and queued
locks for synchronization.

Yale Linda [Carriero
and Gclcrnter, 1982-}.

5ofi:weJ‘e-implelnented
system based on the
concepts oftuple space
with access functions
to achieve coherence
via virtuai memory
nianageinent.

Coherence varied with
environment; hashing
used in mt-smiative search;
no rnutahle data.

Linda could he
implelnented for many
languages and machines
using C-Linda or Formul-
Lirtda interfaces.

EMU Plus (Bisiani and
Ravishankar. l9SE—).

Ahardware implementation
using MC 88600. Caltech
mesh. and Plus lternet.

Used processor consistency,
nondemand write-update
coherence, delayed operations.

Pages for sharing, words
for coherence. complex
synclwonizanon
instructions.

Princeton Shiva {Li and
Schaefer, 1988).

Soflware-based system
for Intel iPSC1"2 with B
Shivafnative operating
system.

Sequential consistency,
write-invalidate protocol,
4-Khyte page swapping.

Used data structure
con1paction.mseges for
semaphores and signal-
wait, distributed memory
as hacking store.

FM Mtfirnlw Hlilrbmpwtns
4| I i " AdvoncedColnp-uterfirchitectore

Scalability issues of SK-‘M architectures include determining the sizes of data structures for maintaining
memory coherence and how to take advantage of the fast data transmission among distributed memories in
order to implement large SVM address spaces. Data structure compaction and page swapping can simplify
the design of a large SVM address space without using disks as backing stores. A number of alternative
choices are given in Li [1992]-.

9.1.2 PnefenchingTechniques
Prefetching techniques are studied bclow. These involve both hardware and software approaches. Some
benchmark results for prefetching on the Stanford Dash system are presented to illustrate the benefits.
Frefetdring Technique: Prefetching uses knowledge about the expected misses in a program to move the
corresponding data close to the processor before it is actually needed. Prefetching can be classified based on
whcthcr it is binding or rmnbinoiing, and whether it is controlled by nnro'i1'.orc or.srJ_,ii"unre.

With binding prefetching, the value of a later reference {e.g. a register load} is bound at the time when
the prefetch completes. This places restrictions on when a binding prcfctch can be issued, since the value
will become stale if another processor modifies the same location during the interval between prefetch and
reference. Binding prefetching may result in a significant loss in perfomtance due to such limitations.

ln contrast, nonbinding prefetching also brings the data close to the processor, but the data remains visible
to the cache coherence protocol and is thus kept consistent until the processor actually reads the value.

Hardwawcontrolled prcfetching includes schemes such as long cache lines and instruction lookahead.
The effectiveness of long cache lines is limited by the reduced spatial locality in multiprocessor applications,
while instruction looltahead is limited by branches and the finite lotrkaltead bufier size.

With software-controlled prefctching, explicit prefetch instructions are issued. Software control allows the
prefctching to be done selectively (thus reducing bandwidth rcquirerncntsj and extends the possible interval
between prefetch issue and actual reference. which is very important when latencies are large.

The disadvantages of software comrol includc the extra instruction overhead required to generate the
prefetches, as well as the need for sophisticated software intervention. In our study, we concentrate on non-
binding .sr:t,iin-"rim" controi!t'd]Jnf,ri='rt-Iiirig.

Benefits ofPnefetching The benefits of prefetching come from several sources. The most obvious benefit
occurs when a prcfctch is issued early enough in thc code so that thc linc is already in thc cachc by thc time
it is referenced. However, prefetching can improve perforirtance even when this is not possible (e.g. when
the address of a data structure cannot be determined until immediately before it is referenced}. Ifmultiple
prefetches are issued back to back to fetch the data structure, tl'te latency of all but the first prefetched
tcibrcncc can be hidden duc to thc pipelining ofthe mcntory acccsscs.

Prefetching offers another benefit in multiproccssors that use an ownership—based cache coherence
protocol. If a cache block line is to be modified, prefetching it directly with ownership can significantly
reduce the write latencies and the ensuing network traffic for obtaining ownership. Network traflic is reduced
in read-modify-write instructions. since prefctching with ownership avoids first fetching a read-shared copy.
Benchmark Result: Stanford researchers (Gupta, Hennessy, Gharachorloo, Mowry, and Weber, l99l}
reported some benchmark results for evaluating various latency-hiding mechanisms. Benchmark programs
included a particle-based three-dimensional simulator used in aeronautics tMP3D). an LU-decomposition
program {LU}, and a digital logic siniulation program [PTI-[ClR_‘,t. The effect of prefetching is illustrated in
Fig. 9.3 for running the MP3D code on a simulated Dash multiprocessor (Fig. 9.1).

s..t.~.,M.e....t......t. -— ...,
1001]100 — _-_ 14_4 9&7 ore-teteh-es

go __ —- 1 sync ops
18 3 — write buffer

- _ readBU - _ "1 so busy

edExecutionT'me

F-PPCDO:

7'0 *- ea.-4

_ 6°‘ Q satt 53.?
50- 58] 54.9

40" 2.3.2 '
30- 27-1 25.9
20~ _ _ _

10- taa =1a.e tee 1a.e tea
O , ,

strategy nopf pf1 pf2 p13 pf4
Coverage 0% 3?% 91% 91% 95%

Source Lines 0 1 2 6 16
F£g.!.3 Efiect of various pm-Imtchlng strategies for running the HPBD bantzhmark cm at sintulatetl Dash

multiprocessor [Courtesy offitneep Gupta at al. 1991}

Normaz
.~°~!“!"~*-l3'~LDr_,g

.~'==!“F~*l\}\Dl‘_fl

The simulation runs involved 10,000 particles in a 64 >< 8 >< 3 space anay with five time steps. Five
prefctching strategies were tested -[no]; pfl. p_,i'.?. p_,B. and p_;‘I¢ in Fig. 9.3). These strategies range li‘om no
prefctching {nqrifl to prefetehing of the particle record in the same iteration or pipclined acmss increasing
numbers oi'itcrations{pfi' throug hpf4). The bar diagrarns in Fig. 9.3 show the execution times normalized with
respect to the nnpfstralegy. Each bar shows a breakdown of the times required for prefetches, synchronization
operations, using write buffers, reads, and busy in computing.

The end result wasthatprcfetchcssl.-"ere issued for up to 95"!-itoft11e misses that occurred in the case without
prefetching {referred to as the cot-'ernge_fiteror in Fig. 9.3). Prefetching yielded significant time reduction in
synchronization operations, using write buffets, and performing read operations. The best speedup achieved
in Fig. 9.3 is 1.36, When the pf! prefetehing strategy is compared with the rmlrifstrategy. Still the preietching
benefits would he application-dependent. To introduce the pre-fetches in 1.he MP3D code, only I6 lines of
extra code wen: added to the source code.

9.1.3 Distributed Coherent Caches
While the coherence problem is easily solved for small bus-based multiproccssors through the use of snoop}-'
cache coherence protocols, the problem is much more complicated for large-scale rnultiprocessors that use
general interconnection networks. As a result, some large-scale multiproccssors did not provide caches (eg.
BEN Bunerfly], others provided caches that must be kept coherent by sofiware (eg. IBM RP3}, and still
others provided full hardware support for coherent caches (e.g. Stanford Dash].

-4| 4 i " Advtonced Cmnputerfluchitecture

Dash Experience We evaluate thc benefits when both private and shared read-write data are cachcablc. as
allowed by the Dash hardware coherent caches, versus the case where only private data are cacheable. Figure
9.4 presents a breakdown of the normalized execution times with and without cacheing of shared data for
each of the applications. Private data arc cached in both caches.

_ 100.0 1&0 1&0
_ 7.1 so 4.3

go - 13_5 _1o_? Synchronization
_ _- Write Miss

an Read Miss
To _ at .1 Busy

NomtaiizeclEsocutonTme

S

541-_
11.15° ' 54-9 -15.2_ ratat - :1;J5: _.

_~U'lW

r~=!~>"’u'|_L34] — 14.3

20 — 13-1 22.5 3.9

10 — —
T.O i".0 9.5 9.5 6.9 T2

0
No Cache Cache No Cache Cache No Cache Cache

l‘ulP3D PTHOi_|_.| R

Fig.1.-I Efiectof cacltcing shared data in sirnuiamd Dash benchrnerit experimutos (Courtesy of Gupta oral.
Pmc.i‘.rn: 5ymp.Cor11puLArrhh.,Tot*onn:. Caatach. May 1991]

The execution time ofeach application is normalized to the execution time of the ease where shared
data is not cached. The bottom section ofeach bar represents the busy time or useful cycles executed by the
processor. The section above it represents the time that the processor is stalled waiting for reads. The section
above that is the amount oi‘ time thc processor is stalled waiting for writes to be completed. The top section,
labeled “synchronization,” accounts for the time processor is stalled due to locks and barriers.
Benefit: of Cnchcing As expected. the cacheing of shared read-write data provided substantial gains in
performance, with benefits ranging from 2.2- to 2.?-fold improvement for the three Stanford benchmark
programs. The largest benefit came from a reduction in the number of cycles wasted due to read misses. The
cycles wasted due to write misses were also reduced, although the magnitude ofthe benefits varied across the
three programs due to different write-hit ratios.

The cache-hit ratios achieved by MP3D, LU, and PTIIDR were 80, 66, and 77%, respectively, for shared-
read references, and T5, '97, and 47% for shared-write references. It is interesting to note that these hit ratios
are substantially lower than the usual uniprocessor hit ratios.

The low hit ratios arise from several factors: The data set size for engineering applications is large,
parallelism decreases spatial locality in the application, and communication among processors results in
invalidation misses. Still, hardware cache coherence is an efi’ective technique for substantially increasing the
perfo tmancc with no assistance itom the compiler or programmer.

e.nt,Mrm..ta..o_ 4,,
9.1.4 Scalable Coherence Interface
A scalable coherence interconnect. structure with low latency is needed to extend iron: conventional hosed
backpianes to a fully duplex, point-to-point interface specification. The scrrlabfc coherence intcrjlirec (SCI),
which was introduced in Chapter 5, is specified in IEEE Standard 1596-1992. SCI supports unidirectional
point-to-point connections, with two such links between each pair ol" nodes; pac-ket-based cornrntmication is
used, with routing.

Up to 64K processors, memory modules, or L-'0 nodes can effectively interface with a shared SCI
interconnect. The cache coherence protocols used in SCI are directory-be-sod. A sharing list is used to chain
the distributed directories together for reference purposes.

SCI Interconnect Models SCI defines the interface between nodes and the external interconrrect, using
I6-bit links with a bandwidth of up to 1 Gbytefs per link. As a result, backplane buses have been replaced
by unidirectional point-to-poinl1inks.Arypical SCI configuration is shown in Fig. 9.5a. Each SCI node can
be e processor with attached memory and U0 devices. The SCI interconnect can assume a ring structure or a
crossbar switch as depicted in Figs. 9.5b and 9.5c, respectively, among other configuratiorts.

Bflds

VME nus

[at Typical SCI eonfrguratron with nudge to other nus

Nodes Nodes

I. - ____ H I IH>
[t|JArmg for pomt—to-pomt transactions [n]Aerossnar multiprocessor

Fig.!.5 SCI imereomecrion configurations (Reprinted wirh permission them the IEEE Standard 1595-1992.
copyright © ‘E992 by lEEE.lrrc.}

Q
in ~‘ll-b)!‘

-‘-‘IiI'll

-Ilfi i - AdmrrcedCornprrterArchitecrure

Each node has an input link and an output link which are connected fiom or to the SCI ring or crossbar.
The bandwidth of SCI links depends on the physical standard chosen to implement the links and interfaces.

In such an environment, the concept of broadcast bus-based transactions is abandoned. Coherence
protocols are based on poim-to-point transactions initiated by a requester and completed by a responder.
A ring interconnect provides the simplest feedback connections among the nodes.

Tl:|e converter in Fig. 9.5a is used to bridge the SCI ring to the VME bus as shown. A mesh of rings can
also be considered using some bridging modules. The bandwidth, arbitration, and addressing mechanisms of
an SCI ring significantly outperform backplane buses. Ely eliminating the snoopy cache controllers, the SCI
is also less expensive per node, but the main advantage lies in its low latency and scalability.

Although SC] is scalable, the amount of memory used in the cache directories also scales up well.
The performance of the SCI protocol does not scale, since when the sharing list is long, invalidatiorrs take
proportionately longer time.
Sharing-List Structures Sharing lists are used in SCI to build chained directories for cache coherence use.
The length of the slrraiing lists is effectively unbounded. Sharing lists are dynamically created, pruned, and
destroyed. Each coherently cached block is entered onto a list of processors sharing the block.

Processors have the option of bypassing the coherence protocols for locally cached data. Cache blocks
of 64 bytes are assumed. By distributing the directories among the sharing processors, SCI avoids sealing
limitations imposed by using a central directory. Communications among sharing processors are supported
by heavily shared memory controllers, as shown in Fig. 9.6.

PrCOBB-'BCl'S

cPu,, caua cPu,; caun E-Urit
I-r C-ache

I Cohnrmtbloclr W |:| hlon-ccheranthlock

Moncry

Fig-9-6 SCI cache coherence pnococol with distributed dineccories (Courtesy of D.\Ejarnes et al. IEEE
Con1pumr.19'9Cl]

Other blocks may be locally cached and are not visible to the coherence protocols. For every block address,
the memory and cache entries have additional tag bits which are used to identify the first processor (head) in
the sharing list and to link the previous and following nodes.

Doubly linked lists are maintained between processors in the sharing list, with forward and backward
pointers as shown by the double arrows in each link. Noncoherecrrt copies may also he made coherent by
page-level control. However, such highcr-level software coherence protocols are beyond the scope of the
SCI standard.

sstn,Mnst...ta..o -—. 4,,
Sharing-Lin Creation The states ofthe sharing list are defined by the state of the memory and the states of
list entries. Nortnally, the shared memory is either in a home [uncaichedi or a cached (sharing-list) state. The
sharing-list entries specify the location ol" the entry in a multiple-entry sharing list, identify the only entry in
the list, or specify the entry-"s cache properties, such as clean. dirty, valid, or stale.

Thc head ptoccssor is always rcsponsiblc for list management. The stable and legal combinations ofthc
memory and entry states can specify uncached data, clean or dirty data at various locations, and cached
writable or stalc data.

The memory is initially in the home state tuncached], and all cache copies are invalid. Sharing-list
creation begins at the cache where an cntry is changed from an invalid to a pending state. When a read-cachc
transaction is directed from a processor to the memory controller, the memory state is changed frorn un-
cachcd to cached and thc rcqttcstc-d data is returned.

The requcstcr‘s cachc entry statc is thcn changcd from a pending state to an only-clean state. Sharing-list
creation is illustrated in Fig. 9.7a. Multiple requests can be simultaneously generated, but they are processed
soqucntially by thc memory controller.

Processors

l'-\'B"d-
naw was old new old

new new [2]"‘H *—‘*"“Hm»
read cached “-, l9ad{":i£ch9:1H‘~...,... m MW

Before After Befae After

[a] Creation of sharing list [bl Addition of new no-dos

Fig.9.? Sharlrtg-list creation and up-than ttxamploa {Courtesy of D.V.jart1as et: al. IEEE Computer. 1990}

Sharing-I.i:t Updater For subsequent memory access, the memory state is cached, and the cache head of
the sharing list has possibly dirty data. As illustrated in Fig. 9.?h, a new requester (cache A) first directs its
read-cache transaction to memory but receives a. pointer to cache B instead of the requested data.

A second cache-to-cache transaction, called prepcnrt'_ is directed from cache A to cache B. Cache B then
sets its backward pointer to point to cache A and returns the requested data. The dashed lines correspond to
transactions between a processor and memory or another processor. The solid lincs are sharing-list pointers.

After the transaction, the inserted cache A becomes the new head, and the old head, cache B, is in the
middle as shown by the new sharing list on the right in Fig. 9.Tb.

Any sharing-list entry may delete itself from the list. Demils of entry deletions are left as an exercise for the
reader. Simultaneous deletions never generate deadlocks or starvation. However, the addition ofncw sharing-
list entries must be performed in first-in—first-out order in order to avoid potential deadloclting dependences.

Thc hcad ofthe shati ng list has thc authority to purge othcr cnttics lrom the list to obtain an cxclus ivc entry.
Others may reenter its a new list head. Purges are performed sequentially. The chained-directory coherence
protocols arc fault-tolerant in that dirty data is ncycr lost when transactions arc discarded.

-4| B i - AdmrrcedColnputerArchitec1ure

Implementation Issue: SCI was developed to support multiprocessor systems with thousands ofprocessors
by providing a coherem dist ributed -cache image ofdist ributed shared memory and bridges that interface with
existing or future buses. ll can support various multiprocessor topologies using Omega or crossbar networim.

Differential emitter coupled logic (ECL) signaling works well at SCI clock rates. The original SCI
implementation uses a I6-bit data path at 1 ns per word. The interface is synchronously clocked. Several
models of clock distribution are supported. With distributed shared-memory and distributed cache coherence
protocols, the boundary between multiproccssors and multicomputers has become blurred in MIMD systems
of this class.

9.1.5 Relaxed Memory Consistency
We have studied n'e.r1ir con.sis'Ienrjt' (WC) [Sirldliu et al, 1992) and .seqrn:nrfai' con.sr's1tene__r-' (SC) in Section 5.4.
Two additional memory models are introduced below for building scalable multiproccssors with distributed
shared memory.

Processor Consistency Goodman (I989) introduced the prr;ees'.sor eonsis'rene_v (PC) model in which
writes issued by each individual processor are always in program order. However, the order of writes from
two different processors can be out of program order. ln other words, consistency in writes is observed in
each processor, but the order of reads from each processor is not restricted as long as they do not involve
other processors.

The PC model relaxes from the SC model by removing some restrictions on writes from dificrcnt
processors. This opens up more opportunities for write buffering and pipelining. Two conditions related to
otherproccssors are required for ensuring processor consistency:

{ 1] Before a read is allov.-ed to peribrrn with respect to any other processor, all previous rend accesses
must be performed.

{2} Before a write is allowed to perform with respect to any other processor, all previous rend or write
aoces ses must be performed.

These conditionsallow reriris following a write to bypass the nrire. To avoid deadlock. the implementation
should guarantee that a write that appears previously in program order will eventually be performed.

Rel-ease Consistency One of the most relaxed memory models is the reiease consistent)‘ (RC) model
introduced by Gharochorloo et al (1990). Release consistency requires that synchronization accesses in the
program be identified and classified as either acquires (e.g. locks) or reieases (e.g. unlocks). An acquire is a
read operation (which can he part of a read-modify-write) that gains permission lo access a set of data, while
a release is awrite operation that gives away such permission. This information is used to provide flexibility
in bufiering and pipelining ofaccesses between synchronization points.

The main advantage of the relaxed models is the potential for increased peribrmance by hiding as much
write latency as possible. The main disadvantage is increased hardware complexity and a more complex
programming model. Three conditions ensure release consistency:

~[ll Before an ordinary read or n-‘rite aocess is allowed to perform with respect to any other processor, all
previous oeqrrire accesses must be performed.

seut,Muo~.¢e...i. 4,,
{2} Before a release acccss is allowed to perform with respect to tun: othcr proocs all previous ordinary

mad and store acccsscs must bc pcrforrncii
{'3} firreciui accesses arc processor-con sistcnt with onc anothcr.The ordering restrictions imposed by weak

consistency arc not present in rcleasc con sistency. lnstcad, rclcasc consistency rcqu ires processor
consistency and not scqucntial consistency.

Release consistency can be satisfied by (ii stalling the processor on an acquire access until it completes,
and [ii] delaying the completion of release aeeess until all previous memory accesses complete. intuitive
definitions ofthe four memory consistency models, the SC, WC, PC, and RC, are sununarized in Fig. 9.5.

Sequential Consistency (56)
The re-suit of any eioecution aprpears as

Processor Consistency -[PC] “leak cqrislsrgi-my mic]
Writes issued by each Individual
prooessor are never seen out of
order. but ihe order of writes from
two differert prooessors can be
obsenred differently. [Go-odman,
1939]

The programmer enforoes
oonslsteney using
synchronization operators
guaranteed to be sequen liytia
oonsistertt (D ubois etai.,19BB;
S-indhu et ai.,1992]

some interleaving oi the operations of the Sllflng
individual processors when executed on a Mam
rruitithreaded sequential machine.
(Lamp-ort, 1919]

Reiaiced
\ / ii’ Models

Release Consistency {RC}
Weak oonsistency with two types of
sgrnchnonization operators: acquire and
release. Each type of operator is
guaranteed to be processor cons istent
[Gharaehorioo et a|.,19'90-J

.-1

Fig.1-3 lncuithre definitions of four mernery consisuency mor.|e|s.Tl'ie arrow: pointfmm strong so relaxed
oonsistencies (Courtesy oi‘ hfilzberg and Lo. IEEE Computer; Au-gust 1991}

The cost of implementing RC over that for SC arises from the extra hardware cost ofproviding a lockup-
fiee cache and keeping track ofmultiple outstanding requests. Although this cost is not negligible, the same
hardware fcattlrcs are also rcquircd to support prcfctching and multiple contests.

Effect of Release Comifloncy Figure 9.9 prcsmlts the breakdown of execution times under SC and RC
for the three applications. The execution times are nonnaiized to those shown in Fig. 9.3 with shared data
cached. As can be seen from the results, RC removes all idle time due to write-miss latency.

-411] i " Advlorleed Cmnputerfluchitecture

— won mm} 1.020 Synchronization
“ 1:14" E 5'9 92-4 3112 Write Miss

— '5-5 Cl‘-B — Read Miss
Busy

malzledExeeutlonTme

3S8S
3-5.2 :1‘='l'.Q- T22

64.3 _s.¢
_ _ _ 3.1

are_ -51.3Nor SE2
529

*9 ' 43.5 out 49-“
30-

20- _
1°" res 1s.s 2'5-° 25-“ -16.0 14.2.
0

SC RC SC RC SC RC
lvlP3D LU PT HOP.

Fig. 1.9 Eiiiect oinclaxslng the shared-memoqr rnodei from sequential oonsistmcy {SC} to release consistency
(RC) [Courtesy of Gupta at al. Ptcc. int. Syrup. Corn-put. Archie, Toronto. Canarh. May 19'9't}

The gains are large in ivlP3D and PTHOR since the write-miss time constitutes a large portion of the
execution time under SC (35 and 20%, respectively], while the gain is small in LU due to the relatively small
write-miss time under SC (7%).

Effect of Combining Mechanism: The cliect of combining various latency-hiding mechanisms is
illustrated by Fig. 9.10 based on the M'P3D bcnciunark results obtained at Stanford University. The idea of
using mtiirrpic-t-nnttu-t processors will be described in Section 9.2. However, the eitect of integrating MC
with other latency-hiding mechanisms is presented bclow.

The busy parts of the execution times in Fig. 9.10 are equal in all combinations. This is the CPU busy
time for executing the MPED program. The idle part in the bar diagram corresponds to memory latency and
includes all cache-miss penalties. All thc times arc normalized with respect to thc execution time (IUD units}
required in a m-:-he-mhcrsnt system. The leftmost time bar (with 241 units) corresponds to the worst case of
using a private cache ettclusivcly without shared reads or writes. Long overhead is experienced in this case
ciuc to excessive cache misses. The use of a cache-coherent system shows a 2.41-fold improvement over the
private case. All the remaining cases are assumed to use hardware coherent caches.

The use of rt*l'et"ts+.- consrsterrr-_v shows a 35% firrthcr improvement over the coherent system. The adding
of prefetching reduces the time further to 44 units. The best case is the combination of using coherent caches.
RC, and rriItrl'tr'pi'-t’ c0rttc.1rrs(MC). The rightmost time bar is obtained from applying all four mechanisms. The
combined results show an overall speedup oi'4 to 7 over the case ofusing private caches.

The above and other uncited bencltmark results reported at Stanford suggest that a coherent cache and
relaxed consistency uniformly improve performance. The improvements due to prefctching and multiple

ssot,nstst...ts....t -—. 4,,
contents are sizable but are much more application-dependent. Combinations of the various latency-hiding
mechanisms genenilly attain a better peribrrnatlee than each one on its own.

2¢o- ‘L1

NormaleadExecutionTime

2.20 -
zoo - 5“?

El Idle

180-

- 160 _ RC:ReteaseConsls1ency'
MG: Mutlpte Contexts

140 —

120 —

iflitrm
PWHIB Coherent Coherent Coherent (IQ-ho-rent Cnhgrgnt
Cache Cache +|=te +RG me +n¢

+Pmfet1‘-h +Mc +Prefetch
+|'-.|1C

Fig. 1.10 Effect: of combining various Ilttenqr-l'tlt:ling mechanisms from the MPJD benehmarkon 1 slrn-tslatned
Dash multipnecessor (Courtesy of Gupta. 1991}

PRINCIPLES OF FIULTITHREADING

1 This section considers multithreaded prooessors and multidimensional system arehiteetures.
Only control-flow approaches are described here. Fine-grain machines are studied in

Section 9.3, von Neurnann mult-ithreacling in Section 9.4, and clataflow multzithreacling in Section 9.5. Recent
developments in rnullithreading support by processor hardware are discussed in Chapters 12 and I3.

9.1.1 Hultitl1rBading Issues and Solutions
Multithreading demands that the processor be designed to handle multiple contexts simultaneously on a
context-switching basis. We first specify the typical architecture environment using multiple-context
processors. Next we present a rnullitltreaded computation model. Then we look further into the latency and
synehmnization problems and discuss their solutions in this environment.

FM Mtfiruw H'IHr'n.-rq|i;utn1'
III i " Advanced Corrtputerfluchitecture

Architecture Emrinzlnrnent One possible tnultithreaded MPP system is modeled by a network of processor
(P) and memory (M) nodes as depicted in Fig. 9.] la The distributed memories form a global address space.
Four machine parameters are defined below to analyze the performance of this network:

I-alflflfiy ll-J
...,?"

ll'lHl“OCll'|l"lG‘1'.'.t

@- El— Erin. el- ET m— El— El.’ sl- El-
Rate of request [p = HR]

[a] Thearchihctore environment. {Gou rteey of Rafael Saavodra, 1992]

||-my gc|1Qdu|||-|g Qvgmaad T hreaet sy nehron ization overheadR Z
|_ _ _ _ _ . __

,_ _____ _ _
1 throacle of parallel computation

,_ _____ __
gomputation lntel‘-comp-uter

communication
[distn outed memories]

[ls] Multithreadecl computation model. [Courtesy of Gordon Bell, C-‘omrnun. ACM, August 1992]

Fig.9.11 Moltltzlsreaded architecture and its oontpumtlon model for a rnaslvely parallel processing system

{'1} T?rc!t:r1ertc_1={'L'j: This is the communication latency on a remote memory access. The value oft. inc ludcts
the nctworlt delays, cache-miss penalty, and delays caused by contentions in split transactions.

{2} The number ofrhrterzds {N}: This is the number of threads that cart be interleaved in each processor.
A thread is represented by a context‘ consisting ofa program counter, a register set, and the required
contest status words.

{'3j The context-.stt-'irt'hingot-writeup" l_'C.'_l: This refers to the cycles lost in performing contest switching in a
processor. This time depends on the switch mechanism and the amount ofprocessor states devoted to
maintaining active thread s.

{'4} Ute ritrcrt-‘of bertveen .r'n-'r'rultc.s {R}: This refers to the cycles between switches triggered by remote
reference. The inverse p = UR is called the inte of reqrtestw tbr remote accesses. This reflects a
combination of program behavior and memory system design.

ln order to increase efliciency, one approach is to reduce lite rate of requests by using distributed coherent
caches. Another is to eliminate processor waiting through multithreading. The basic concept ofmultithreading
is described below.

Muftitfimaded Computations Bell {I992} has described the stnicture of the rnultithreaded parallel
computations model shown in Fig. 9.1111. The computation starts with a sequential thread (I), followed

Sccrlable,Multlthreuded,aod -—. 4,,
by supervisory scheduling (2) where the processors begin tltreads of computation (3), by intereomputer
messages that update variables among the nodes when the computer has a distributed memory (4), and finally
by synchronization prior to beginning the next unit of parallel work (5).

The eommtmieation overhead period (4) inherent in distributed memory structures is usually distributed
throughout the eontputation and is possibly eontpletely overlapped. Message-passing overhead {send
and reeeive ealls) in multicomputers ean be tedueed by specialized hardware operating in parallel with
eomputation.

Communication bandwidth limits granularity, since at certain amount of data has to be transferred with
other nodes in order to eomplete a e-nmputati-tmal grain. Message-passing ealls -[4] and synchronization (5)
are nonproductive. Fast mechanisms to reduce ort-n hide these delays are therelhre needed. Multithread ing is
not capable of speedup in the execution ofsingle threads, while weak ordering or relaxed consistency models
are capable of doing this.

Problem: nfA.t-ynehmny Massively parallel processors operate asynchronously in a network environment.
The asyne hrony triggers two Fundamental latency problems: remote formic and .s_1-'neitrorii:irtg fonds. as
observed by Nikhil {I 9'92). These two problems are explained by the following example:

l/l
g Example 9.1 Latency problems for remote loads or

synehronizing loads (Rishiyun Nikhil,1992).
The remote load sitttation is il]usn'ated in Fig. 9.12:1. Variables A and B are located on nodes N2 and N3,
respectively. They need to be brought to no-tie N1 to compute the difference A — B in variable C. The basic

t'dcndth t' f Iocl loddheth bt'C'DH'l].'1L| fltlfin ma 5 C C1111 IDH D “VD TCl'TlC|tC 3 Y (F 3 jiin t H C 51] ITHCIIUH.

Home N1 Hm H2 Hm N1

mam Roadyt “’°°“*
- GTXT|:|c I _

W“ I P-MRS mm N3 "3 I
"B I M - NooeN3
PA =| “B - _
PB f - PA Z. mm

PB Z -
Onblotto I"-l1,oon1:u.no; C= A-B oeunmos tooneouto:

~,,,q=ma5|;,_a 0nNodoN1,oon'ptre:C=A-B
B = B “awn mm: A and B oom|:u'ed eoret.n'sn1n,-

vc _ ?:; ti-ma on H1 muslbe nolfieo
' ' whonA, B are ready

(a) The remotelcaes prolziem (tn) The synerronziwg loads |:t'oolam

F§g.!.12 ‘Fun common pmblems caused by asymzhmny and corrrmmlcadm larutey in massively parallel
proeusors (Cournuy of ILS. Nvllthfi. Digital Equipntent. Corporation, 1991}

-414 i - Adnortced Cornputterarchitecttrre

Let pAand pB be the pointers to A and B, respectively. The two rloads can be issued from the same thread
or from two difi'erent threads. The context of the computation on bll is represented by the variable CTXT. it
can be a stack pointer, a frame pointer, a current-object pointer, a process identifier, etc. In general, variable
names like vA, vB, and C are interpreted relative to C-TXT.

In Fig. 9.l2b, the idling due to synchronizing loads is illustrated. ln this case, A and B are computed by
concurrent processes, and we are not sure exactly when they will be ready for node N1 to read. The ready
signals [Ready] and Ready2) may reach node N1 asyncltronously. This is a typical situation in the producer-
consumer problem. Busy-waiting may result.

The key issue involved in remote loads is how to avoid idling in node N1 during the load operations.
The latency caused by remote loads is an architectural property. The latency caused by synchronizing loads
also depends on scheduling and the time it takes to compute A and B. which may be much longer than thc
transit latency. The synchronization latency is often unpredictable, while the remote-load latencies are oflen
predictable.

Multithreading Solution: This solution to asynchrony problems is to multiplex among many threads:
When one thread issues a remote-load request, the processor begins work on another thread, and so on
(Fig. 9.l3a). Clearly, the cost of thread switching should be much smaller than that of the latency of the
remote load, or else the processor might as well wait tbrthe remote load's response.

As the internode latency increases, more threads are needed to hide it effectively. Another concern
is to ma]-te sure that messages carry continuations Suppose, after issuing a remote load from thread T1
(Fig. 9.13:1), we switch to thread E, which also issues a remote load. Thc responses may not return in
the same order. This may be caused by requests traveling different distances, through varying degrees of
congestion, to destination nodes whose loads differ greatly, etc.

One way to cope with the problem is to associate each remote load and response with an identifier for the
appropriate thread, so that it can be reenabled on the arrival ofa response. These thread identifiers are referred
to as emtrintto!r'ons' on messages, A large eorrrirtutrfiort name $‘,l'JfltI‘-t.’ should be provided to name an adequate
number of threads waiting for remote responses.

The size ofthe hardware-supported continuation in a name space varies greatly in diflcrcnt system designs:
from 1 in the Dash, 4 in the Alewife, 64 in the HEP, and I024 in the Tera (Section 51.4} to the local memory
address space in the Monsoon, Hybrid Dataflovvlvon Neumann, MDP (Section 9.3), and ‘T (Section 9.5].
Of course, if the hardware-supported name space is small, one can always virtualize it by multiplexing in
software, but this has an associated overhead.
Distributed Cachcing The concept of distributed cacheing is shown in Fig. 9.13-b. Every memory location
has an owner node. For example, NI owns B and N2 owns A. The directories are used to contain import-
export lists and state whether the data is shmed (for reads, many caches may bold copies] or tu'cl'1t.sit-'e (for
writes, one cache holds the current value].

The directories multiplex among a small number of contexts to cover the cache loading effects. The MIT
Alewife, l(SR—l, and Stanford Dash have implemented directory-based coherence protocols. It should be
noted that distributed cacbeing ofiers a solution for the remote-loads problem, but not for the synchronizing—

Sr:nIabl'e,Mu!dfl':reIded.Ind as
lnads prnblcrn. Multithmading -nfi'-ms a snlutinn fur remmc lnads and possibly for synchmnizing loads.
However, the two approaches can be combined tn solve 1:01:11 typm of remote-access problems.

No-due N1 Mada N2
I C1112 I I I ‘i

J A N2| § M»-=
§L:r1oadA I 1 -$1g c.tx't1

E l A
.
-I

L
GDQ1
V

[a] Mrmihreadlng scrluion

£EE;;;EF%
U ii

P D P D
A: Import; shared B: |mport;sxclush.re

B: export H2; exuusrua A: exmrt N1,N1E-; shared

P = Processor; D = Dlra~c1or3r;C = Cache; M = Memory

{bj DlSU‘|b1.I.Gd camsing

Fig.'!.13 ‘Em solutinns for ovarconirrgtlrc asynchmrry problem: [Courtesy erffi. 5. Niid'll.Digica| Eqrflpmemz
Corp-cratlnlt. 1991)

- IHEEHHHHIIIIIIIIIIIL415 i Adviorrced Cornputerfirchitecture

9.2.2 Multiple-Context: Pr-censors
Multithreadod systems are constructed with rrrrririlrritr-rrorrrttxr {or nwifirhrearkrdj processors. In this section,
we study an abstract model based on the work of Saavedra et at [I990]. We then present an example of this
type ofprocessor. We discuss the processor efiieiecney issue as a function ofmcmo ry latency (L), the number
ofcontexts {N}, and context-switching overhead {C}.

The Enhanced Processor Model A conventional single-thread processor will it-‘nit during a remote
reference, so we may say it is idle lor a period of time L. A multithreaded processor, as modeled i.n
Fig. 9.14s, will suspend the current context and switch to another, so after some fixed number of cycles it will
again be busy doing useful work, even though the remote reference is outstanding. Only if all the contexts are
suspended {blocked} will the processor he idle.

Clearly, the objective is to maximize the fraction of time that the processor is busy, so we will use the
efliciency of the processor as our performance index, given by

bust?
"’i~1l""""t"‘~"’= ‘°-"

when: hus_r-: .~rn-irr-hirrg. and idle represent the amount of time, measured over some large interval, that the
processor is in the corresponding state. The basic idea behind a multithreaded machine is to interleave the
execution of several contexts in order to dramatically reduce the value of idle. but without overly increasing
the magnitude of.snirchr'rrg

The state ofa processor is determined by the disposition of the various contexts on the processor. During
its lifetime, a context cycles through the following states: rennft-', rrrnrring, loot-'r'ng, and bloeireri There can
be at most one context running or leaving. A processor is bust-' if there is a context in the running state; it is
Sit-'i'I('§li!Ig while making the transition from one context to another, i.e. when a context is leaving. Otherwise,
all contexts are blocked and we say the processor is r'n'Fe.

A running context keeps the processor busy until it issues an operation that requires a context switch. The
context then spends C cycles in the femring state, then goes into the blocked state for L cycles, and finally
recnters the renrrfy state. Eventually the processor will choose it and the cycle will start again.

The abstzract model shown in l-‘lg. 9.l4a assumes one thread per context, and each context is represented
by its own program counter (PC), register set, and process status word (l’S‘N). An example multithreadecl
processor in which three thread slots (N = 3} are provided is shown in Fig. 9.1-l-b.

3,15
As shown in Fig. 9.|4b, the processor is provided with several instruction queue unit and decode unit pairs,
called rhreor! slots. Each thread slot, associated with a program counter, makes up a logic-of ,rJroeessor: while
an instruction fetch unit and all fimctional Ltnits are physically shared among logical processors.

Example 9.2 A multithreacled processor with three thread
slots {Hiroalti Hirata et al.,1992).

$aa.,~am-ta.“ 4,,

.32..
t PSW
a_.._..._-

CuntextSelectC PItID -.%%

Z PC
,i, N oontexte
PSW 1 thread per context

I
I
I

i
E

ALL! Le-cat Remcte
One Ref Ref

[a] Multtth readed model. {Ceutteey of Rafaet Saavedra, 1992]

lnettucltlen Cache

"-~|]-* *-U-—t
-___,--[}-—t—

ea»E
lnstrumbn Fetch um 1

:q%@E%%%%%%%¥
Integer 7Ba‘re| Integer F P KFP F P Loael.I'Sto-

ALU Shifter Multiplier Adder MlJ1l|[J-Ber Convene re urit re unit
1 1 Data Cache

MM\HHHHl~fl@@@'1, 2 K K n Queue Regsters

Req|ete1'S-et Register Set Register Set Large Register Fllee
[attocated for (atbcated for {alto-mated for and Queue Register

executing thread] watflng thread] ready thread]

[bi Athree~th1'ead pto-nessor example {Courtesy of H. Htrata et al, Pm: 19" int. Symp. Compu1.A.rc.m't.,
Aumrafla, May 1992}

Fig.9." Muldpln-concoct. proeuser medal and an example design

-III] i " Adv\nricedCo4nputerArchitec1u.re

An instruction queue unit has a buffer which saves some instructions succeeding the instruction indicated
by the program counter. The buffer size needs to be at least B = F‘-">< C words, where N is the number ofthrcad
slots and C is the number ofcycles required to access the instruction cache.

An instruction fetch lmil fetches at most B instnictions ibr one thread every C cycles from the instniction
cache and attempts to fill the buffers in the instruction queue unit. This fetching operation is done in an
interleaved fashion for multiple threads. So, on the average, the buffer in one instruction queue unit is filled
once in B cycles.

When one ofthe threads encounters a branch instruction, however, that thread can procmpt the prefctching
operation. The inst-ruction cache and fetch unit might become a bottleneck for a processor with many thread
slots. In such cases, a bigger and."or faster cache and another fetch unit would be needed.

Context-Switching Felicia: Different multitl'|rcadcd architectures are distinguished by the context-
switching policies adopted. Specified below are four switching policies:

{'1} .'i'u-'r'rc!t an crmire nris'.s'—This policy corresponds to the case where a context is preempted when it
causes a cache miss. In this case, R is taken to be the average interval between misses (in cyclesj, and
L the time required to -satisfy the miss. Here, the processor switches contexts only when it is certain
that the current one will be delayed ibr a significant number ofcycles.

(Zj .'*i'tvr'rr.'h on everfv iond—This policy allows switching on every loat.L independent ofwhether it v.-ill cause
a miss or not. In this case, R represents the average interval between loads. A general multithrcading
model assumes that acontcxt is blocked for L cyc lcs after every switch; but in the case ofa sv.-itch-on-
load processor, this happens only ifthe load causes a cache miss.

The general model can be employed if it is postulated that there are two sources oflatency (L, and
Lg], each having a particular probability {p1 and pg} of occurring on every switch. lfL| represents the
latency on a cache miss, then 1.1, corresponds to what is normally referred to as the miss ratio. L; is a
zero-cycle memory latency with probability fl}

{3} Sn-'r'rr.iir on at-'er'_v in.rrrnr.-rion—This policy allows switching on ct-ery instruction, independent of
whether it is a load or not. ln other words, it interlcavcs the instructions from diifcrem threads on
a cycle-by-cycle basis. Successive iristructioris become independent, which will benefit pipclined
csccution. However, the cache miss may i1'|creasc due to breaking of lomlity. lt has been verified
by some trace-driven experiments at Stanford that cycle-by-cycle interleaving of contexts provides
a performance advantage over switching on a cache miss in that the context interleaving could hide
pipeline dependences and reduce the context switch cost.

{'4} r"i'u-'1'!-olr on block 0finsrrucrr'on—Blocks of instructions from different threads are interleaved. This will
improve the cache-hit ratio duc to locality. It will also benefit single-contest performance.

Processor Efilcfencles A single-tlnread processor executes a context until e remote reference is issued (R
cycles] and then is idle until the reference completes -[L cycles}. There is no context switch and obviously no
switch overhead. We can model this behavior as an alternating renewal process having a cycle of R + L. I11
terms of Eq. 9,1, R and L correspond to the amount oftime during a cycle that the processor is hu.s"_v and irfle,
respectively. Thus the efficiency of a single-threaded machine is given by

R 1£=?=i 9.2' R+L 1+Lr"R { i

$aan,Masr..¢a.o 4,,
This shows clearly the performance degradation of such a];:|roecssor in a parallel system with a large

memory latency.
‘With multiple contexts, memory latency can be hidden by switching to a new context, but we assume that

the switch takes C cycles of overhead. Assuming the run length between switches is constant with a sutficient
number ofcontexts, there is always a context ready to execute when a switch occurs, so the processor is never
idle. The processor efficiency is analyzed below under two difi'erent conditions as illustrated in Fig. 9. l 5.

inTm IEIR 1. ,_
R 1. Time

IEI L _E-El
Cflflllfllffl R |_ Context R L

R 1. R L
F 1. | in to |

| R L | | R 1_ j
in
l'R'RRR'RRR IRRRR Ida 1
(ai5n=1I~h=t5 of wntflfl swldiifls In the 5311'-firm rash" no Snapshots of oonteutt switching in the linear region

1- Processor
eificiency

11] -- --
satiation

Number of conhxts
fl il-

{cj Efficiency more

Fl3- 9-15 Context switching and processor elficiency as I function ofthe number of context: [Courtesy of
Rahal Saawedfl-1992}

{I} Snrurnrinn t't.'git'J.H—l11 this saturated region, the processor operates with maximtnn utilization. The
cycle ofthe renewal process in this -case is R + C, and the efficiency is simply

R I 9.3)5”‘ s+c 1+C.-"R l
Observe that the efficiency in saturation is independent of the latency and also does not change with a
fi.|rther increase in thc numb-cr ofcontertts.

Saturation is achieved when the time the processor spends sen-‘icing the other threads cxeoc-cls thc
time required to process a request, i.e., when (N- l){R + C) > L. This gives the saturation point, under
constant mn length, as

- -430 i ' Advanced Cmnputerfluchitecture

_ L
rl'l',._{ = W + 1

Lim-or n?gion—‘lilfl7tcu the number of contexts is below the saturation point, there may be no ready
contests alter a context switch, so the processor will experience idle cycles. The time required to
switch to a ready context, execute it until a remote reference is issued, and process the reference is
equal to R + C + L. Assuming N is hclow the sattuation point, during this time all the other contexts
have a turn in the processor. Thus, the efficiency is given by

{3}

NR
Er‘1 ‘°-5’

Dhscrvc that thc efliciency increases linearly with the numher of contexts until the saturation point
is reached and beyond that remains constant. The equation forfla, gives the fimdamcntal limit on the
efiiciency of a multithreaded processor and underlines tl1e importance of the ratio C-‘R. Unless the
context switch is extremely cheap, thc remote rcfcrcncc ratc must he kept low.

Figures 9.15s and 9.151: show snapshots of context switching in thc saturation and linear regions,
respectively. The processor efliciency is plotted as a function of the number of contexts in Fig. 9.150.

In Fig. 9.16, the processor efliciency is plotted as a function of the memory latency L with an average run
length R = I6 cycles. The C = [I curve corresponds to zero switching overhead. With C = 16 cycles, about
50% cfiiciency can be achieved. These results are based on a Markov model of multithrcadod architecture
by Saavcdra 11992]. It should be noted that multitltreading increases both processor efficiency and network
rraflic. Tradeoffs do exist between these two opposing goals, and this has been discussed in a paper by
Agarwal [I992].

Number ofConhsts=2
C=tJ

1.113 1.0_,.¢=fl Ntmwherofflonhsxta = 2
_ c=10.Q] 0.9

0.3]

L-:n:tm-_.n_-t.-¢.lTl
!'—"F‘PSEF-‘_-i

0.fi]

0.3]

0.20

0.10

Fig.9.“ Pnocessor elficiency of a multitliraaded anchiteccurie (Courtesy of R. Saaverln. D. E Cutler and

C=4

C=1B

I I i
U 50 100 150 200

Memory Lateney{oyctas) Memory Latency {cycles}

‘€fi:i&_fl-__,,_,,l'l'l

0.8

0.?

0.6

0.5

0.4

0.3

0.2

0.1

C=1

fl_‘ G=4

0-
:C=1B

u_1

0-

0-

9 n -1 1
0 50 ‘ICU 1$

{aft Two contexts per processor {hi Six contexts per processor

T.Vnn Eicken.199'1]

soot.Most..¢a..o -—. 4,,
9.2.3 Multidimensionallirchiteccures
lnorder to enhance the scalability ofmultiprocessor systems, many research groups have explored economical
and multidimensional architectures that support fast communication, coherence extension, distributed shared
mectnory, and modular packaging.

The architecture of massively parallel processors has evolved from one-dimensional rings to two-
dimensional and three-dimensional meshes or tori as illustrated in i-‘ig. 9.11‘. The Maryland Zrnob
experimented on a sinned token ring for building a multiprocessor. Both the CDC Cybeiphls and KER-1
used hierarchical (two-level] ring architectures. The ring is the simplest architecture to implement from the
viewpoint of backplane packaging.

1-o Ring

“X "\ “X
Maryland CDC Cyherpius I-(SR-1
Zmoo

2-D Mesh

"‘\ “it "\ “\ “X
Stanford MiTAirmrif-e Wisconsin lntel Caitoeh
Dash Muttloobo Paragon Mosaic C

3- D Me-sh.I'Torus

K ."\ "X W "N
MIT USGIOMP Tera C1'a3rIMPP
J-iuiaehino

Fig. 9.11‘ The evolution from one-dimensions-i ring to two-dimensional mesh an-rl1:i1-on to 1:h=re-e-dimensional
meshftorus arehineierure for building massively parallel processors.

Two-dimeiisional meshes were adopted in the Stanford Dash, the MIT Alewife, the Wisconsin Multicube,
the lntel Paragon, and the Caltceh Mosaic C. A three-dimensional mesh-"tor|.|s was implemented in the MIT
J-Machine, the Tera computer, and in the Cmyfli-'IPP architecture, called T31}. The USC orrimgmini i'fl1i'Hl—
proees'.s'or {OMP) could be extended to higher dimensions. However, it beoomes more difficult to build
higher-dimensional architectures with conventional l‘MI1I-4IllifI'i.Ci!l5-ll.'!Il'Ifll circuit boards.

instead of using hierarchical buses or switched network architectures in one dimension, multiprocessor
architectures can he extendeclto a higher o‘i:riensr'omriir_\-'ormulriiilreirt-'along each dimension. The concepts are
described below for iwo- and three-dimensional meshes proposed for the Multicube and OMF architectures,
respectively.

The Wisconsin Muhieube This arcliitecture was proposed by Goodman and Woest [193 8) at the University
of Wisconsin. It employed a snooping eache system over a grid of buses, as shown in Fig. 9.181 Each
processor was eormeetod to a multilevel eache.

4,,-—. ,,,,,,,,,.,,,,,,,,,,,,,,,,m,,,,,,,,,,
‘ Isl ' I "

 _ III

| t mu ‘ |
§'s

J ' @

1 (Cl?FMM‘Bi|

I Elie I

e.-...7rT.-_
1-. F -

Q

-QII
QIHI1‘

II

III=

D-urnll-n

@I-II

:1:__"iID12
figiiiQ";iii Qgii ii;DODi; 5.9“ EoneF

Finw Em ti“ I‘%
ta) The tins-oonsm Muiluouol |,t1JTha time-dimensional lJl!P|[2.-oi [P1

Pr-oonmoru Hui. moi-nnry rnnduin, RB_ row
buss. CB1: eohirrvi buses)

aresisasisa;s»
~,as

as ss tosi*s ones»»s~®,;cs?“‘s<...i:-

I

/isis 1 s s s ;»‘ .

ii» oiti so
»s@ ts — I

. . _,. ,
" ‘ I

I
i J’is la.fix

5 5*. .s
~® ..% 77% ..t..,to o» s s ”

Q in
I.-Blltli

i,¢iTnp IHJCIHP (3.-ti architecture iflmoessnrssa Mbi.-ind e. Li. p.
ri~orrr:i|ymoouIasa1e|at:eiodDlIl.t1I...'iiCti

H5118 The Hdticube Incl orlliogoml lriulqinoeulnr ardinecuiru {Courtesy of Goodlnln :nc|"M:|eII'.
19$.mdd'Hwa|1getal,19B9]

“vile!

’_ not,

""011 ""-1.1 ""u.r~ I
v ‘___ FIB‘

__ 93“
l

3

$...r.r.r...r..ro......t......r -— 4,,
The first-level cache. called the prrx'r's'.sor metre. was a high-perfomtance SRAIM1 eache designed with the

traditional goal of minimizing memory latency. A second-level cache, referred to as the .snoopr'rrg r:'rI£".Fk’, was
a very large cache designed to minimize bus traffic.

Each snooping cache monitored two buses, a row bus and a column bus, in order to maintain data
consistency among the snooping caches. Consistency between the two cache levels was maintatined by using
awrite-through strategy to ensure that the processor cache is always a strict subset ofthe snoop ing eache. The
main memory was divided up among the column buses. All processors tied to the same column shared tl1e
same home memory. The row buses were used for intercolurnn communication and cache coherence control.

The proposed architecture was an example of a new class of interconnection topologies, the rrrulrierrlxr.
eon sistirtg of."-"= rd processors, where each processor was connected to It buses and each bus was connected to
n processors. The hypercube is a special case where n = 2. The Wisconsin Multicube was a two-dimensional
multicube [Ir - 2}, where n scaled to about 32, resulting in a proposed system of over 1000 processors.
The Drthogomll Multipmcessqr ln the proposed OMP architecture (Fig. 9.13b], n processors
simultaneously access rr rows or rr columns of interleat-red memory modules. The n X n memory rrmslr is
interleaved in both dimensions. In other words, each row is rr-way interleaved and so is each column of
memory modules. There are Zn logical buses spanning in two orthogonal directions.

The synchronized row access or column access must be performed exclusively. in fact, the row bus R,-
and the column bus C1‘ can be the same physical bus because only one of tlte two will be used at a time. The
memory controller (MC) in Fig. 9. 1 Sb synchronizes the row access and column access ofthe shared memory.

The DMP architecture supports special-ptirp-ose computations in which data sets can be regularly arranged
as matrices. Simulated performance results obtained at USC verified the effectiveness of using an OMP in
matrix algebraic computations or in image processing operations.

In Fig. 9.l8b, each of the memory modules M,-, is shared by two processors F} and P,-. In other words. the
physical address spaoe ofprocessor P, covers the ith row or the ith column ofthe memory mesh. The
UMP is well suited for SPMD operations, in which n processors are synchronized at the memory-access level
when data sets are vectorized in matrix lbrrnat.

Muftidirnensional Extensions The above UMP architecture can be generalized to higher dimensions. A
generalized orthogonal multiprocessor is denoted as an Ul\-'lP{n_ Ir), where n is the tlli'?Ir.‘rt'.i‘lfl!'i and Ir is the
rrrui"rr‘p!icr‘{_t-'. There are p = Ir" l processors and rrt = Ir” memory modules inthe system, where p _$= n and p fir» k.

The system uses p memory buses, each spanning into rr dimensions. But only one dimension is used in a
given memory cycle. There are it memory modules attached to each spanning bus.

Each module is connected to n out of p buses through an n-way switch. It should be noted that the
dimension n corresponds to thc number of accessible ports that each memory module has. This implies that
each module is shared by n out ofp = Ir" L processors. For example, the architecture of an OMP(3,-4) is shown
in Fig. 9.I8c, where the circles represent memory modules, the squares processor modules, and the circles
inside squares computer modules.

The 16 processors orthogonally access 64 memory modules via 16 buses. each sprouting into three
directions, called the x-aeee.s's'. _‘l-‘-itIC‘fi.’.5‘S, and 2-or:'ee.s's'. respectively. Various sizes of UMP architecture for
different values of n and Ir are given in Table 9.2. A five-dimensional OMP with multiplicity it = lo has MK
processors.

-434 i Advortcsd Colnputerdichiteeture

Table 9.1 Orthogonal Multipmcessor of Dimension n and Multiplicity it

ri.t-ism. k_J ,-1 -» 14"" m t-"
t'Jl'v'lP(2, 8) 8 64
omrrz, 16) 15 255
OMH3, 8) 64 512
Cll'v'lP[3, 16) 256 4096
0Ml"(4, 8) 512 4096
0l'v'lP(4. 16) 4096 65.536
Cll\-'IP[5,lfi) 65,536 l,04El,5']"6

Note: p number ofpro-eessors;m numberol‘menu:n'y modules.

FINE-GRAIN MULTICOHPUTERS

— Traditionally, shared-memory multiproccssors like the Cray Y-MP were used to perform
coarse-grain computations in which each processor executed programs having tasks of a

few seconds or longer. Message-passing multicomputers are used to execute medium-grain programs with
approximately 10-ms task size as in the iPSCfl. In order to build It-'[PP systems, we may have to explore a
higher degree of parallelism by making the task grain size even smaller.

Fine-grain parallelism was utilized in SIMD or data-parallel computers like the CM-2 or on the message-
driven J-Machine and Mosaic C to be described below. We first characterize fine—grain parallelism and discuss
the network architectures proposed for such systems. Special attention is paid to the eflicient hardware or
software mechanisms developed for achieving fine-grain MIMD computation.

9.3.1 Fine-Grain Parallelism
We compare below the grain sizes, communication latencies, and concurrency in four classes of parallel
computers. This comparison leads to the rationales for developing fine-grain multicomputers. In Chapter 13
we shall review recent developments.

Latency flnalysis The computing granularity and communication latency of leading early examples of
multiproccssors, data-parallel computers, and medium-and fine-grain multicomputers are summarized in
Table 9.3. These table entries summarize what we have leamed in Chapters 7 and 8. Four attributes are
identified to characterize these machines. Only typical values for a typical program mix are shown. The
intention is to show tl1e order of magnitude in these entries.

The comnninir-on}-1n l'at‘cm:*__1-' 7;. measures the data or message transfer time on a system interconnect.
This corresponds to the shared-memory access time on the Cray Y-MP, the time required to send a 32-bit
value across the hypercube network in the CM-2. and the network latency on the iPSC.r'l or J-Machine. The
synchronizafion overhead’ T; is the processing time required on a processor, or on a PE, or on a processing
node ofa multicomputer for the purpose of synchton ization.

The sum T, + T. gives the total time required For IPC. The shared-memory Cray Y-MP had a short If.
but a long T, The SIMD machine CM-2 had a short 1'] but a long 1'}. The long latency of the iPSCl'1 made
it unattractive based on fast advancing standards. The MIT J-Machine was designed to make a major
improvement in both oi" these communication delays.

...r.s.,r..o.....i.r...r -— 4,,
Fine-Gr-ntin Parallelism The groin sr':c Tg is measured by the execution time ofa typical program, including
both computing time and cornmimication time involved. Supercomputers handle large grain. Both the CM-2
and the J-Machine were designed as fine-grain machines. The iPSC." I was a relatively medium-grain machine
compared with the rest.

Large grain implies lower concurrency or a lower DCIP [degree ofparallelism). Fine grain leads to a much
higher DOP and also to higher communication overhead. SIMD machines used hardwired synchronization
and massive parallelism to overcome the problems of long network latency and slow processor speed. Finc-
groin rrrulticorrrptrIcr.s. like the J-Machine arm‘ Caltech Mosaic, were designed to lower both the grain sire and
the cornmtmication overhead compared to those oftraditional multicomputers.

Table 9.3 Fine-Gruln,Medlum-Gmln, and Course-Groin Machine Churucterlstlr: of Some Etromple Systerrt:

.'l-ftrclri rrc

(.'}rcrmr.'rcri.sric.s Croft‘
lift-{P

Connécriurr
.'lrfr.rc'.hirre CM-2

)'rr.r-cl
iPSf.'.-"J

Jl-HT
J-M'achirre!

Communication
latency, TI.

40 ns via shared
memory

600 pr per 32¢hit

:*rs€i¢!Pt’#??PF1
5 Ins 1-‘re

Synchronization
overhead. 1]

Zlil ‘Us lZ5 ns per bit-
sliee operation
in lock step

500 ,t.Lt l].{.r

Grain size. Ti: 205 4 pr per 32-bit lllms 5!“
result per PE
instruction

Concrurency 2-16 ilK— 154K 8 -128 lK—64K i
(DD?)

i Medium~grain Fine-grain i
lnulticotnputer mutt icornputer

Remarlt Coarse-grain
supercomputer

Fine~grain data
parallelism

9.3-.1 The HIT]-Machine
The architecture and building block ofthe MIT J-Machine, its instruction set, and system design considerations
are described below based on the paper by Dally et al (1992). The building block was the rrtcssogc-r.lrit'crr
prrnccssor (MDP), a 36-bit microprocessor custom-designed for a line-grain multicomputer.
The 1-Mud-r.irre Architecture The Ir-ary nrube networks were applied in the MIT J-Machine. The initial
prototype J-Machine used a I024-node network (8 >< ti >< 16], which was a reduced lo-ary 3-cube with B
nodes along the .r- and _y-dimensions and 16 nodes along the :-dimension. A 4096-node J-Machine would
use a full l6—ary 3-cube with 16 >< 16 >< 16 nodes. The J-Machine designers called their network a three-
dimcn siortal mesh.

Network addressing limited the size of the J-Machine to a maitimtun configuration of 65,5315 nodes,
corresponding t-o a three-di men sional mesh with 32 X 32 >< 64 nodes. The architecture ofthe three-dimensional
mesh ora general Ir-ary n-cube was shown in Fig. 2.20 for the case ofIr = 4. All hidden parts (nodes and links}
are not shown for purposes of clarity. Clearly, every node has a constant node degree of 6, and there are three
rings crossing each node along the three dimensions. The end-around connections can be folded [Fig 2.2lb}
to balance thc wire length on all channels.

ME,43; I mw I A dCom-puterfirc ' re

The MDP Design The MDP chip included a processor, a 4096-word by 36-bit memory, and abu.ilt~ln router
with network ports as shown in Fig. 9.19. An on-chip mernorry controller with error checking and correction
[EEC] capability permitted In-cal memory lo be expanded to I million words by adding external DRAM
chips. The processor was message-driven in the sense that it executed fimctions in response to mess-ages. via
the dispatch mechanism. No receive inslruclion was needed.

5121: 144-but 512: ‘I44-but
SRAM BRAM

(2048 wcrasl {Z011-B worm}

hlerrui rnemoql Iniamd memory
15 hterfaoe Iveriaee‘I5

'q _'<+ ’ ’ ”
Y“ ' 5“ iXl‘fll..|1IBl‘l |Yrouterl ylrecnerl
1- Message 2+

Giver:
Processor 14

2 ‘I2 g T9151 Ex

MDP B FXIEIBHS 1159- -[nanny Ind‘{Bl Pl‘!!! - 3 met lneriace“'""'.f"“ 1 _

I R

m _
IDBBPBW egeters

Amllrierlclogc
mil

FALL! lnfliflflflml

{b) MDPchq:1 lo-er pun

lbw
Exernd C 4 To36

Mgr“? A E'Xl.Bl'I\fl
‘|'I

12
O bus

/' Anus
1: H8 36 (1

29 18

5 1: 15Nam“ Mung Ne-(wort Nellwork

o of
18

|[c;|Schema'lc block ihgr-In

Flg.9.19 The massage-driven processor [HOP] archimcwre [Cournesy nfW'1 Dally er al; reprinted with
p-errrisslcn from IEEE Micro, Apr! 1992)

ssn,nnss..ta...t. -— 4,,
The MDP created a task to handle each arriving message. Messages carrying these tasks drove each

computation. MDP was a general-purpose multicomputer processing node that provided the communication,
synchronization, and global naming mechanisms required to efliciently support line-grain, concurrent
programming models. The grain size was as small as B-word objects or 2t}-instruction tasks. As we have
seen, fine-grain programs typically execute fi'om ID to IDD instructions between communication and
synchronization actions.

MDP chips provided inexpensive processing nodes with plentiful VLSI commodity parts to construct the
Jellybean Machine (J-Machine) multicomputer. As shown in Fig. 9.19:1, the MDP appeared as a component
with a memory port, six two-way network ports, and a diagnostic port.

Tl'|e memory port provided a direct interface to up to IM words of ECC DRAM, consisting of
I l multiplexed address lines, a I2-bit data bus, and 3 control signals. Prototype J-Machines used three IM ><
4 static-colurrm DRAMs to fonn a four-chip processing node with 262,144 words of memory. The DR.AMs
cycled three times to access a 36-bit data word and a fourth time to check or update 1:he ECC check bits.

The network ports connected MDPs together in a three-dimensional mesh network. Each of the six ports
corresponded to one of the sis cardinal directions (+1, —:t, +y, -y, +-.¢, —z] and consisted of nine data and six
control lines. Each port connected directly to the opposite port on an adjacent MDP.

The diagnostic port could issue supervisory commands and read and write MDP memory from a console
processor (host). Using this port, a host could read or write at any location in the MDP‘s address space, as
well as reset, interrupt, halt, or single-step the processor. The MDP chip floor plan is shown Fig. 9.1%.

Figure 9.19c shows the components built inside the MDP chip. The chip included a conventional
microprocessor with prefetch, control, register file and ALU LTRALLI], and memory blocks. The network
communication subsystem comprised the routers and network input and output interfaces. The m'n'rt’.s.s
nrirhnieric unit (AAU) provided addressing functions. The MDP also included a DRAM interface, control
clock, and diagnostic interface.
Instruction-Set Architecnrre The MDP‘ extended a conventional microprocessor instruction-set
architecture with instructions to support parallel processing. The instruction set contained fined-fonnat, three-
address instructions. Two 17-bit instructions fit into each 36-bit word with 2 bits reserved for type checking.

Separate register sets were provided to support rapid switching among three execution levels: background,
priority U (FD), and priority I {Pl}. The MDP executed at the background level while no message created a
task, and initiated execution upon message arrival at P0 or Pl level depending on the message priority.

P1 level had higher priority than Pl) level. The register set at each priority level included four GPRs. four
address registers, four [D registers, and one instmclion pointer {IF}. The [D registers were not used in the
background register set.
Communication Support The MDP provided hardware support for end-to-end message delivery including
formatting, injection, delivery, buffer allocation, buffering, and task scheduling. All MDP nansmitted a
message using a series of SEND instructions, each of which injected one or two words into the network at
either priority 0 or l.

Consider the following MDP assembly code for sending a four-word message using three variants of the
SEND instruction.

SEND Rtl,tl ; send net address (priority 0)
SEND2 R1,R2,U ; header and receiver [priority 0)
SENDZE R3-,[3 ,A3],0 ; selector and continuation end message [priority 0)

-435 i - AdmrIcedCelnputerA:chitec1ure

The first SEND instruction reads the absolute address of the destination node in < X. 1'1 Z 1* format irorn
RD and forwards it to the network hardware. The SEND2 instruction reads the first two words ofthe message
out of registers RI and R2 and enqueues them for transmission. The final instruction enqueues two additional
words of data, one from R3 and one from memory. The use of the SENDZE instruction marks the end of the
message and causes it to be transmitted into the network.

Tl1e J-Machine was a three-dimensional mesh with two-way channels, dimension-order routing. and
blocking flow control (Fig. 9.20). The Faces of the network cube were open for use as l/D ports to the
machine. Each channel could sustain a data rate of 233 Mbps {million bits per second}. All three dimensions
could operate simultaneously for an aggregate data rate of 36-4 Mbps per node.

—--t |

' I I I I *3
»— — -2

— — -1

4
“ _ 3

" 2
I I I I 1 /

o 1 2 3 4 Z

Fig.'I.2tl E~cuhe routing from node (1. 5. 2} no node (5.13) on a 6-any 3-cube

.Me:.Iag-e Format and Routing The J-Machine used deterrninistic dirnension—o1-der E-cube routing. As
shown in Fig. 9.20, all messages routed first in the x-dimension, then in the y—dirnension, and then in the
z-dimension. Since messages routed in dimension order and messages nlnning in opposite directions along
the same dimension cannot block, resource cycles were thus avoided, making the network provably deadlock-
free.

53?)
The following message consists of nine flits. The first three flits of the message contain the I-, y-. and
:2-addresses. Each node along the path compares the address in the head flit of tlte message. If the two indices
match, the node routes the rest to the next dimension. The final flit in the message is marked as the tail.

Example 9.3 A typical message in the MIT J-Machine
(VV. Dally et al,199I)

scetatttqmutuett-=ad¢d,md -—. 4,,
Fm Contents R9m3"k5

5:+ i-:-address
11- y-address
4:+ z-address

Meg: D0 Method to catl
00440
||\.|T: no Argument to method
0023

|NT:CiCi Ftatrlreddtsss
<1:5:2> T lI003‘-ll7l'l‘.I'I#-I.-fil\J_a

The MDP supported a broad range of parallel programming models. including shared memory. data-
parallcl, datafiow, actor, and explicit message passing, by providing a low-overhead primitive mechanism for
communication, synchronization, and naming.

lts communication mechanisms permitted a user-level task on one node to send a message to any other
node in a4(}96-node machine in less than 2 its. This process did not consume any processing resources on
intermediate nodes, and it automatically allocated buffer memory on the receiving node. On message arrival,
the receiving node created and dispatched a task in less than l us.

Presence tags provided synchronization on all storage locations. Three separate register sets allowed fast
context switching. A translation mechaltism maintained bindings betweetrt arbitrary names and values and
supported a global virtual address space. These mechanisms were selected to be general and amenable to
efficient hardware implementation. The J-Machine used wormhole routing and blocking flow control. A
combining-tree approach was used for synchronization.

The Router Design The routers fonned the switches in a J-Machine network and delivered messages
to their destinations. As shown in Fig. 9.2la, the MDP contained three independent routers, one for each
bidirectional dimension of the network.

Each router contained two separate virtual networks with different priorities that shared the same physical
channels. The priority-l network could preempt the wires even if the priority-0 network was congested or
jammed. The priority levels supported multi-threaded operations.

Each of the lll Toubcr paths Contained buffers. comparators, and output arbitration {Fig. 9.21). On each
data path, a comparator compared thc lead flit, which contained the destination address in that dimension, to
the node coordinate. Ifthe head flit did not match, the message continued in the current direction. Otherwise
t:he message was routed to the next dimension.

A message entering the dimension competed with messages continuing in the dimension at a two-to-
onc switch. Once a message was granted this switch, all other input was locked out for the duration of the
message. Once the head flit of the message had set up the route, subsequent flits followed directly behind it

-440 i - Admrrced Cornprrtenlrrchitscture

Netout

iii Forward Forward
Priority 0 fl M_t(_

IP"°w1 Address chock:

Priority O
Y" Y‘ dpliineaiiigilgn {I l:l F iiqlzitdnsbnPriority 1

L Sign cheek
Prlo' Cl"W2- -—- 2+
pl-|o|-Hy 1 Backward I Backward

Neil" Address chock
[a] Duahprlority lovers per dimension [a] Each priority with forward, reverse, and previous
in the router data paths to the next dimension.

F§g.!.21 Priority contzrol and cltlrntenslon-order routnar design bi the HDP chip (Courtenay ofWl Daily oi: al;
reprinted with permission from IEEE Micro, April 199'!)

Two priorities of messages shared the physical wires hut used completely separate l:ru.i'i'ers and routing
logic. This allowed priority-1 messages to proceed through blockages at priority ll. Without this ability, the
system would not be able to redistribute data that caused hot spots in the network.

Synchronimrion The MDP synchronized using message dispatch and presence tags on all states. Because
each message arrival dispatched a process, messages could signal events on remote nodes. For example, in
the following combining-tree example, each COMBINE message signals its own arrival and initiates the
COMBINE routine.

In response to an arriving message, the processor may set presence tags for task synchronization. For
example, access to the value produced by the combining tree may be syneiu-onized by initially tagging as
empty the location that will hold this value. An attempt to read this location before the combining tree has
written it will raise an exception and suspend the reading task until the root of the tree writes the value.

I»)
lg Example 9.4 Using a combining tree for synchronization

of events (VV. Dally et a|,1992)

A combining tree is shown in Fig. 9.22. This tree sums results produced by a distributed computation. Each
node sums tl1e input values as they arrive and then passes a result message to its parent.

snt,vas..-.ta..o -—. ...,,

C-ount=0

Ftg.tI.22 A eontbinirqg rzrsa for internode communication or syndrronizatlon (Ccureesy otvtt Dally ct. al. 1991}

Vatue=1" V3lLte=12
C-=>u~t=1

A pair of SEND instructions was used to send the COMBINE message to a node. Upon message arrival,
the MDP buffered the message and created a task to execute the following CDMBl'NE routine written in
MDP assembly code:

COIVTBTNE: MOVE
MOVE
ADD
MOVE
MOVE
ADD
MOVE
BN2
MOVE
SEND2
SEND2E

DONE: SUSPEND

[1, as], COMB
[2, as], at
Rl . COMBNALUE. RI
RI , COMB.‘W\LI.lE
COM'B.COl..l'NT, R2
R2, -l, R2
R2, COMBEOUNT
R2, DONE
HEADER, RD
COMB . Pl\RENT_l'~iD
COMB.Pr\REl\'T, RI

DE, R0

get node pointer from message
get value from message

store result
get Count

store decrernented Count

get message header
send message to parent
with value

If the node was idle. execution of this routine began three cycles after message arrival. The routine loaded
the combining-node pointer and value from the message, performed the required add and decrement, and, if
Count reached zero, sent a message to its parent.

Research Issue: The J-Machine was an exploratory research project. Rather than being specialized for
a single model of computation, the MDP incorporated primitive mechanisms for efficient communication,
syncltronizatlon. and namirrg. The machine was used as a platform for software experiments in fine-grain
parallel programming.

Reducing the grain size of a program increases both the potential speedup due to parallel execution and
the potential overhead associated with parallelism. Special hardware mechanisms for reducing the overhead

-441 i " Admnced Cmnputerfluchitecture

due to eomrnunicrttion, process switching, synchronization, and multi-threading were therefore central to
the design of the MDP. Software issues sueh as load balancing, scheduling, and locality also remained open
questions.

The MIT research group led by Dally implemented two languages on the J-Machine: the actor language
Concurrent Smalltalk and the dataflow language Id. The machine's mechanism also supported dataflow
and object-oriented programming models using a global name space. The use ofa few simple mechanisms
provided orders of magnitude lower communication and synchronization overhead than was possihle with
multicomputers built from then available ofi'-the-shelfmicroproccssors.

9.3.3 The Caltech Mosaic C
The Caltech Mosaic C was an experimental fine-grain multicomputer that employed single-chip nodes and
advanced packaging technology to demonstrate the perfonnancefcost advantages ol‘Iine-grain multicomputer
architecture. We describe below the architectrtre of the Mosaic C and review its application potentials. based
on a report by Seitz (I992), the project leader at Caltech.

From Cosmic Cube to Mosaic C The evolution from the Cosmic Cube to the Mosaic is an example of
one type ofsrwling rrrtelr ir| which advances in technology are employed to reimplement nodes ofa similar
logical complexity but which are faster and smaller, have lower power, and are less expensive. The progress
i11 microelectronics over the preceding decade was such that Mosaic nodes were = GU times faster, used
= 20 times less power, were = 100 times smaller. and were (in constant dollars) = 25 times less ctrpens ive to
rnanufacture than Cosmic Cube nodes.

Local-Area Network Rolwfimuflngimesaf I I I I

e :+:+:<-:
(Message-Passing Netvmrk) _, / I

.-P’
I

I
/'

. . . Memory bus

\

“°°“"“"""““ “~ E E\
\

Fig. 1.23 The Caltech Mosaic ar1:hl'neen.n1t (Courtesy of C.Seitz. 't9'9'1j

Each Mosaic node included 6-4 Mbytes of memory and an I1-MIPS processor, a packet interface, and a
router. The nodes were tied together with rt 6-0-lvlhytesfs, two-dimensional routing-mesh network (Fig. 9.23}.

r..rrt,Mmr..ru....r. -— _,.,,
The compilation-based progrrtrnming system allowed fine-grain reactive-process message-passing programs
to be expressed in C——, an extension of C++, and the r|.rn-time system performed automatic distributed
l'Il'lB.l\ligt'_‘l'Tl;CfIl Of 5y$l't'_‘l']'l ITHJLIFCCS.

Mosaic C Node The Mosaic C multicomputer node was a single 9.25 mm >< 10.00 mm chip fabricated in
a l.2-,ttrrt-feature-size, two-level-metal CMDS process. At 5-V operation, the synchronous parts of the chip
operated with large margins at a 30-MI-L-: clock rate, and the chip dissipated = 0.5 W.

The processor also included two program cou ntcrs and two sets of general-purpose registers to allow
zero-time context switching between user programs and message handling. Thus, when the packet interface
received s complete packet, received the header of a packet, completed the sending of a packet, exhausted the
allocated space for receiving packets. or any of several other events that could be selected, it could interrupt
the processor by switching it instantly to thc message-handling context.

Instead of several hundred instructions for handling a packet, the Mosaic typically required only about I0
instructions. The number ofclock cycles for the message-handling routines could he reduced to insignificance
by placing them in hardware, but the Caltcch group chose the more flexible software mechanism so that they
could experiment with dificrent message-handling strategies.

Mosaic C I x 8 Mesh Boon-ls The choice ofa two-dimensional mesh for the Mosaic was based on a 1989
engineering analysis; originally, a three-dimensional mesh network was planned. But the mutual fit of the
two-dimensional mesh network and the circuit board medium provided high packaging density and allowed
the high-speed signals between the routers to be conveyed on shorter wires.

Sixty-four Mosaic chips were packaged by tape»automated bonding (TAB) in an 8 >< 8 array on a circuit
board. These boards allowed the construction of arbitrarily large, two-dimensional arrays of nodes using
stacking connectors. This style of packaging was meant to demonstrate some of the density, scaling, and
testing adva.ntagcs of mesh-connected systems. Host-interihce boards were also used to connect the Mosaic
arrays and workstations.

Application: and Future Trend: Charles Seitz determined that the most profitable niche and scaling
track for the multicomputer, a highly scalable and economical MIMD architecture. was the fine-grain
multicomputer. The Mosaic C demonstrated many of the advantages of this architecture, but the major part
ofthe Mosaic experiment was to explore tl'|e programmability and application span ofthis class of machirlc.

The Mosaic may he taken as the origin of two scaling tracks: (1) Single-chip nodes are a technologically
attractive point in the design space of multicomputers. Constant-node-size scaling results in single-chip
no-des of increasing memory size, processing capability, and communication bandwidth in larger systems
than centralized shared-memory multiprocessors. (2) lt was also forecasts that constant-node-complexity
scaling would allow a Mosaic 8 >< 8 board to be implemented as a single chip, with about 20 times the
performance per node, within It] years. In this contest, see also the discussion in Chapter 13.

A 16K-node machine was constructed at Caltech to explore the progranunability and application span
of the Mosaic C architecture for large-scale computing problems. For the loosely coupled computations in
which it excels, a multicomputer can be more economically implemented as a network of high-jterforrltaoce
workstations connected by a high-bandwidth local-area network. in fact, the Mosaic components and
programming tools were used by a USC Information Science Institute project (led by Danny Cohen, 1992) to
implement a 400-Mbitsls ATOMIC local-area network for this purpose.

rm-Mrfirnw Hill ' t
444 i “W mm Advanced Cornputenfirchitecture

SCALABLE AND MULTITHREADED ARCHITECTURES
- Tlu'ee pioneering and landmark scalable multiprocessor systems are discussed in this

section. The Stanford Dash combined several latency-hiding mechanisms. The Kendall
Square Research KSR-1 offered the first commercial attempt to produce a multiprocessor with cache-only
memory. The Tera computer evolved from the llEPrTIorizon series developed by Burton Smith. Only the
main architectural features are described below. All three systems were extensions of the traditional von
Neumann model. By far, t11c Tera system n.-presented the most aggressive attempt to build a multi-threaded
multiprocessor.

9.4.1 The Stanford Dash Multiprocessor
This was an experimental multiprocessor system developed by John Hennessy and coworkers at Stanford
University beginning in 1988. The name Dash is an abbreviation for Dire:-ror_1-' Arc-hirer-rnrejor Shared
Merrmrji-1 The fundamental premise behind Dash was that it is possflsle to build a scalable high-performance
machine with a single address space. coherent caches, and distributed memories. The directory-based
coherence gave Dash the case of use of shared-memory architectures, while maintaining thc scalability of
message-passing machines.

The Prototype Architecture A high-level organization of lite Dash architecture was illustrated in Fig.
9.] when we studied the various latency-hiding techniques. The Dash prototype is illustrated in Fig. 9.24.
It incorporated up to 64 MIPS R3i)00fR3l)l(l microprocessors with I6 clusters of 4 PEs each. The cluster
hardware was modified from Silicon Graphics 4Dt‘3-40 nodes with new directory and reply controller hoards
as depicted in Fig. 9.24:1.

The interconnection network among the 16 multiprocessor clusters was a pair of wormhole-routed mesh
nehvorks. The channel width was I6 bits with a 50-ns fall-through time and a 35-ns cycle time. One mesh
network was used to reqrrerr remote memory, and the other was a rt=p{_r mesh as depicted in Fig. 9.2-lb, whcre
the small squares at mesh intersections are thc 5 >< 5 mesh routers.

The Dash designers claimed scalability for the Dash approach. Although the prototype was limited to
at most 16 clusters {a 4 >< 4 mesh), due to the limined physical memory addressahility (255 Mbytes) of the
4Dt'34U system, the system was scalable to support htmdrcds to thousands of processors.

To use the 4Df34t] in the Dash, the Stanford team made minor modifications to the existing system boards
and designed a pair ofncw boards to support the directory memory and intercluster interiace. The main
modification to the existing boards was to add a bus retry signal, to be used when a request required service
from a remote cluster.

The central bus arbiter was modified to accept a mask from the directory. The mask held off a proccssor’s
retry until the remote request was serviced. This efiectively created a split-transaction bus protocol lor
requests requiring remote service.

The new directory controller hoards contained the directory memory, the intercluster coherence state
machines and buffers, and a local section of the global interconnection network. The directory logic was
split between the two logic boards along the lines ofthe logic used for outbound and inbound portions of
intcrcluster transactions.

s=.w.,~Mmi...i -ig, ...,
Wmflhdfl "-‘ll-Iiflfl Two 2 Dmashas
120 MB|'slir|k L5flfl8"i'IflP .J

I I ‘ Raquaa Mash I
I 1»~~~»-»» m - -"'__ x Raplyfilash

’“--F’ \‘\

1. ii l 1

__-_'__» 1.
.- \

.-"i "5.-J.-" 1_,a

Nude
Clusm

4 x MIPS R.3mCl
(33 MHZ] L§5E

Nada
CIBS/1.8|'

Snoupybus L '

Mamnqr {ijcitial adclram-ad)
Hod

Modified Sliwn Graphics Puwer Shim 4DJ34CI ' ' '7

I-,1! /-;,r1' -
NC!

{an-ha pmmwe mm mmmmmah-m.| -[a) Black diagram nf2 x 2 mash inhrcnnnaci

Load Chm: Lewl

Other processor caches
within loud dusm

Dimcbqr Home Laud

Diractmrarid main mamciry
associalad with given address

Fig.9.2-I Tlu Sanford Dash prouotypn system [Couru-sy of D. Lnnosid at al. Pmc. ‘Fifth Int. Symp. Compm.
mam; .lu.|straIh. May 1991}

Remote Cluslar Lmrel

Procassnr mesin
ramut dushts

{ch Logic mamcuy hiaramrq

-448 i Admriccd Cemputerdrchitecture

The mesh networks supported a scalable local and global memory bandwidth. The single-address space
with coherent caches permitted incremental porting or tuning of applications, and exploited temporal and
spatial locality. Other factors contributing to improved performance included mechanisms for reducing and
tolerating latency, and well-designed U0 capabilities.
Dash Mernory Hierardry Dash implemented an invalidation-based cache coherence protocol. A memory
location could be i11 one ofthnrc states:

s l'_-"ifr.-rml-rcnl—not cached by any cluster;
r .‘i'hnn:nl'—in an umnodified state in the caches of one or more clusters; or
' Dirt]-'—modified in a single cache -of some cluster.

The directory kept the summary information for each memory block, specifying its state and the clusters
cacheing it. The Dash memory system could be logically broken into four levels of hierarchy, as illustrated
in Fig. 9.25c.

The first level was the processor cache which was designed to match the processor speed and support
snooping from the bus. It took only one clock to access the processor cache. A request that could not be
serviced by the processor cache was scnt to the local chrsttcr: The prototype allowed 30 processor clocks to
aoccss thc local cluster. This lcvcl included the othcr processors‘ caches within thc requesting processor's
cluster.

Otherwise, the request was sent to the borne cluster level. The home level consisted of the cluster that
contained the directory and physical memory for a given memory address. It took 100 processor clocks to
access t.he directory at the home level. For many accesses (for instance, most private data references), the
local and home cluster were the same, and the hierarchy collapsed to three levels. In general, however, a
request would travel through the interconnection network to the home cluster.

The home cluster could usually satisfy the request immediately, but if the directory entry was in a dirty
state, or in a shared state when the requesting processor requested exclusive access, the fot.n‘lJ'| level had to
be accessed. The remote cluster level for a memory block consisted of the clusters marked by the directory
as holding a copy of the block. It took I35 processor clocks to access processor caches in remote clusters in
the prototype design.

The Directory Protocol Thc directory memory relieved the processor caches of snooping on memory
requests by keeping track of which caches held each memory block. In the home node. there was a directory
entry per block frame. Each entry contained one ;Jrcsertcc bi! per processor eache. In addition, a store bi!
indicated whether the block was uncached, shared in multiple caches, or held esclmiyely by one cache (i.e.
whether the block was dirty).

Using the state and presence bits, the memory could tell which caches needed to be invalidated when a
location was written. Likewise, the directory indicated whether the memory copy of the block was up-to-date
or which cache held the most recent copy.

By using the directory memory, a node writing a location could send point-to-point invalidation or update
messages to the processors actually cacheing that block. This is in contrast to the invalidating broadcast
required by the snoopy protocol. The scalability ofthe Dash depended on this ability to avoid broadcasts.

Another important attribute of a directory-based protocol is that it does not depend on any specific
interconnection network topology. As a result, the designer can readily use any of the low—lateney scalable
networks, such as meshes or hypercubes, that were originally developed for message-passing machines.

sMr,M..m..r,r...¢ -— ...,,

Ir)
El Example 9.5 Cache coherence protocol using distributed

directories in the Dash multiprocessor (Daniel
Lenoski and john Hennessy et al, 1992.}

Figure 9.25:: illustrates the flow of s read request to remote memory with the directory in rt dirty remote
state. The read request is forwarded to the owning dirty cluster. The owning cluster sends out two messages
in response to the read. Amessage containing the data is scnt directly to the requesting cluster, and a sharing
writebaclr request is sent to the home cluster. The sharing writeback request writes the cache block back to
memory and also updates the directory.

Local
Local

lag‘) 1. Read Request Q»)® to Home - 1. Refs: finestm 2 3%
Home 23- llfbi RTBIIY Home

a @111191))3a. Read Reply III .go ‘*1-'=*
'

Um [Shared ' Shared ' shared
fiflll---er sreg, srrgw stem,
‘E’ or or or

Ia] Read of dirty remote cache block [a] Write to shared remote eache block

Fig.'J.‘15 Two examples of a directory-based cache ooherence protocol in the Dash (Gouroesy of Lenoskl
and I-lers1-easy. 1992]

This protocol reduocs latency by permitting the dirty cluster to respond directly to the requesting cluster.
In addition, this forwarding strategy allows the directory controller to simultaneously process many requests
(i.e. to be multithreaded) without the added complexity of maintaining the state ofourstanding requests.
Serialization is reduced to the time ofa single interclustcr bus transaction. The only resource held while
intercluster messages are being scnt is a single emry in the originating cluster's remote-access cache.

-445 i - AdmricedCmnpirterArchitec1urc

Figure 9.25b shows the corresponding sequence for a write operation that requires remote service. The
invalidatio n-based protocol requires the processor (actually the write buffer] to acquire exclusive ownership
of the cache block before completing the store. Thus, if a write is made to a block that the processor does not
have cached, or only has cached in a shared state, the processor issues a read-exclusive request on the local
bus.

in this case, no other cache holds the block entry dirty in the local cluster, so a RdEx Request (message
I} is sent to the home cluster. As before, a rernotesaccess cache entry is allocated in the local cluster. At the
home cluster, the pseudo-CPU issues the read-exclusive request to the bus. The directory indicates that the
line is in the shared state. This results in the directory controller sending a RdE:t Reply (message la] to the
local cluster and invalidation requests {inv-Req, message Eb] to the sharing cluster.

The home cluster owns the block, so it can immediately update the directory to the dirty state, indicating
that the local cluster now holds an exclusive copy of the memory line. The RdEx Reply message is received
in the local cluster by the reply controller, which can then satisfy the read-exclusive request.

To ensure consistency at release points, however the remote-access cache entry is dealloeated only when
it receives the number of invalidate acknowledgments (Inv-flick, message 3) equal to an invalidation count
sent in the original reply message.

The Dash prototype with 64 nodes was rather small in size. [F each processor had a live-issue superscalar
operation with a I00-MHZ clock, an extended machine with 2K nodes would have the potential to become a
system with 1 tera operations per second, with higher performance at higher clock rate-s.

This demands an integrated implementation with lower overhead in the scalable directory structure. A
three-dimensional toms network was considered with I6-bit data paths, a El]-ns fall-through delay, and a
=1-tn; cycle time. The access time ratio among the four levels of memory hierarchy was to be approximately
1:5: 16:80: 120, where 1 correspondsto one processor clock. The larger version ofDASH was not implemented;
however, the concept of distributed directory-based cache coherenee was validated.

7.4.2 The Kendall Square Research KER-1
This was the first commercial attempt to build a scalable multiprocessor with or-rein--only nu-mm§_v nrt-hr'Iec-
flirt’ [C-OMA). The Kendall Square Research l<LSR—l was a size- and generatiomscalable shared-memory
multiprocessor computer. lt was fDl'I'l'1Bl2l as a hierarchy of “ring multis“ as depicted in Fig. 9.26.

The KSR-l Architecture Scalability in the KSR.-l was achieved by connecting 32 processors to form a ring
rnulti [search engine [I in Fig. 9.26) operating at I Gbytefs (123 million accesses persecond}. Interconnection
bandwidth within a ring scales linearly, since every ring slot has roughly thc capacity of a typical crosspoint
switch found in a supercomputer that interconnects eight to sixteen 100-Mbytesfs HIPPI channels.

The KSR-l used a two—level hierarchy to interconnect 34 Ring:(ls by a top—lcv-el Ring:1 (1088 processors]
and was therefore massive. The ring design supported an arbitrary number of levels, pcflttitting ultras to be
built (Fig. 92?].

s=.w.,~Mm¢..., -lg, ...,

[ju-

'.’_. .__

Search
' Engi no D

3

II Q

I Unidirectional
' Sflflfm slotted rlrq

Engine 1

\
/ *~./1 \

/ D
.1

/x1// \

AR :
ALLCA-C HE
Router and
Dlrectmy

Unldlrecflmmal
sioited ring

[8-32 nodes]
I

, 1' ,
I1 E

’ 1.1
,r \E

20 mn-11, 20 MIPS, an custom sqaerscalar

l. for this node only

32 ma, 12aa lino {“s|.H:rpage~"}

Fig.9.26 The KER-1 ardiheuune with a slotted ring for communication (Courtesy of Kern-fill Sqnne
Rasaard1 Corpondon. 1991]

-450 i Adi-tenced Cerrtputerflirchitectore

4-——-___,----' ----.__,___
___--' Rtng:1 ‘~=__

Ringzfl Ringrfl

' I '--I i|— Rm an ..-
UI sors I

" "‘ —
Directory

+
Responding R1991 9 }
Pmmfia - Local Local

Cache "cache Cache
Directory Directory Directory :

request 1 1 -

Local Local Local
'”i‘°““° Cache C3.Gl'l& ' ' " Cache

I.‘
‘-—'

.

U

I=s=-=
5*-gsQ

F____-——-“___.‘iiI| I1

3‘;

i I I 1i

______________-\

'|

Requesting
Processor

la»-em] lpimal '7
Fig. 9.21 Remote cache [memory] access through two levels of emflmmkafion rings in the KSR.-1

(Courtesy of Kcnfiil Sqtnre ileseareh Corponcion. 1991)

Each nodc comprised a primary cache, acting as a 32-Mbytc primary memory, and a 64-bit supcmscalar
processor with roughly the same performance as an IBM RSIGUOU operating at the same clock rate. The
superscalar processors containing 64 floating-point and 32 fixed-point registers of 6-4 bits were designed for
both scalar and vector operations.

For example, ts elements could be prcfclchcd at one time. A processor also had a 0.5-Mbyte subcache
supplying 20 million accesses per second to the processor (a computational efficiency of 0.5}. A processor
Operated at 20 MT-Iz and was fabricated in l.2-_i.t trt CMCIS.

The processor, without caches, contained 3.9 million transistors on I5 types of I2 custom chips. Three-
quarters of each processor consisted of the search engine responsible lor migrating data to and from other
nodes, for maintaining memory coherence throughout the system using distributed directories, and for ring
contml.

The ALLCACHE M-elnory The KSR-1 eliminated thc memory hierarchy found in conventional computers
and the corresponding physical memory addressing overhead. Instead, it offered a single—leve1 memory,
ealled ALLCACHE by KSR designers. This ALLCACHE design represented the confluence of cache and
shared virtual memory concepts that exploit locality required by scalable distributed computing. Each local
cache had a capacity of32 Mbytes -[225 bytes]. The global virtual address space had Z“ bytes.

o.ot,msa.o,.u -— .,,,
Bell {I992} considered the KSR machine the most likely blueprirtt for future scalable MPP systems. This

was a revolutionary architecture and thus was more controversial when it was first introdu-cod in I99 l . The
architecture provided size (including LID) and generation scalability in that every node was identical, and it
offered an efficient environment for both arbitrary workloads and sequential to parallel processing through a
large hardware-supported address space with an unlimited number ofprocessors.

Programming Model The KER machine provided a strict sequentially consistent programming model
and dynamic management oi" memory through hardware migration and replication ofdata throughout the
distributed processor memory nodes using its ALLCACHE mechanism.

with sequential consistency, every processor returns the latest value of a written value, and results ofan
execution on multiple processors appear as some interleaving ofopcrations of individual nodes when executed
on a multithrcaded machine. With ALLCACHE, an address became a name, and this name automatically
migrated throughout the system and was associated with a processor in a cache-like fashion as nccdod.

Copies oi" a given cell were made by the hardware and scnt to other nodes to reduce access time. A
processor could prefetch data into a local cache and post-store data for other cells. The hardware was designed
to exploit spatial and temporal locality.

For example, in the SPMD programming mode], copies of the program moved dynamically and were
cached in each ofthe operating nodes‘ primary and processor caches. Data such as elements ofa matrix
moved to the nodes as required simply by accessing the data. and the processor had instructions to prefetch
data to the processor's registers. When a processor wrote to an address, all cells were updated and thus
memory coherence was maintained. Data movement occurred in subpages of 128 bytes ofthe 16K pages.

aEl Example 9.6 Multi-ring searching with requesting and
responding processors on different Ring:
O5 (Courtesy of Kendall Square Research
Corporation, 1991).

internode communication for remote memory access was achieved through a searching process. When the
requester and responder were in the same Ringzfl, the searching was restricted to a single connected R_ing:l].
Local cache directories showed what addresses could be found in the connected local cache. Each Ringtli was
a unidirectional slotted ring for pipelined searching until the destination was reached.

Figure 9.2? illustrates the situation when the requester and responder resided in ditierent Ringztis. The top
level, Ring: l , consisted entirely of ring mtififlg ceH.s' (Ii_RCs}, each containing a directory for the Ring:i) to
which it was connected. Each RRC directory on Ringzl was essentially a duplicate of the RRC directory on
the corresponding Ring:D.

When a packet reached an RRC on Ringzl, it was moved to the next RRC on the ring if the RRC directory
indicated that the requested data was not on the corresponding ring. Otherwise, the packet was routed down
to the RRC on Ring:U. The packet-passing speed of a Ring:D was S million packets per second. Ringil could
bc configured to handle 3, ts, 32, or 6-4 million packets per second.

FM Mtfiruw Hlllriimpwtni
451 i " Advanced Colnputerdrchitectorc

Environma-it and P-etrfnrmance Every known form of parallelism was supported via the KSR’s Mach-
based operating system. Multiple users could run multiple sessions comprising multiple applications or
multiple processes (each with independent address space), each ot‘ which might consist of multiple threads
ofcontrol rtmning and simultaneously sharing a common address space. Message passing was supported by
pointer passing in the sharod memory to avoid data copying and enhance performance.

The l-(SR also provided a commercial programming environment For transaction processing that accessed
relational databases in parallel with ttnlimited scalability as an altemative to multicomputers formed from
multiprocessor mainframes. A 1K-no-de system provided almost two orders of magnitude more processing
power, primary memory, U0 bandwidth, and mass storage capacity than a multiprocessor mainframe available
at that time.

For example. unlike other contemporary candidates, a 1088-node system could be configured with
I53 terabytes of disk memory, providing 500 times the capacity of its main memory. The 32- and 320-node
systems were designed to deliver over 1000 and 10,000 transactions per second, respectively, giving them
over 100 times the throughput of a multiprocessor mainframe available at the time.

‘With rapid advances in VLSI and interconnect technologies, the mid-19905 saw a major shakeout in
the supercomputer business. Kendall Square Research, tl'te developers of KSR-I and its sequel KSR-2
systems, were forced to exit from hardware business during that period. As in the case of other innovative
and pioneering attempts at the development of parallel computer architectures, knowledge gained from the
KSR development was also useful in the design and development of MPP computer systems of subsequent
generations. Our next case study on MPP system will also bring out clearly this important point.

‘1.4.3 The Tera Multiprocessor System
Multithreaded von Neumann architecture can be traced back to the CDC 6600 manufactured in the mid-
l96Us. Multiple functional units in tl'|e 6600 CPU could execute different operations simultaneously using
a score-boarding control. The very first tnultithreaded multiprocessor was the Denelcor HEP designed by
Burton Smith in l9?8. The HEP was built with 16 processors driven by a 10-Ml-lz clock, and each processor
could execute I18 rhre.nr.ls' {called processes in HEP terminology] simultaneously.

Tl1e HEP failed to survive due to inadequate software and compiler supporL The Tera was very much a
HEP descendant but was implemented with \-"LSl circuits and packaging technology. A400-M]-tz clock was
proposed for use in the Tera system, again with a maximum of 128 threads {F-srrcrurrs in Tera terrninologyj
per processor

in this section, we describe the Tera architecture, its processors and thread state, and the tagged memory.-'
registers. The unique features ofthe Tera included not only the high degree ofmultithrcading hilt also the
explicit-dependence lookahead and the high degree of pipelining in its processornehvork-memory operations.
These advanced features were mutually supportive. The first Tera Multithreaded Architecture (MTA) system
was delivered in 1998.
The T-em Design Goal: The Tera architecture was designed with several major goals in mind. First, it
needed to be suitable for very high-speed implementations, i.e. have a short clock period and be scalable to
many processors. A maximum configuration of the first implementation of the architecture {_Fig. 9.28s) was
256 processors, SIB memory units, 256 lfl) cache units, 256 U0 processors, 4096 interconnection network
nodes, and a clock period of less than 3 ns.

Wm. 4;;Scnlafle, Murtlth ,

Prweflwiimax 256) ma Pmcs551|:||5|[max 255;

3 DTc|midal Mesh {'16 >< 16 >< '16)mm ii amMamcrias (max 512)

{aj| The Tara oompubr system

,¢ ,-4
U /5 V

V £7 3’
U Di Cl ca

Z—linlE

.0 U .Cl

Y-links ‘cl 4/ca UP/fin 0,4?y /
$3

D U Cl

I

X—IinlG

{MA spasa 4 >< 4 >< 4 torus with X-linka and '1"-links miasing an dbmate
Z-layers, respadnrely

hree--dh1-ensionai sparse torus archJ1:ec|:1.n'e shown with aFig.9.2B The Tera n1u1dprooessor and fl: t
4 X 4 X 4 configuamfion {Courtesy ofTer1 Computer Company, 1991]

-454 i Adnorroed Cornputerfirchitectore

Second, it was important that the architecture be applicable to a wide spectrum of problems. Programs that
do not vecto-rize well, perhaps because of a preponderance of scalar operations or too 'l'i'equent conditional
branches, will execute eflicicntly as long as there is suflicient parallelism to keep the processors busy.
Virtually any parallelism applicable in the total comptrtational workload can be turned into speed. from
operation-level parallelism within program basic blocks to multiuset lime and space sharing.

A third goal was ease of compiler implementation. Although the instruction set did have a few turusual
features, they did not pose unduly dillicult problems for the code generator. There were no register or
memory addressing constraints and only three addressing modes. Condition code setting was consistent and
orthogonal.

Because the archiler:tr.1re permitted fi'ee exchange of spatial and temporal locality for parallelism, a highly
optimizing compiler could improve locality and trade the parallelism thereby saved for more spocd. On the
other hand, if there was sufiicicnt parallelism, the compiler could exploit it efficiently.
The Sparse T'lrree-Dimrmsionnl Torus The interconnection network was a three-dimensional sparsely
populated torus (Fig. 9.23b) oi pipelined packet-switching nodes, each of which was linked to some of its
neighbors. Each link could transport a packet containing source and destination addresses. an operation. and
64 data bits in both directions simultaneously on every clock tick. Some of the nodes were also linked to
rtssorrreos. i.e. processors, data memory units, I.-‘O processors, and It'll) cache units.

instead of locating the processors on one side ofthe network and the memories on the other la “dance hall"
configuration), the resources were distributed more-or-less trniformly throughout the network. This permitted
data to be placed in memory units near the appropriate processor when possible, and otherwise generally
rnaxiniizcd the distance between possibly intcriirrirrg resources.

The interconnection network of one 256-processor Tera system contained 4096 nodes arranged in a 16 ><
l6 >< 16 toroidal mesh; i.e. the mesh “wrapped around“ in all three dimensions. Dfthe 4096 nodes, 1230 were
attached to the resources comprising 256 eache units and 256 lit) processors. The 2816 remaining nodes did
not have resources attached but still provided message bandwidth.

To increase node performance, some of the links were omitted. lf the three directions are named rt, y, and
1', then X-links and y-links were omitted on alternate z-layers (Fig. 9.23b). This reduces the node degree fi'orn
6 to 4, or from 7 to 5, counting the resource link. ln spite ofits missing links, the bandwidth of the network
was very large.

Any plane bisecting the network crossed at lcast 256 links. giving the network a data bisection bandwidth
of one 64-bit data word per processor per tick in each direction. This bandwidth was needed to support
shared-memory addressing in the event that all 256 processors addressed memory on the other side of some
bisecting plane simtrltancottsly.

As the Tera architecture scaled to larger numbers of processors p. the number ofnetwork nodes grew as
yurm rather than as theplog p associated with the more commonly used multistage networks. To see this, we
first assume that memory latency is fully masked by parallelism only when the number of messages being
routed by the network is at least p>< I. where! is the [round-trip) latency. Since messages occupy volume,
the network must have a volume proportional to p >< I: since the speed of light is finite, the volume is also
proportional to 13 and therefore I is proportional to ,rJ|"3 rathcr than log p.

Pipelined Support Each processor in a Tera cornputcr could execute multiple instruction streams (threads)
simultaneously. in the initial implementation, as few as I or as many as 123 program counters could be active

e.ut,».un...ta..n. 4,,
at once. On every tick of the clock, the processor logic selected a ready-to-execute thread and allowed it to
issue its ncxt instruction. Sincc instruction intcrprctation was contplctcly pipclined by thc process-or and
by the network and memories as well (Fig. 9.29}, a new instruction from a different thread could he issued
during each tick without interfering with its predecessors.

When an instruction finished, the thread to which it belonged became ready to execute the next instruction.
As long as there were enough tlneads in the processor so that the average instruction latency was filled with
instructions fi'on1 other threads, the processor was fitlly utilized. Thus, it was only necessary to have enough
threads to hide the expected latency (perhaps TO ticks on average); once latency was hidden, the processor
would n.|n at peak performance and additional threads would not speed the result.

If a thread were not allowed to issue its next instruction until the previous instruction completed, then
approximately ill) different threads would he required on each processor to hide the expected latency. The
lookahead described later allowed threads to issue multiple instructions in parallel, thereby reducing the
nutnh-er oi‘ threads needed to achieve peak performance.

As seen in Fig. 9.29, three operations could be executed simultaneously per instruction per processor. The
M-pipeline was for memory-access operations, the /i-pipeline for arithmetic operations, and the C7-pipeline
for control or arithmetic operations. The instructions were 64 bits wide. If more than one operation in an
instruction specified the same register or setting oi" condition codes, the priority was M> A ':= C.

ifilifi Instruction
K PM fetch x

/""‘\ ‘ii

ii i_
\-../ "

MU
|£r00l

write egister

E; ZP O

write poo
memory

poo

qi
write aglst-at

_,i

'4

write egistor\-

[interconnection network)

I I t t
'\ memory intemal pipeline /

Fig.i.H Pipeiined procassort-networilt-memerry structure (Courtesy ofTcra Corrtptrtter Cerrnpany. 1991)

455 i Adrotrtoed Compoterfirchiztecttrre

it was estimated that a peak speed of 1G operations per second could be achieved per processor if driven
by a 333-MI-[2 clock. However, a particular thread would not exceed about IDOM operations per second
because of interleaved execution. The processor pipeline was rather deep, about 1'0 ticks, as compared with
8 ticks in die earlier HEP pipeline.
Thread State and Nhmogement Figure 9.30 shows that each thread had the following state associated
with it:

' One 64-bit stream status word (SSW);
r Thirty—two 64-bit general-purpose registers (R0-R31);
' Eight 64-bit target registers [TD—TT).

‘O..iS-SW pg

i

TD
I
I
I

TT

es
I
U

R31
128-Copies

Stream Status Word [SSW]
1 32 bit PC [Program Counter)
I Mod-as {o.g. rounding, iookahmd disable)
1 Trap disable mask [o.g. data atignmont, overflow]
1 Condition codes [last four emitted)
No synchrmization bits on RD-R31
Target Registers [Ti]-17) took like SSWs

Fig.'J.30 The thread rnanagernenr scheme used in the Tera eornpoeer {Cour-cosy of Tera Computer
Cornpany. 1997.}

Context switching was so rapid that the processor had no time to swap the processor-resident thread state.
Instead, it had I28 of everytlting. i.e. l23 SSWs, 4096 general purpose registers, and I024 target registers. lt
is appropriate to compare these registers in both quantity and function to vector registers or words ofcaehes
in other architectures. In all three cases, the objective is to improve locality and avoid reloading data.

Program addresses were 32 bits in length. Each thread’s current program counter [PC] was located in
the lower half of its SSW. The upper half described various modes {e.g. floating-point rounding, lookahead
disable), the trap disable mask (e.g. data alignment, floating overflow}, and the four most recently generated
condition codes.

rsta,tnss..,ta..a -— ,5,
Most operations had a TEST variant which emitted a condition code; and branch operations could

examine any subset of the last four condition codes emitted and branch appropriately. Also associated with
each thread were thirty-two 64-bit general-purpose registers. Register R0 was special in that it read as 0 and
output to it was discarded. Otherwise, all general-purpose registers were identical.

The Larger registers were used as branch targets. The fomtat of the target registers was identical to that of
the SSW, though most control transfer operations used only the low 32. bits to determine a new PC. Separating
the determination ofthe branch target address from the decision to branch allowed the hardware to prclbtch
irtstructions at the branch targets, thus avoiding delay when the branch decision was made. Using target
registers also made branch operations smaller, resulting in tighter loops. There were also slcip operations
which obviated the need to set targets for short forward branches.

One target register (TD) pointed to the trap handler which was nominally an unprivileged program. ‘When
a trap occurred. the effect was as if a coroutine call to a T0 had been executed. This made trap handling
extremely lightweight and independent ofthe operating system. Trap handlers could be changed by the user
to achieve specific trap capabilities and priorities without loss of efiic-iency.
Explicit-Dependence Loulmhead If there were enough threads executing on each processor to hide the
pipeline latency {about TD ticks}, then the machine would run at peak performance. However, if each thread
could execute some of its instructions in parallel leg. two successive loads}, then fewer threads and parallel
activities would be required to achieve peak performance.

Tl're obvious solution was to introduce instruction loolrahead; the difliculty was that the traditional
register reservation approach requires far too much scoreboard bandwidth in this kind oi‘ architecture. Either
multithreading or horizontal instruction alone would procludc scorchoarding.

The Tera architccttrre used a new technique called etyJlieir-riependt'rtr'e Iookrtherrrt Each instruction
contained a 3-bit loolrahead field that explicitly specified how many instructions fi'o|n this thread would be
issued before encountering an instniction that depended on the current one. Since seven was the maximum
possible lookabead value, at most 8 instructions and 24 operations could be concurrently executing from each
thread.

A thread was ready to issue a new instruction when all instructions with loolcabead values referring to the
new instruction had completed Thus, it" each thread maintained a lookahead of seven, then nine threads were
needed to hide ‘F2 ticks of latency.

Loolrahead across one or more branch operations was handled by specifying the minimum of all distances
involved. The variant branch operations JUMP_CIF'I‘EN and JL1l\1P_SELDGI-1, for high-and low-probability
branches, respectively, facilitated optimization by providing a barrier to lookahead along the less likely path.
There were also SI-<. I P_tIIF'I‘El'»l and I P_SELE-DI-I operation s. The overall approach was conceptually sim-
ilar to exposed-pipeline lookahead except that the quanta were insbuctions instead of licks.

Advantages and Drawbacks The Tera used multiple contexts to hide latency. The machine performed a
context switch every clock cycle. Both pipeline latency and memory latency were hidden in the I-[EP1'I‘era
approach. The major focus was on latency tolerance rather than latency reduction.

With 128 contexts per processor, a large number (2K) oi" registers must be shared finely between threads.
The thread creation must be very cheap [a few clock cycles]. Tagged memory and registers with fulltempty
bits were used for synchronization. As long as there was plenty of parallelism in user programs to hide
latency and plenty of compiler support, the perl‘ormance was potentially very high.

FM Mtfiruw Hfllritmpwins
455 i " Advanced Colnputerfirehitactorc

However, these Tera advantages were embedded in a number of potential drawbacks. The performance
must be bad for limited parallelism, such as guaranteed low single-contest performance. A large number of
contexts (threads) demanded lots ofregisters and other hardware resources which in tum implied higher cost
and complexity. Finally, the limited focus on latency reduction and cacheing entailed lots of slack parallelism
to hide latency as well as lots of memory bandwidth; both required a higher cost ihr building tl'|e machine.

ln the year 1996, the independent company Cray Research, Inc. founded by Seymour Cray merged with the
high-performance graphics workstation producer Silicon Graphics, Inc. (SGI); Cray Research then became a
business division of SGI. ln the year 2000, Tera Computer Company, originators and developers of the Tera
MTA massively parallel system which we have studied in this section, took over Cray Research. The merged
company was named Cray, lnc., and it is in active operation today (see www.cray.eoml. Cray has continued
with the development of the MTA architecture, as we shall review in Chapter 13.

DATAFLOW AND HYBRID ARCHITECTURES

1 Multithreaded architectures can in theory be designed with a pure datafiow approach or with a
hybrid approach combining von Neurnann and data—driven mechanisms. ln this final section,

we briefly review the historical development of dataflow computers. Then we consider the design ofthe ETL!
EM-4 in Japan and the prototype design of the MIT-"Motorola ‘T project.

9.5.1 The Evolution of Dataflow Computers
As introduced in Section 2.3, dataflow computers have the potential for exploiting all the parallelism available
i11 a program. Since execution is driven only by the availability of operands at the inputs to tl'|c functional
units, there is no need for a program counter in this architecture, and its parallelism is limited only by the
actual data dependences in the application program. While the dataflow concept offers the potential of high
performance, the performance of an actual dataflow implementation can be restricted by a limited number
of functional units, limited memory bandwidth, and the need to assu-ciatively match pending operations with
available functional units.

Arvind and Iannueci [l 9'87) identified merrmry Irrrcnct-' and sirnr-Irronirrrrrhrr ovcrhcrrrt’as two iirndamcntal
issues in multiprocessing. Scalable multiproccssors must address the loss in processor efficiency in these cases.
Using various latency-hiding mechanisms and multiple contexts per processor can make the conventional
von Neurnann architecture relatively expensive to implement, and only certain types of parallelism can be
exploited efliciently.

HEPr'Tera computers offered an evolutionary step beyond the von Neumalrn architectures. Datafiow
architectures represent a radical alternative to von Neumann architectures because they use datafiow graphs
as their machine languages. Datallow graphs, as opposed to conventional machine languages, specify only
a partial order for the execution of instructions and thus provide opporttmities for parallel and pipclined
execution at tl1e level of individual instructiorts.

Dutnflow Graphs We have seen a datafiow graph in Fig. 2.13. Datallow graphs can be used as a machine
language in dataflow computers. Another example of a dataftow graph (Fig. 9.3 la) is given below.

Sca|abie,Mu!Hfl|reuded,and 4,,
X

I
Dahiow gmphs as

2 I a madwiina language

I ‘~ ‘~M|TTaggadToluan Mancheshr
Dahiowflwc-hrhctim Dalaflow

'| 24 \ ;

ETLSigm.a-1I I
T

720 Explicit Token
Bbre Machines

_
7: B: 3| 1\

l-l|T.ll-lobrda El’L EH-4
Monsoon

'1'

9- P-RISE: "RISE-ifiad" dahlow

coax i

l-l|TI‘M;ol;o|'da ‘T

{a) Dataflcnv gaph lor oomputing (1J)Evolutior| tree of dynamicdataflmv mac-i1inas{Ccuiasy
coa x{Cc|u1ssy cifArvind}| cal R. l'~ild1I}|

FIQJLI1 An mpledauflow graph and clauflow machine praiects

I»)
£3 Example 9.7 The dataflow graph for the calculation of

cosx (Ar\rlnd,1991).
This dataflow graph shows how to obtain an approximatioll of coax by thc following powcr

computation:
2 _=l _£i ,2 -1 ji

M121-‘I +" -J‘ =1-J‘ +1 -“ (9.6)
2! 4! 6! 2 24 7'20

The conesponding datafiow graph consists of nine operators {actors or nodes). The edges in the graph
intcrconncct thc opcrator nodcs. Thc succcssivc powers ofx arc obtained by rcpcatcd multiplications. Thc
constants (divisors) arc foil into thc no-[lcs directly. All intcmlodiatc results arc forwarded among thc nodes.

-460 i Aduorrccd Computerdrchitecture

Start: versus Dynamic Dataflow Static damjiow computers simply disallow more than one token to
reside on any one arc, which is enforced by the firing mle: A node is enabled as soon as tokens are present
on all input arcs and there is no token on any of its output arcs. Jack Dennis proposed the very first static
dataflow computer in 1974.

The static firing rule is difficult to implement in hardware. Special feedback rrekmn-‘lodge .sigrm!.s are
needed to secure the correct token passing between producing nodes and consuming nodes. Also, the static
rule makes it very inefficient to process arrays of data. The number of acknowledge signals can grow too fast
to be supported by hardware.

However, static dataflow inspired the development ofdjmrrmic datqflow eomprrrrers, which were researched
vigorously at MIT and in Japan. In a dynamic architecture, each data token is tagged with a contest descriptor,
called a ragged rotten. The firing rule oftagged-token dataflow is changed to: A node is enabled as soon as
tokens with identical tags are present at each of its input arcs.

with tagged tokens, tag matching becomes necessary. Special hardware mechanisms are needed to achieve
this. In the rest of this section, we discuss only dynamic darallow computers. Arvind of MIT pioneered the
development of tagged—token architecture for dynamic datafiow computers.

Although data dependence does exist in datatlow graphs, it does not force unnecessary sequentlalization,
and dataflow computers schedule instructions according to tl'|e availability of the operands. Conceptually,
"tolren”-carry-ing values flow along the edges ofthe graph. Values or tokens may he memory locations.

Each instruction waits for tokens on all inputs, consumes input tokens, computes output values based on
input values, and produces tokens on outputs. No further restriction on instruction ordering is imposed. No
side effects are produced with the execution of instructions in a datafiow computer. El-nth dataflow graphs and
machines implement only functional languages.

Pure Dataflow Machines Figure 9.311: shows the evolution of dataflow computers. The MIT toggle!-
token drzrtajlow architecture (TTDA) {Arvind et al, i933), the Manchester Dataflow Computer (Gurd and
Watson, 1982), and the ETL Sigma-I {Hiralri and Shimada, I98?) were all pure dataflow computers. The
TTDA was simulated but never built. The Mancltester machine was actually built and became operational in
mid-I 982. lt operated asynchronously using a separate clock for each processing element with apes-fomtanee
comparable to that of the VAJCHSO.

The ETL Sigma-1 was developed at the Electrotechnical Laboratory, Tsulruba, Japan. It consisted of 128
PEs frilly synchronous with a lll-Ml-lz clock. lt implemented the I-structure memory proposed by Arvind.
The fi.|ll configuration became operational in I987 and achieved a I70-Mllops p-erforrnance. The major
problem in using the Sigma-l was lack of high—level language for users.
Explicit Token Store Machine: These were successors to the pu.re dataflow machines. The basic idea is to
eliminate associative token matching. The waiting token memory is directly addressed, with the use of Full!
empty bits. This idea was used in the l'dl'l'r’l'\-iotorola Monsoon {Papadopoulos and Cullcr, H88) and in the
ETL EM-4 system (Sakai et al, W89).

Multithreading was supported in Monsoon using multiple register sets. Thread-based programming was
conceptually introduced in Monsoon. The maximum configuration built consisted of eight processors and
eight I-stnrclure memory modules using an B >< 3 crossbar network. lt became operational in I991.

scrnatemurumt-msd,md. -— 4,,
EM-4 was an extension of the Sigma-1. It was designed for [U24 nodes, but only an EU-node prototype

became operational in 1990. The prototype achieved 815 MIPS in an 80 '>< 80 matrhr multiplication benchmark.
We will study the details of EM-4 in Section 9.5.2.

Hybrid and Unified iirchitectures These are architecttires combining positive features from the \-ion
Neumarm and daraflow areliitectures. 'l‘he best research examples include the MIT P-RISC |[Nikhil and
Arvind, 1988], the IBM Empire [Iannueei et al., 1991), and the l'v1lTfh-Iotorola "'T (Nikhil, Papadopoulos,
Arvirld, and Greiner. 1991}.

P-RISC was a “RISC-ified“ datafiow architecture. It allowed tighter encodings of the dataflow graphs
and produced longer threads for better performance. This was achieved by splitting “complex“ datafiow
instructions into separate "simple" component instructions that could be composed by the compiler. lt
used traditional instruction sequencing. It performed all intraprocessor eommunication via memory and
implemented “joins” explicitly using memory locations.

P-RISC replaced some of the dataflow synchronization with conventional program counter-based
synchronization. IBM Empire was a von Neumannfdataflow hybrid architecture under development at IBM
based on the thesis of lanrtueci {I983}. The *T was a latter effort at MIT joining both the dataflow and von
Neumann ideas, to be discussed in Section 9.5.3.

9.5.2 ETUEH-4 in japan
EM-4 had the overall system organization as shown in Fig. 9.32s. Each EMC-R node was a single-chip
processor without floating-point hardware but including a switch of the network. Each node played the
role of I-structure memory and had L31 Mbytes of static RAM. An Omega network was used to provide
interconnections among the nodes.

The Node Architreemm The internal design ofthe processor chip and ofthe node memory are shown
in Fig. 9.321». The processor chip communicated with the network through a 3 >< 3 crossbar swirch unit
The processor and its memory were interfaced with rr rriemory control‘ rmir. The memory was used to hold
programs {template segments} as well as tokens {operand segments, heaps, or frarnes) waiting to he fetched.

The processor co l'I5l5lCtI| of six component units. The r'npur brgffer was used as a token store with a capacity
nt‘32 words. TlflC_,i'-i‘fC.FI-Irlrlfth rmir fetched tokens from the memory and performed tag-matching operations
among the tokens fetched in. Instructions were directly fetched from the memory through the memory
controller.

The heart of the processor was the exeeriririri rmir. which ietchod instnrctions until the end of a thrcarl.
lnstructions with matching tokens were executed Instructions could emit tokens or write to registers.
Instructions were fetched continually using traditional sequelleing [PC — 1 or branch) until a “stop” flag was
raised to indicate the end of a thread. Then another pair of tokens was accepted. Each instruction in a thread
specified the two sources for the next instructiolt in the thread.

“S M ,n...[,n,F .. ,. hm,I’ TC E

N-ode Node

El|IC—R
Processor

EMC-R
Processor

I K

Omega Nelworlt

{at Globd organization

Ovellow

Fet:e.h-Math
Unit

lma-itour-er
Unit

{siren
queue)

HagistaFla

Execution
Unit

Insiuction
Fetch

{til end
Dfil'IB3d:|

Execute and ‘
EmitTotoans

Memory
Control

Unit

Memory

Program
{Ternplate
segntentsi

tfihitirg
Tokens

{operand
segments,

i.e.
flames)

1l—--i-or

Heap

'- ing
i Unit
. {3 X3 crossbar)

Present hits

(b [I The EHC-R pmoe

Elect:-orreeiinlcal9.31 The ETL EM-4

Netvrcllt

mordesign

daraflow arehltactatre (CmtrmsyFig.
Labor1.tiory.T.fl.tiotbI.]lpln. 1991]

of S.‘I.it2i,YI.l'lII:Ll\']1i or at,

a.a.r,Maa....ar...r. -— ...,,
The same idea was used as in Monsoon for token matching, but with different encoding. All data tokens

were 32 bits, and instruction words were 33 bits. EM-4 supported rcmotc loads and synchronizing loads. Thc
_,i5rHr'errrpr__v bits present in memory words were used to synchronize remote loads associated with ditfercnt
threads.

9.5.3 The HlTi'Hotoro|a *T Prototype
The *T project was a direct descendant of a series of MIT dynamic dataflow architecttrrcs unifying with the
von Neumann architectures. in this final section, we describe ‘T, a prototype multirhreaded MPP system
based on the work ofblikhil, Papadopoulos, and Arvind of MIT in collaboration with Greiner and Traub of
Motorola. Finally, we compare the datafiow and von Ncurnann perspectives in building fine-grain, massively
parallel systems.

‘The Prototype Architecture The *T prototype was a single-address-space system. A “l:rrick" of l 6 nodes
was packaged in a 9-in cube (Fig. 9.33a). The local network was built with S >< 8 crossbar switching ehips. A
brick had the potential to achieve 3200 MIPS or 3.2 Gflops. The memory was distributed to the nodes. Doe
gigabyte ofRAM was used perbrick. With 200-lvlbytesis links, the U0 bandwidth was 6.4 Gbytesfs per brick.

A 256-node machine could bc built with l5 bricks as illustrated in Fig. 9.33b. Thc 16 bricks were
interconnected by four switching boards. Each board implemented a 16 >< 16 crossbar switch. The entire
system could be packaged into a 1.5-m cube. ‘No cables were used between the boards. The package was
limited by connector-pin density. Thc 256-nodc machine had thc potential to acliicvc 5l),O[ll] MIPS or 50
Gfiops. The bisection bandwidth was 5|) Gbytesfs.

The *T Node Design Each node was designed to be implemented with four component units. A Motorola
superscalar RISC microprocessor (MC B81 10) was modified as a rinrn processor {dP). This dP was optimized
for long threads. Concurrent integer and floating-point operations were performed within each dP.

A.s_ji-riehmn r'rnriorr eoproee.s.mr {sP} was implemented as an 88000 special-function unit (SFU), which was
optimized for simple, short threads. Both t.hc dP and the sP could handle fast loads. The dP handled incoming
continuation, while the sP handled incoming messages, rloadfrstore responses, and joins for messaging or
synchronization purposes. in other words, the sP ofi‘-loaded simple message-handling tasks fiom the main
processor (thc dP}. Thus the dP would not be disrupted by short messages.

The merrrorji-' r-onroller handled requests icr remote memory load or store, as well as the management
of node memory (64 Mbytes). The nernorlr irrrrrfirr-r' rmir received or transmitted messages from or to the
network, respectively, as illustrated in Fig. 9.33c. It should be noted that the sP was built as an on-chip SFU
of thc dP.

The MC SS] ll) family allowed additional on-chip SFUs, with reserved opcode space, common instruction-
issue logic and cac-hes, etc., and direct access to processor registers. Example S1-‘Us included the floating-
point unit, gra.pl‘tlCS unit, coprocessor, etc. The MC B3110 was itself a two-way superscalar processor driven
by a 50-lvll-Iz clock.

New SFUs wcrc added into thc MC B8110 to provide 115 buffers for incoming messages and 4 buffers
for outgoing messages. Other S1-"Us included a conrinrirrrion srar-.1: with 64 entries and a microrhrerrrir-d
s‘('f?-t'r'.lrrl't’!'. which supplied continuations from messages and the continuation stack, etc. Special instructions
were available for packing or unpacking continuations.

rm tilcfi-rm-H um 7
i mmun“ Advanced Cmnputerfirchétecztrre464

16 out 16m

{ajflt tmck ef1B nodes wm 32- {|Jj|A256-node machme eenststtng of
16 bucks mtereenneetecl by 4 beards efGflops and 3260-MIPS peak per-

iermanee, packaged tn e 9-tn cube 16 .w 16 swttcnes and packaged tn a 1.5-rn cube

Network{BOD MH.fs tn)

I Netwerklnterfaee Llnn ‘

requests
responses

MC 88110H deMflfinofl Memory mfih
{64_MB) I Controller essage

: Cepreeesser
J
t‘

If; ~[RMem] {dP + SP]
BOD MEIs

{cj Intern: node aremtecture wttn data pmeesser
{MC B3110) and synchrentzatton eepreceseer {sP)

Fig.!.33 The MFUMut;omla "‘T pmeotype multithreaded althiuecture {Counaesy of Nikhil, Papadupoul-us,
andfltmmd. Pmc. 19th Int‘. 5ymp.Cotr|puterAa-ch, Aus:r:tNa.. May 1992}

Research Experiment: The ‘T prototype was used to test the effectiveness of the unified architecture
in supporting multithreading operations. The development of *T was influenced by other multifltreflded
architectures, including Tera, Alcwifc, and J-Machine.

Scnfattie,Mutrir.iireaded,and -— 4,,
The l-structure semantics was also implemented in ‘T. Fuilfe-mptv bits were used on producer-

constuner variables. *T treated messages as virtual continuations. Thus busy-waiting was eliminated. Dther
optimizations in *T included speculative avoidance of the extra loads and stores through tnultithreading and
coherent caeheing.

The *T designers wanted to provide a superset of the capabilities ofTera, J-Machine, and EM-4. Compiler
techniques developed for these machines were expected to be applicable to ‘T. To achieve these goals, a
promising approach was to start with declarative languages while the compiler could aim to extract a large
amount of fine—grain parallelism.

Muftithreodingrtll Perspective The Dash, l-(SR-I, and Alewife leveraged existing processor technology.
The advantages of these directory-based caeheing systems include compatibility with existing hardware and
software. But they offer a less aggressive pursuit of parallelism and depend heavily on compilers to obtain
locality. The synclironizing loads are still problematic in these Cll5lFll‘JLllIt'.‘Cl caeheing solutions.

ln von Neumann multithreading approaches, the HEPfTera replicated the conventional instruction stream.
Syncltronizing-loads problems were solved by a hardware trap and software. Hybrid architectures, such as
Empire, replicated conventional instruction streams, but they did not preserve registers across threads. The
synchronizing loads were entirely supported in hardware. J-Machine supported three instruction streams
(priorities). It grew out of message-passing machines but added support for global addressing. Remote
synchronizing loads were supported by soihvare convention.

In the dataflow approaches, the system-level view has stayed constant from the Tagged-Token Dataflow
Architecture to the ‘T. The various designs differ in internal node architecture, with trends toward the
removal of intra-node synchronization, using longer threads, high-speed registers, and compatibility with
existing machine codes. The ‘T designers claimed that the unification of datafiow and von Neumann ideas
would support a scalable shared-memory programming model using existing SIMD/SPMD codes.

E.'.|"}—i S-, i,» I ummary
5.4/'

Computer systems love always operated with processors having much faster cycle times than main
memories.With steady advances inVLSi technology over the years. both processors and main memories
have become faster. but the relative speed mismatch between them has in tact widened over the years.
Latency hiding techniques are therefore devised to allow processors to operatic at high efficiency in spite of
having to access slower memories from time to time; use of cache memories is a common latency hiding
technique. in the context of Massively Parallel Processing i',l"1PP} systems, other technical challenges also
confront system digrters in minimizing the impact of memory access latencies.

in this chapter. we studied some basic latency hiding techniques applicable to such systems, narnely:
shared virtual memory with some specific examples; preietching techniques and their effectiveness; and
the use of distributed coherent caches. Scalable Coherent interface (SCI) provides cache coherence with
distributed directories and sharing iist.s.‘iN'o studied several relaxed memory consiatiency models which
can permit greater exploitation of parallefism in applications; the impact of relaxed consistency models
while running three specific applications was presented.

rh- i'hlcG-rm-P HiiI" r
456 i Hm .-lidvionced Computernrcfnitecvsre

Principl of multi-threading were introduced. with specific attention paid to the technical factors
relevant to system design. namely: communication latency on remote access. number of threads. context-
switching overhead. and the interval between context switches. Multiple context processors have been
designed to provide hardware supp-ort for single cycle context svvit-thing. Possible context-switching
policies were studied. along with their impact on system efficiency. Mulddimensional architectures were
reviewed as a possible platform for multi-threaded systems.

Fine-grain multicomputers are specially designed to provide efficient support for fine-grain
parallelism in applications. The MIT j-machine was studied from d'|e points of view of its overall
system design, its Message-Drhien Processor ii‘-1DP) and instruction set architecture. and the message
format and routing employed in its 3-dimensional mesh. The design goal of Caltech Mosaic C system
was to exploit the advances which had taken place in VLSI and packaging technologies; we studied
the basic node design with its two contexts {for user program and message handler). and basic
B >< 8 mesh design employed in the system.

in the category of scalable multithreaded architectures. tl'ie Stanford Dash multiprocessor system
utilized directory-based cache coherence in a single address-space distributed memory system. Kenthll
Square Research KSR-1 system employed a cache-only memory design with a ring-based Interconnect.
The Tera multiprocessor system relied for its performance on a large degree of multi-threading and
agressive use of pipelining throughout the system. wid'i a sparse 3-dimensional torus interconnect.

We also studied i:l1e basic concepts and evolution of dataflow and hybrid architectures, from the first
introduction of the concept in 1974 byjack Dennis at HIT. Specific datafiow and hybrid systems studied in
this context were the ETUEM-4 system developed in japan. and the MiTi'Motoro|a ‘T prototype system.

Problem 9.1 Consider a scalable multiprocessor
widn p processing nodes and distributed shared
memory. Let R be the rate of each processing node
generating a request to access remote memory
through the interconnection network. Let L be the
average latency for remote memory access. Derive
expressions for the processor efficiency E under
each of the following conditions:

{3} The processor is single-threaded. uss only a
private cache.and has no other latency-hiding
mechanisms. Express E as a function of R and
L.

(b) Suppose a coherent cache is supported by
l"iardware with proper data sharing and fr is
the probability that a remote request can

ls}

(dl

be satisfied by a local cache. Express E as a
function of R, L and fi.
Now assume each processor is multithrded
to handle N contexts simultane-ousIy.Assume
a context-switching overhead of C. Express E
as a function ofN, R, Lh,and C.
Now consider the use of a 2-D r >< r torus
with R = p and bidirectional links. Let t, be
the time delay between adjacent nodes and
tm be the local memory-access lime.Assume
that the network is fast enough to respond to
each request without buffering. Express the
latency i‘. as a function of pi. td. and tm. Then
express the efficiency E as a function of N, R,
h, C, pi, rd. and tr,

Sctifoble,Muldtfireoded,and -— 4..
Problem 9.2 The following two questions are
related to the effect of prefetching on latency
tolerance:

{a} Perform an analytical study of the effects
of data prefetching on the performance
(efficiency) of processors in a scalable
multiprocessor system without multithread-
ing.

(bi Repeat part {a} for a multithreaded
multiprocessor system under reasonable
assumptions.

Problem 9.3 The following questions are related
to the effects of memory consistency models."

{a} Perform an analytical study of the effects
of using a relaxed consistency memory
model in a scalable multiprocessor without
multithreading.

(b) Repeat part (a) for a multidireaded
multiprocessor system under reasonable
assumptions.

ft] C-an you derive an efficiency expression for
a multiple-context processor supported
by both prefetching and release memory
consistency?

Problem 9.4 Consider a two-dimensional
multicube arcl"iitect1.|re with m row buses and
m column buses (Fig: 9.1Ba’). Each bus has a
bandwidth of B bitsfs.The bus is considered active
when it is actually in progress. The bus utilizadon
rate ti (0 < o 5 1] is defined as the number of active
bus cycles over the total cycles elapsed. The per-
processor request rate r is defined as the number
of requests that a processor sends on either of the
two buses [for the purpose of memoryaccess. cache
coherence. synchronization. etc.) per second.

(a]- Consider a single-column bus with associated
processors and memory module and express
the bus bandwidth as a function ofm.o,and r.

(b) W'hat is the tonal bus bandwidth available in
the entire system?

{c} if r is kept constant as tl'ie number of
PFOCESSOFS ll'iCl"S1ES, how HTZHY FEQUESIS CHI"!

be sent to the system without exceeding the
limit!

(d) Each request goes through a maximum of two
buses in the multicube.What bus bandwidth
will be needed to satisfy all the requests?

(e]- In parts (b) and (dj-. does the multicube
provide enough bus bandwidti"i? justify the
answer with reasoning.

Problem ?.5 Consider dwe use of an ordwogonal
multiprocessor consisting of 4 processors and
16 orthogonally shared memory modules (Fig. 9'.18b)
to perform an unfolded multiplication of two 8 '>< B
matrices in a partitioned SPHD mode.

fa) Show how to distribute the 1 X 2 submiatrices
of the input matrix A = {op} and B = {bi} to the
16 orthogonally shared memory modules.

(bi Specify the SPMD algorithm by involving all
four procasors in a synchronized manner
to access eidwer the row memories or the
column memories. Synchronization is handled
at the loop level.

You can assume the use of a pipeline-read
to fetch either one column or one row vector
of the input matrix A or B at a time. and a
pipeline-write to store the product matrix
C = A >< B = {cg} ele|'nents in a similar fashion.
Assume that sufficient large register windows
are available within each processor to hold all
2 >< 2 submatrix elements. Each processor can
perform inner product operations.

(c) Let N >< N be the matrix size and it = Nfn
the partitioned block size in mapping a large
matrix in the orthogonal memory. Estimate
the number oforthogonal memory accesses
and the number of synchronizations needed
in an SPHD algorithm for multiplying two N ><
N matrices on an n-processor DMR

rm lvltfirovv Hill 7
468 i mmlmm“ Advanced Cornpirterflirchitecttrre

(d) Repeat the above for a two-dimensional fast
Fourier transform over N >< N sample points
on-an n-processor Cll"'lP, where N = n-k for
some integr k 2 2. The idea of performing
a two-dimensional FFT on an DMP is to
perform a one-dimensional FFT along one
dimension in a row-access mode.

All n processors then synchronize, switch
to a column-access mode. and perform
another one-dimensional FFT along the
second dimension. First try the case where N
= B.n = 4,and k= land then work outthe
general case for large N ;:?> n.

Problem 9.5 The following questions are related
to shared virtual memory:

(a) Why has shared virtual memory (SVM)
become a necessity in building a scalable
system with memories physically distributed
over a large number of processing nodes?

(b) What are d1e major differences in
implementing SVH at the cache block level
and the page level?

Problem 9.7 The release consistency {RC} model
has combined the advantages of both the processor
consistency (PC) and the weak consistency (WC)
moclels.Answer the following questions related to
flwese consistency models:

{a} Compare the implementation requirements
in the three consistency models.

{b} Comment on the advantages and
shortcomings of each consistency model.

Problem 9.8 Answer the following questions
involving the l"'llT]-Machirve:

(a1 Whatvvere the unique features of the message-
driven processors (MD?) making it suitable
for building flne-grain multicomputers?

(bl Explain the E-cube routing mechanism built
into the l"'lDP.

(c_‘,l Explain the concept of using a combining
tree for synchronization of events on various
nodes in the j-Machine.

Problem 9.!‘ Why are hypercube networks
[binary n-cube networks), which were very popular
in first-generation multicomputers. being replaced
by 2D or 3D meshes or tori in the second and third
generations of multicomp uters?

Problem $.10 Answer the following questions on
the SCI standard:

(a) Explain the sharing-list creation and update
medaods used in die IEEE Scalable Coherence
Interface (SCI) standard.

(b} Com menton the advantages and disadvantages
of chained directories for cache coherence
control in large-scale multiprocessor systems.

Problem 9.11 Compare the four context-
svvitching policies: switch on cache miss. switch on
every load, switch on every instruction (cycle by
cycle]. and switch on block of instructions.

(a) What are the advantages and shortcomings of
each policy?

(bl What additional research would be needed to
make an optimal choice among these policies?

Problem 9.12 After studying the Dash memory
hierardwy and directory protocol. answer the
following questions with an analysis of potential
performance:

(a) Define the cache states used in Dash.
(b} How were the cad1e directories implemented

in the memory hierardayl
(c) Explain the Dash directory-based coherence

protocol when reading a remote cache block
that is dirty in a remote cluster.

(dl Repeat part (cl for the case of writing to a
shared remote cache block.

Problem 9.13 Answer the following questions
on multiproccssors:

(a) Describe the ALLCACHE architecture
implemented in the Kendall Square Research
KSR-1.

(b) Explain how cache coherence can be main-
talned in the KSR-1.

Study the papers on COMA architectures
by Stenstrom et al (1992) and Hagersten
et al (1990). Compare the differences
between KER-1 and the Data Diffusion
Machine {DDM] architecture.

Problem 9.14 Answer the following questions
on the development of the Tera computer.

What were the design goals of the Tera
computer?
Explain the sparse 3D torus used in Tera.
What are the advantages of the sparse
structure?
Explain how pipelining is applied in supporting
the multithreaded operations in each Tera
processor.
Explain the thread state and management
scheme used in Tera.
Explain the idea of explicit-dependence
looltahead and its effects on multiihreading in
Tera.
What are the contributions of the Tera
architecture and software development?
Compare the advantages and potential
drawbacks of the Tera computer.

Problem 9.15 Answer the following questions
related to dataflow computers:

Distinguish between static dataflow
computers and dynamic dataflow computers.
Draw a dataflow graph showing the
computations of the roots of a sequence of
quadratic equations Apr? + Egg + C; = Ci for i =
1.2. N.
Consider i'J'iE parallel execution of the
successive root computations with a four-PE
tagged-token dataflow computer (Fig. 1.12).
Show a minimum-time schedule for using the
four PEs to compute the N pairs of roots.

Problem 116 Consider the mapping of a one-
dimensional circular convolution computation
on a multiprocessor with 4 processors and 32

etaammo.“ -— 4,,
memory modules which are 32-way interleaved
for pipelined access of vector data_ Assume no
contention between processors and memories in
the interconnection network. The one-dimensional
convolution is defined over a 1 >< n image and a
1 >< m kernel as follows:

m—|

‘f{i)- = EWfl)- X({i-I) mod n) forfl £iEn—1
,-=0

(a) How many multiplications and additions are
involved in the above computations? Map the
image pixels X(i) to memory module My ifj =
i (mod 32) and assume n = 156. The output
image l"(i) is also stored in module My ifj =
i[mod 32) for O £1‘ 5 255.The kernel is also
stored in a similar manner.Assume m = 4 and
each processor handles the computation of
one output image.

lb) Show how to partition the computations
among the four processors such that minim um
time is spent in both memory-access and CPU
executions.Assume no memory conflicts and
up to four fetch or store operations {but
not mixed) performed at the same time.The
interleaved memory can be accessed by one
or more processors at the same time.

(c) What is the minimum execution time
(including b-oth memory and CPU opera-
tions) if each multiply and add and ch
interleaved memory access is considered one
time unit. Assume enough working registers
are available in each CPU.

(d) What is the speedup factor of the above
multiprocessor solution over a uniprocessor
solution!‘ You can make similar assumptions
about the use of the 32-way interleaved
memory for bod1 uniprocessor and multi-
processor configurations.

Problem 9.17 Answer the following questions on
fine-grain multicomputers and massive parallelism:

(ai Why are fine-grain processors chosen for

41¢?

nesearch-oriented multicomputers and MPP‘
systems over medium-grain processors used
in the past!

lb) Why is a single global addressing space
desired over distributed address spaces?

Ff-r Mtliraw Hl'lft'i--r.-pr--|-n _-
Adronced Com-puterfiirchitecture

From scalability point of view,why is fine-grain
parallelism more appeaiing than medium-
grain or coarse-grain parallelism for building
MPP systems?

Part IV
Software for Parallel Programming

Chapter 10
Parallel Models, Languages, and Compilers

Chapter 11
Parallel Program Development and
Environments

—

Summary
Part IV discusses software and programming requirements of parallelivector computers. We begin
with a characterization of parallel programming models: shared-variable. message-passing. data-
parallel. object-oriented. functional. logic. and heterogeneous. Then we evaluate parallel languages and
compiler tedwnologies for parallel programming. This includes the study of language ftures. program-
ming environments. compilers for parailelization and vectorization. and performance tuning.V've will
describe locks. semaphores. monitors. synchronization. multitasking. and various program decomposition
techniques.

PM !|lnfG-MM-‘ Hllitwopmm

l0

Parallel Models, Languages, and
Compilers

This chapter is devoted to programming and compiler aspects of parallel and vector computers.To study
beyond anchitectural tzpabilitlesnne mustlearn about the basic models for parallel pnogramming and how
to design optimizing compilers for parallelism. Models studied include those for shared-variable.message-
passing, object-oriented. data-parallel. functional. and logic programming. “E: examine language exten-
sions. parallelizing. vectorizing. and trace-driven compilers designed to support parallel programming.

PARALLEL PROGRIKMMING MODELS

Z .-it programming model is a collection of program abstractions providing a program-
mer a simplified and transparent view of the computer liardware-“software system. Par-

allel programming models are specifically designed for multiprocessors. multicomputers. or vecton"STMD
computers. Five mo-tlcls are characterized below tor these computers that exploit parallelism with differcrit
execution paradigms.

10.1.1 Shared-Variable Model
ln all programming systems, we consider processors active resources and memory and I10 devices passive
resources. The basic computational units in a parallel program are pmcc.s'se.s' corresponding to operations
performed by related code segments. The granularity of a process may vary in different programming models
and applications.

Apro;__=rnrri is a collection of processes. Parallelism depends on how interprocess communication (IPC) is
implemented. Fundamental issues in parallel programming are centered around the specification, creation,
suspension, reactivation, migration, termination, and synchronization of concurrent processes residing in the
same or different processors.

By limiting the scope and access rights, the process address space may he shared or restricted. To ensure
orderly lPC'_. a mutual ertcliision property requires the exclusive access of a shared object by one process at a
time. We address these issues and explore their solutions below.
Stored-Hilri-able Communication Multiprocessor programming is based on the use of shared variables
in a common memory for IPC. As depicted in Fig. lD.la_, shared-variable LPC decmantls the use of shared
memory and mutual exclusion among multiple processes accessing the same set of variables.

414 ‘i Advanced Cmnptioerfitchitccture

P A S-hared variables
"°'°°'5S in a common memory

[at IPC using shared variah-is

Process D Process E
[Communication ehamoi]-mm’:“W 1

[ii] IPC using rnessago passing

Fig. 10.1 ‘lino basic mechanln'ns be lnrerprocess COfl'|l't‘Il.H'lilC31IlOi'i {iFC.'j.

Fine-grain MIMD parallelism is exploited in tightly coupled multiprocessors. lrlterprocessor
synchronization can he implemented either unconditionally or conditionally, depending on the mechanisms
used.

The main issues in using this model include protected access of critical sections, memory consistency,
atomicity of memory operations, fast synchronization, shared data structures, and fast data movement
tool-miques, to be studied in Section ltl.2.
Critical Section A oriticai section (CS) is a code segment accessing shared variables, which must be
executed by only one process at a time and which, once started, must be completed without interruption. In
other words, a CS operation is indivisible and satisfies the following requirements:

' Mrtrrtrzi cxcirtsion—At most one process executing the C S at a time.
* No deadlock in n-'oiring—No circular wait by two or more processes trying to enter the CS; at least one

will succeed.
- .'v'onpreemprion—No interrupt until completion, once entered the CS.
- Evertrrtoi t-ntr_v—A process attempting to enter its CS will cw.-cntually succeed.

Protected Access The main problem associated with the use of a CS is avoiding race conditions where
concurrent processes executing in different orders produce different results. The granularity of a CS affects
the performance. If the boundary of a CS is too large, it may limit parallelism due to excessive waiting by
competing processes.

When the CS is too small. it may add unnecessary code complexity or software overhead. The trick is to
shorten a heavy-duty CS or to use conditional CS5 to maintain a balanced perforrnance.

In Chapter ll, we will study shared variables in the fomi of locks for implementing mutual exctusion in
CS9. Binmjt and cotmting semaphores are used to implement CS3 and to avoid system deadlocks. Monitors
are suitable for structured programming.

Shared—variable progranirning requires special atomic operations for IPC, new language constructs for
ettpressing parallelism, compilation support for exploiting parallelism, and OS support forscheduling parallel
events and avoiding resource conflicts. Ofcourse, all ofthese depend on the memory consistency model used.

r....».rr......i.r................... . — 4,.
Shared-memory multiproccssors use shared variables for interprocessor communications. Multiprocessing

takes various forrrrs. depending on the number of users and the granularity of divided computations. Four
operational modes used in programming multiprocessor systems are specified below:

Nlulripmgmmming Traditionally, nwitrpmgrmnming is defined as multiple independent. programs running
on a single processor or on a multiprocessor by time-sharing use of the system resources. A multiprocessor
can be used in solving a single large problem or in running multiple programs across the processors.

A multiprogrammcd multiprocessor allows multiple programs to run concurrently through time-sharing
ofall the processors in the system. Multiple programs are interleaved in their CPU and U0 activities. When
a program enters HO mode, the processor switches to another program. Therefore, multiprogramming is not
restricted to a multiprocessor. Even on a single processor, multiprogramming is usually implemented.
Multiprocessing When multiprogramming is inrplemented at the process level on a multiprocessor, it is
callccl mu!rt'pmce.rsing. Two types of multiprocessing are specified below. If interprocessor communications
are handled at the instruction level, the multiprocessor operates in MIMD mode. It‘ interprocessor
communications are handled at the program, subroutine, or procedural level. the machine operates in MPMD
[multiple programs" over multiple data .'rtream.r} mode.

In other words, we define MIMI] multiprocessing with line-grain instruction-level parallelism. MPMD
multiprocessing exploits coarse-grain procedure-level parallelism. In both multiprocessing modes, shared
variables are used to achieve interprocessor commurricatiorr. This is quite different from the operations
implemented on a message-passing system.
Nlultitnrlring A single program can be partitioned into multiple interrelated tasks concunently executed
on a multiprocessor. This has been implemented as multitasking on Cray multiprocessors. Thus multitasking
provides the parallel execution oftwo or more parts of a single program. Ajob etliciently multitasked requires
less execution time. Multitasking is achieved with added codes in the original program in order to provide
proper linkage and synchronization of divided tasks.

Trade-olTs do exist between multitasking and not multitasking. Only when overhead is short should
multitasking be practiced. Sometimes. not all parts ofa program can he divided into parallel tasks. 'I"l:rerefore,
multitasking tradeoffs must he analyzed before implementation. Section l 1.2 will treat this issue.

Mulrirhreoding The traditional LFNIXIUS has a single-threaded kernel in which only one process can
receive OS kemel service at a time. In a multiprocessor as studied in Chapter 9, we want to extend the single
kemel to he multiliireaded. The purpose is to allow multiple threads of lightweight processes to share the
same address space and to he executed by the same or dilTerent processors simultaneously.

The concept of muIn'rhreadr'ng is an extension of the concepts of multitasking and multiprocessing. The
ptuposc is to exploit fine-grain parallelism in modem multiproccssors built with multiple-context processors
or superscalar processors with multiple-instruction issues. Each thread will use a separate program counter.
Resource conflicts are the major problem to be resolved in a multithreaded architecture.

The levels of sophistication in securing data coherence and in preserving event order increase from
rnonoprograrnming to multitasking, to multiprogramming, to multiprocessing, and to multithreading in that
order. Memory management and special protection mechanisms must be developed to ensure correctness and
data integrity in parallel thread operations.

FM Mtfiruw Hlllrbmyrorrns
476 i " Advnrrcod Covrrputrerfirreiritectture

Partitioning ond Replication The goal of parallel processing is to exploit parallelism as much as possible
with the lowest overhead. Pmgmm partitioning is a technique for decomposing a large program and data set
into many small pieces for parallel execution by multiple processors.

Program partitioning involves both programmers and the compiler. Parallelism detection by users is
often explicitly expressed with parallel language constructs. Program restructuring techniques can be
used to transform sequential programs into a parallel fomi more suitable for multiprocessors. Ideally, this
transformation should be carried out automatically by a compiler.

Pmgmm replication refers to duplication of the same program code for parallel execution on multiple
processors over different data sets. Partitioning is often practiced on a shared-memory multiprocessor system,
while replication is more suitable for distributed-memory message-passing multicomputers.

So far, only special program constructs, such as independent loops and independent scalar operations, have
been successfully paralleli;-red. Clustering of independent scalar operations into vector or VLIW instructions
is another approach toward this end.

Scheduling on-cl Synchronization Scheduling of divided program modules on parallel processors is much
more complicated than scheduling of sequential programs on a uniprocessor. Static scheduling is conducted
at post~compile time. Its advantage is low overhead but the shortcoming is a possible mismatch with the run-
time profile of each task and therefore potentially poor resource utilization.

Dynamic scheduling catches the run-time conditions. However, dynamic scheduling requires fast context
switching, preemption, and much more OS support. The advantages of dynamic scheduling include better
resource utilization at the expense of higher scheduling overhead. Static and dynamic methods can be jointly
used in a sophisticated multiprocessor system demanding higher efficiency.

ln a conventional UNIX system, inlerpmcessor communication (IPC) is conducted at the process level.
Processes can be created by any processor. All processes asynchronously accessing the shared data must
be protected so that only one is allowed to access the shared writable data at a time. This mutual exclusion
property is enforced with the use of locks, semaphores, and monitors to be described in Chapter ll.

At the control level, virtual program counters can be assigned to different processes or threads. Counting
semaphores or barrier counters can be used to indicate the completion of parallel branch activities. One can
also use atomic memory operations such as 'li2st&Sei and Fe.tclr&rl dd‘ to achieve synchronization. Software-
implemented synchronization may require longer overhead. Hardware barriers or combining networks can
be used to reduce the synchronization time.
Codie Coherence and Protection Besides maintaining data coherence in a memory hierarchy,
multiproccssors must assume data consistency betweenprivate caches and the shared memory. The multioache
coherence problem demands an invalidation or update after each write operation. These coherence control
operations require special bus or network protocols for implementation as noted in previous chapters. A
memory system is said to be coherent ifthe value retruned on a read instruction is always the value written
by the latest write instruction on the same memory location. The access order to the caches and to the main
memory makes a big difference in computational results.

The shared memory of a multiprocessor can be used in various consistency models as discussed in
Chapters 4 and 9. Sequential consistency demands that all memory accesses be strongly ordered on a global
basis. A processor cannot issue an access until the most recently shared writable memory access has been

s....i.n.1...n..i.,..,...,........i — .,,,
globally perforinecl. A weak consistency model enforces ordering and coherence at explicit synchronization
points only. Programming with the processor consistency or release consistency may be more restricted, but
memory pearfonnance is expected no improve.

10.1 .1 MessagePassing Model
Multicomputer programming is depicted in Fig. 1l].lb. Two processes D and E residing at different processor
nodes may communicate with each other by passing messages through a direct or indirect network. The
messages may be instructions, data, synchronimtion, orinterrupt signals,etc. The comrmmication delay caused
by message passing is much longer than that caused by accessing shared variables in a common memory.
Multicomputers are considered loosely coupled multiprocessors. Two mess-age—passing programming models
are introduced below. Techniques for message-passing programming are treated in Sections 11.4 and ll.5.
Message Passing interface (MP!) is discussed in Chapter 13.

Synchronous Menage Passing Since there is no shared memory, there is no need for mutual exclusion.
Synchronous message passing must synchronize the sender process and the receiver process in time and space,
just like a telephone call using circuit-switched lines. [n general, no buffers are used in the communication
channels. That is why synchronous communication can be blocked by channels being busy or in error since
only one message is allowed to be trsnsmittted via a channel at a time.

ln a synchronous paradigm, the passing of a message must synchronize t:l'te sending process and the
receiving process in time and space. Besides having a time connection, the sender and receiver must also be
linked by physical communication channels in space. A path ofchannels must be ready to enable the message
passing between them.

ln other words, the sender and receiver must be coupled in both time and space synchronously. If one
process is ready to connmmicate and the other is not, the one that is ready must be bloc-ked (or wait). In this
sense, synchronous connnunication has been also called a blocking communication scheme.
Asynchronous Message Passing Asynchronous communication does not require that message sending and
receiving be synchronized in time and space. Buffers are often used in channels, which results in nonbloclting
in message passing provided sufficiently large buffers are used or the network traffic is not saturated.

However, arbitrary communication delays may be experienced because the sender may not lcnow if and
when the message has been received until acknowledgment is received from the receiver. This scheme is like
a postal service using mailboxes {channel buffers] with no synchronization between senders and receivers.

Nonblocking can be achieved by asyncfironous message passing in which two processes do not have to be
synchronized either in time or in space. The sender is allowed to send a message without blocking, regardless
of whether the receiver is ready or not.

Asynchronous communication requires the use of buffets to hold the messages along the path of the
connecting channels. Since channel bufiers are finite, the sender will eventually be blocked. In c synchronous
multicomputer, buffers are not needed because only one message is allowed to pass through a channel at a
time.

The critical issue in programming this model is how to distribute or duplicate the program codes and data
sets over the processing nodes. Tradeoffs between computation time and communication overhead must be
considered.

4TB i‘ Adirotnced Covnpunerfirchitecture

As explained in Chapter 9, fine-grain concurrent programming with global naming was aimed at merging
the shared-variable and message-passing mechanisms for heterogeneous processing.
Distributing the Computation: Progmm replication and data distribution are used in multicompubers.
The proeessois in a multicomputer [or a NORMA machine) are loosely coupled in the sense that they do
not share memory. Message passing in a multicomputer is handled at the subprogram level rather than at the
instructional or fine-grain process level as in a tightly coupled multiprocessor. That is why explicit parallelism
is more attractive for multicomputers.

I»)
Cg Example 10.1 A concurrent program for distributed

computing on a multicomputer (justin
Rattner, lntel Scientific Computers, 1990)

The computation involved is the evaluation of iras the area under the ctmreflx} between U and I as shown in
Fig. 10.2. Using a rectangle rule, we write the integral in discrete form:

_| - I 4 ll‘ --

= - -it = + .1: 'o_{{ii¢ J;H+x: dx h;_y{x,i

4»
as :ll'=)7\fB-&UfldEI"1=f{X)=4J[l+l‘2}

3

2.5

Y2

1.5 _
11012-3U123'D123'D123D123

0.5

CI e e e x
0 0.1 c-.2 as 0.4 0.5 as 0.1 us as 1

Fig. 10.2 Domain clacornp-osltlon for concurrent programming on a muidcomputer with four pr\oceesca's

where ix = lfn is the panel width, x,- = Mi‘ — 0.5) are the rnidpoints, and n is the number of panels (rectangles)
to be computed.

Assume a four-node multicomputer with four processors labeled 0, 1, 2, and 3. The rectangle rule
decomposition is shown with n = 20 and it = 1110 = (1.05. Each procefisof node is nssigtled 110 compute the
areas of five rectangular panels. Therefore, the computational load ofall four nodes is balanced.

r.....i.n......l..l....,...,........r — 4,,
Host program Node program

inputinl p = numnodeslffi
sendt n,allnodes} me = rnynode(]
recv(Pi) recv{n')
output(Pi) h = 1.Dr'n

sum = U
Do i = me + 1, n, p

a=hxfi—&fl
sum = sum + fix]

End Do
pi = h >< sum
gop["+‘, Pi, host)

Each node exec-ules a separate copy ol‘ the node program. Several system calls are used to achieve message
passing between the host and the nodes. The host program semis the number of panels n as a message to all
the nodes, which Yficeive it accordingly in the node program. The commands mnnnodes and mynode specify
how big the system is and which node it is, respectively.

The software For the iPSC system offers a global summing operation gq|'J(’+', pi, host) which iteratively
pairs nodes that exchange their current partial sums. Each partial sum received from another node is added to
the sum at the receiving node, and the new sum is sent out in the next round of message exchange.

Eventually, all the nodes accumulate the global sum multiplied by the height -[pi = it >< sum) which will
be retumed to the host for printout. Not all pairs ol‘ node communications need to be carried out. Only
log; N rounds of message exchanges are required to compute the adder-tree operations, where N is the
I11-Jmber of nodes in the systcm.This point will be further elaborated in Chapter I3.

1D.1 .3 Dat:a-Parallel Model

With die lockstep operations in SIMD computers, flte data-parallel oode is easier to write and to debug
because parallelism is explicitly handled by hardware synchronization and Ilow control. Data-parallel
languages are modified directly fium standard serial programming languages. For example, Fortran 90 is
specially tailored for data parallelism. Thinking Machines‘ C‘ was specially designed for programming the
erstwhile Connection Machines.

Data-parallel programs require the use of pre-distributed data sets. Thus the choice of parallel data
structures makes a hig difference in data-parallel programming. Interconnected data structures are also
needed to facilitate data exchange operations. In summary, data-parallel programming emphasizes local
computations and data routing operations (such as permutation, replication, reduction, and parallel prefix). It
is applied to fine-grain problems using regular grids, stencils, and multidimensional signaltimage data sets.

Data parallelism can he implemented either on SIMD computers or on SPMD multicomputers, depending
on the grain size and operation mode adopted. In this section, we consider mainly parallel programming on
SIMD computers that emphasize fine-grain data parallelism under synchronous control. Data parallelism
often leads to a high degree of parallelism involving thousands of data operations concurrently. This is rather
difierent from control parallelism which ofi"ers a much lower degree of parallelism at the irtshuctiort level.

FM Mtfiruw Hlfltbmpwins
4B'll i " Adnorrced Covnputieriliicliitecture

Synchronization of data-parallel operations is done at compile time rathcr than at run time. Hardware
synchronization is enforced by the control unit to carry out the locltstep execution ofSl1\-'lD programs. We
address below instruction."data broadcast, masking, and data-routing operations separately. Languages,
compilers, and the conversion of SIMD programs to run on MIMD multicomputers are also discussed.
Dara Parallelism Ever since the introduction of the llliac IV computer, programming SIMD array
processors has been a challenge for computational scientists. The main difiiculty in using the llliac IV had
been to match the problem size with the fixed machine size. In other words, large arrays or matrices had to
be partitioned into 64-element segments before they could be effectively processed by the 64 processing
elements (PEs) in the llliac IV machine.

A latter SIMD computer, the Connection Machine CM-2, offered hit-slice fine-grain data parallelism using
16.384 PEs concurrently in a single-array configuration. This demanded a lower degree of array segmentation
and thus offered highcr flexibility in programming.

Synchronous SIMD programming differs from asynchronous MIMD programming in that all PEs in
an SIMD computer operate in a locltstep fashion, whereas all processors in an MIMD computer execute
difierent instructions asynchronously. As a result, SIMD computers do not have the mutual exclusion or
synchronization problems associated with multiproccssors or multicomputers.

Instead, inter-PE communications are directly controlled by hardware. Besides lo-ckstep in computing
operations among all PEs, inter-PE data communication is also carried out in lockstep. These synchronizaed
instruction executions and data-routing operations make SIMD computers rather efficient in exploring spatial
parallelism in large arrays, grids, or meshes of data.

ln an SIMD program, scalar instructions are directly executed by tl'|e control unit. Vector instructions
are broadcast to all processing elements. Vector operands are loaded into the PEs from local memories
simultaneously using a global address with ditferent offsets in local index registers. Vector stores can he
executed in a similar manner. Constant data can be broadcast to all PEs simultaneously.

Amasking pattern {binary vector} can be set under program control so that PEs can be enabled or disabled
dynamically in any instruction cycle. Masking instructions are directly supported by hardware. Data—routing
vector operations are supported by an inter-PE routing network. which is also under program control on a
dynamic basis.

Army Language Extension: Array extensions in data—para11el languages are represented by high-level
data types. We will specify Fortran 90 array notations in Section 10.2.2. The array syntax enables the removal
of some nested loops in the code and should reflect the architecture of the array processor.

Examples of array processing languages are {JFD For the llliac W, DAP Fortran for the AMT! Distributed
Array Processor, C‘ for the TMCIConnection Machine, and MP? for the MasPar family ofmassively parallel
computers.

An SIMD programming language should have a global address space, which obviates the need for explicit
data routing between PEs. The array extensions should have the ability to make the number of PEs a function
of the problem size rather than a function of the target machine.

Connection Machine C‘ language satisfied these requirements nicely. A Pascal-based language, .-lems. was
developed by RH. Perrott for problem-oriented SIMD programming. Acme offered hardware transparency,
application flexibility, and explicit control structures in both program structming and data typing operations.

t.....»..n.1..d.i,.t....,...,........t . — .,,,,
Compiler Support To support data-parallel programming, the array language expressions and their
optimizing compilers must be embedded in familiar standands such as Fortran T7, Fortran 90. and CI. The
idea is to unify the program execution model, facilitate precise control of massively parallel hardware, and
enable incremental migration to data-parallel execution.

Compiler-optimized control of SIMD machine hardware allows the programmer to drive the PE array
transparently. The compiler must separate the program into scalar and parallel components and integrate with
the US environment.

The compiler technology must allow array extensions to optimize data placement, minimize data
movement, and virtualize the dimensions of the PE array. The compiler generates data-parallel machine code
to perform operations on arrays.

Array sectioning allows a programmer to reference a section or a region of a multidimensional array.
Array sections are designated by specifying a start index, a bound, and a stride. Vector-valued subscripts arc
often used to construct arrays from arbitrary permutations of another array. These expressions are vectors
that map the desired elements into the target array. They facilitate the implementation of gather and scatter
operations on a vector of indices.

SIMD programs can in theory be recompiled for MIMD architecture. The idea is to develop a source-to-
source precompiler to convert, for example, from Connection Machine C"‘ programs to C programs running
on an nCUBE message-passing multicomputer in SPMD mode.

ln fact, SPMD programs are aspecial class ofSIMD programs which emphasize medium-grain parallelism
and synchronization at the subprogram level rather than at the instruction level. ln this sense, the data—parallcl
programming model applies to both synchronous SIMD and loosely coupled MIMD computers. Program
conversion between different machine architectures is needed to broaden software portability. The parallel
programming paradigm based on openMP standard is described in Chapter 13.

10.1 .4 Object-Oriented Model

If one considers special language features and their implications, additional models for parallel programming
can he introduced. Ari object-oriented programming model is characterized below.

In this model, o!Jjecr.s are dynamically created and manipulated. Processing is perfomted by sending and
receiving messages among objects. Concurrent programming models are built up from low-level objects such
as processes, queues, and semaphores into high—1evel objects like monitors and program modules.
Concurrent OOP The popularity ofohjecr-orientedpmgromming [OOP]| is attributed to three application
demands: First, there is increased use of interacting processes by individual users, such as the use ofmultiple
windows. Second. workstation networks have become a cost-effective mechanism for resource sharing and
distribnt-ed problem solving. Thind, multiprocessor technology in several variants has advanced to the point
of providing supcreomputing power at a fraction ofthe traditional cost.

As a matter of fact, program abstraction leads to program modularity and software reusability as is
commonly exprienced with OOP. Other areas that have encouraged the growtlt ofDOP'include the development
ofCAD {computer-aided design} tools and other sophisticated applications with graphics capabilities.

Objects are program entities which encapsulate data and operations into single computational units. It
turns out that concurrency is a natural consequence of the concept of objects. In fact, the concurrent use of
coroutines in conventional programming is very similar to the concurrent manipulation of objects in GDP.

4111 i‘ Advorrced Cmnpiunerfitchitecrurc

The development of concurrent object-on'ented pmgrarnming (CCIOP) provides an alternative model for
concunent computing on multiproccssors or on multicomputers. Various object models differ in the internal
behavior of objects and in how they interact with each other.

An Actor Model COOP must support patterns of reuse and classification, for example, through the use
of inheritance which allows all instances of a particular class to share the same property. An actor model
developed at MIT is presented as one framework for COOP.

Actors are self-contained, interactive, independent components of a computing system that communicate
by asynchronous message passing. In an actor model, message passing is attached with semantics. Basic
actor primitives include:

(ll j Create: Creating an actor from a bchaviordcscription and a sct ofparamctcrs.
{2} Send-Io: Sending a mcssagc to another actor.
-['3] Become: An actor replacing its own bchaviorby a ncw behavior.

State changes are specified by behavior replacement. The replacement mechanism allows one to aggregate
changes and to avoid unnecessary control-flow dependences. Concurrent computations are visualized in
learns of concurrent actor creations, simultaneous communication events, and behavior replacements. Each
message may cause an object (actor) to modify its state, create new objects, and send new messages.

Concurrency control structures represent particular patterns of message passing. The actor primitives
provide a low-level description of concturent systems. High-level constmcts are also needed for mising
the granularity of descriptions and for encapsulating faults. The actor model is particularly suitable for
multicomputer implementations.

Parallelism in COOP Three common pattems ofparallelism have been found in the practice of COOP.
First, pipeline concurremry involves the overlapped enumeration of successive solutions and concurrent
testing of the solutions as they emerge from an evaluation pipeline.

Second, divide-and-conquer concurrency involves the concurrent elaboration of difierent subprograms
and the combining of their solutions to produce a solution to the overall problem. In this case, there is
no interaction between the procedures solving the subproblems. These two patterns are illustrated by the
following examples taken from the paper by Agha (1990).

I/)
lg Example 10.2 Concurrencyin object-oriented programming

(GulAgha.,1990}

A prime-number generation pipeline is shown Fig. l(I.3a. Integer numbers are generated and successively
tested for divisib-ility by previously generated primes in a linear pipeline of primes. The circled ntunbers
represent those being generated.

A number enters the pipeline from the left end and is eliminated if it is divisible by the prime number
tested at a pipeline stage. All the numbers being forwarded to the right of a pipeline stage are those indivisible
by all the prime numbers nested on the left of that stage.

»...<..t..n.1..t.t.l....g..e.,.....i — 4,,
Figure It]-.3b shows the multiplication of a list of numbers [[0, 7, -2, 3, 4, ~11, -3] using a divide-

and-oonquer approach. The numbers are re-presented as leaves of a tree. The problem can be recursively
subdivided into subproblems of multiplying two sublists, each of which is concurrently evaluated and the
results multiplied at the upper node.

@ @ cs) <19 ® (55+)
T T T T Ii

-5.5440

-421] 1 32

-6 33-
4

TD

-2 3 -11 -3

11] 1"

{bl Divide-and-conquer concurrency

Flg.1ll.3 ‘Mo eon-currency types in oh-jeeraodenned p1*ogrammlng{Co|.irresy of G.Ag1a, Common. ACM.
September 1990]

A third pattern is called cooperative problem solving. A simple example is the -:lynamic path evaluation
(computational objects) of many physical bodies {objects} under the mutual influence of gravitational fields.
In this case, all objects must interact with each other; intemiediate results are stored in objects and shared by
passing messages between them. interested readers may refer to the book on actors by Agha (1986).

Today companies sueh as IBM and Cray produce supercomputers with thousands of processors inter-
connected over high performance networks. At the same time, object-oriented programming and the message-
passing model of inter-process communication have become established as standard paradigms of program
design and development. Consider, for example, IBM's powerful Blue Gene line of supercomputers; the
standard method of communication amongst node processes in these supercomputers is the Message-Passing
Interface {MPI}, customized for the architecture as needed. The Blue Gene line of supercomputers and it-'fPl
will both be discussed in Chapter 13.

10.1.5 Functional and Logic Models
Two language-oriented prograrnming models for parallel processing are described below. The first model is
based on using functional programming languages such as pure Lisp, SISAL, and Sn-and 83. The second model

FM Mcfiruw H'lllr'n.-rq|w|n1'
434 i " Advainced Covnputierilucltitecture

is based on logic programming languages such as Concurrent Prolog and Parfog. We reveal opportunities for
parallelism in these two models and discuss their potential in AI applications.
Functional Programming Model A ftmctional programming language emphasizes the functionality oi
a program and should not produce side effects after execution. There is no concept of storage, assignment,
and branching in fitnctional programs. In other words, the history of any computation performed prior to the
evaluation of a functional expression should be irrelevant to the meaning of the expression.

The lack of side effec-ts opens up much more opportunity for parallelism. Precedence restrictions occur
only as a result of function application. The evaluation of a function produces the same value regardless
of the order in which its a.rgu.rnents are evaluated. This implies that all argliments in a dynamically created
structure of a functional program can be evaluated in parallel. All single-assignment and clam-flow languages
are functional in nature. This implies that functional programming models can be easily applied to data-
driven multiprocessors. The functional model emphasizes fine-grain MIMD parallelism and is referentially
transparent.

The majority of parallel computers designed to support the functional model were oriented toward
Lisp, such as Multilisp developed at MIT. Other dataflow computers have been used to execute functional
programs, including SISAL used in the Manchester datafiow machine.

Logic Programming Model Based on predicate logic, logic pmgronuning is suitable for knowledge
processing dealing with large databases. This model adopts an implicit search strategy and supports parallelism
in the logic inference process. A question is answered if the matching facts are found in t|'te database. Two
facts match if their predicates and associated arguments are the same. The process of matching and uni{i—
cation can be parallelized under certain conditions. Clauses in logic programming can be transformed into
dataflow graphs. Parallel tmification has been attempted on some dataflow computers built in Japan.

Concurrent Pmlog, developed by Shapiro {I986}, and Pnrlog, introduced by Clark (1931), are two
parallel logic programming languages. Both languages can implement relational language features such as
AND-parallel execution of conjunctive goals, IPC by shared variables, and DR-parallel reduction.

In Purlog, the resolution tree has one chain at AND levels, and OR levels are partially or fiilly generated.
ln Corrcurrem‘ Pmlog, the search strategy follows multiple paths or depth first. Stream parallelism is also
possible in these logic programming systems.

Both functional and logic programming models have been used in artificial intelligence applications
where parallel processing is very much in demand. Japan's Fi,fi'h-Generation Computing System (FGCS)
project attempted to develop parallel logic systems for problem solving, machine inference, and intclligcnt
human-machine interfacing.

In many ways, the FGCS project was a marriage of parallel processing hardware and AI software. The
Parallel Inference Machine (PIM-I} in this project was designed to perform ID million logic inferences
per second (MLIPS}. However, more recent Al applications tend to be based on other techniques, such as
Bayesian inference.

PARALLEL LANGUAGES AND COMPILERS

_ The environment for parallel computers is much more demanding than that for sequential
computers. A programming environment is a collection of software tools and system software

»...<.t.l.-.1...a..t....,..,.,,.......t — .,,,
support. Users should not have to spend a lot of time programming hardware details; they should focus
instead on program parallelism using high-level abstractions. To break this hardwareisoftware barrier. we
need a parallel software environment which provides better tools for users to implement parallelism and to
debug programs.

10.2.1 Language Features for Parallelism
Chang and Smith (1990) classified the language features for parallel programming into six categories
according to functionality. These features are idealized for general-purpose applications. In practice, the
real languages developed or accepted by the user community might have some or no features in some of
the categories. Some of the features are identified with existing languagefcompiler development. The listed
features set guidelines for developing a user-friendly programming environment.

Optimization Feature: These features are used for prograrn restructuring and compilation directives in
convening sequentially coded programs into parallel forms. ‘Ilse purpose is to match the software parallelism
with the hardware parallelism in the target machine.

- Automated parallelizer—E1amples are: Express C automated parallelizer and the Alliant FX Fortran
compiler.

~ Semiautomated par-a11e|izer—Nccds compiler directives or programmer's interaction, such as DINO.
' Interactive restructure support—Static analyzer, run-time statistics, dataflow graph, and code translator

for restructuring Fortran code, such as the Mllvl Dizer from Pacific Sierra.

Availability Feature: These are features that enhance the user-friendliness, make the language portable to
a large class of parallel computers, and expand the applicability of sofiware libraries.

* Scalabi_lity—Thc language is scalable to thc number of processors available and indcpcndcnt of
hardware topology.

' Compatibility—Thc language is compatible with an cstablishcd soqucntial language.
' Pbr'lability—Thc language is portable to shared-memory multiproccssors, message-passing

multicomputers, or both.

Synchronization ICommunication Feature: Listed below are desirable language features for
synchronization or for communication purposes:

- Single-assignment languages
' Shared variables (locks) for IPC
* Logically shared memory such as the tuple space in Linda
* Sendfreceive for message passing
' Rendezvous in Ada
~ Remote procedure call
* Datafiow languages such as Id
* Barriers. mailbox, semaphores, monitors

Control of Parallelism Listed below are feattues involving control constructs for specifying parallelism
in various forms:

' Coarse. medium. or fine grain

435 i‘ - Adrnrrced Compurnerfiirhitecture

- Explicit versus implicit parallelism
' Global parallelism in the entire program
- Loop parallelism in iterations
' Task-split parallelism
I Shared task queue
I Divide-and-conquer paradigm
- Shared abstract data types
- Task dependency specification

Dara F'enI'a.lle.li:m Feature: Data parallelism is used to specify how data are accessed and distributed in
either SIMD or MIMI) computers.

- Run-time automatic dccomposition—Data are automatically distributed vvitl1 no user intervention, as
in Express.

* Mapping specificat:ion—Provides s facility for users to speciiy cornmunication patterns or how data
and processes are mapped onto the hardware, as in DINO.

' Virtual processor support - The compiler maps the virtual processors dynamically or statically onto
the physical processors, as in PISCES 2 and DINO.

- Direct access to shared data—S|1a.rcd data can be directly acecsscd without monitor control, as in
Linda.

~ SP!»-l.D (single program multiple data} snpport—SPl\-'1D prograrnming, as in D]l'~lO and Hypertasking.

Proeu: Nlrlnagement Feature: These features are needed to support the efficient creation of parallel
processes, implcmcntation of mnltithreading or multitasking, program partitioning and replication, and
dynamic load balancing at run lime.

~ Dynamic process creation at run time
~ Lighnveight processes (threads)—Compared to UNIX (heavyweight) processes
- Replicated workers—Same program on every no-de with different data [SPMD mode)
' Partitioned networlrs—Each processor nodemight have more than one process and all processor nodes

might run difiisrent process-es
- Automatic load balaneing—The workload is dynamically migrated among busy and idle notlcs to

achieve the same amount of work at various processor nodes
The above language features cannot he implemented without compiler support, operating system

assistance, and integration with an existing environment. Software assets based on conventional languages
form the basis for building an cfficicnt parallel programming environment.

The optimization icatures emphasize code parallclization and vcctorization at compile time. The
availability features widen the application domains and make the languages 1'naehine—independent.

The synchronization features must be supported by efiicient hardware and software rnechanisms for
their implementation. The control features often depend on tradeofis among grain sire, memory demand.
and communication and scheduling overhead. Data parallelism exploits fine-grain computations on SIMD
machines and medium-grain computations on MIMD computers.

.».....»..i.-......t...t...,...,........i — ,,,,
The process management features are closely tied to the US functions provided. Therefore, the languages,

compilers, and OS must he developedjointly in an integrated fashion.

10.2.2 Parallel Language Constnlcts
Special language constructs and data array expressions are presented below for exploiting parallelism in
programs. We first specify Fortran 90 array notations. Then we describe commonly used parallel constructs
for program flow control.
Fortran 90 Army Neitatlnm A multidimensional data array is represented by an array name indexed by
a sequence of subscript triplets, one for each dimension. Triplets for different dimensions are separated by
commas. Examples are:

(:1 I ("2 : e3
cl I 1'2

e1: =1 :23 (lll!)
0| I =l

1'1
I

where each e,- is an arithmetic expression that must produce a scalar integer value. The first expression e, is a
lower bound, the second E2 an upper bound, and the third e3 an increment Lrtride}. For example, B(l : 4 : 3,
6 : 3 : 2,3) represents four elements B(l, 6, 3], B{4 ,6, El), Bil, ll, 3), and B[4, 8, 3} of a three-dimensional array.

When the third expression in a triplet is missing, a unit stride is assumed. The " notation in the second
expression indicates all elements in that dimension starting from cl, or the entire dimension if e, is also
omitted. When both 02 and e3 are omitted, the c| alone represents a single element in that dimension. For
example, A{.5) represents the liflh element in the array A(3 : 7 : 2). This notation allows us to select array
sections or particular array elements.

Array assignments are permitted under the following constraints: The array expression on the right must
have the same shape and the same number of elements as the array on the left. For example, the assignment
A(2 : 4, 5 : El) =A{3 : 5, I : 4) is valid, but the assignment .4{l : 4, I : 3] =1-lll :2, I : 6) is not valid, even tempt
each side has 12 elements. When a scalar is assigned to an array, the value of the scalar is assigned to every
element ofthe array. For instance, the statement B(3 : 4, 5) = 0 sets BQ3, S) and Bf,-4, 5) to G.

Parallel Flaw Control The conventional Fortran Do loop declares that all scalar instructions within the
(Du, Endrlo] pair are executed sequentially. and so are the successive iterations. To declare parallel activities,
we use die (Dnall, Endall] pair. All iterations in the Deal] loop are totally independent of each other. This
implies that they can be executed in parallel if there are sufficient processors to handle different iterations.
However. the computations within each iteration are still executed serially in program order.

‘When the successive iterations of a loop depend on each other, we use the (Dnacross, Endacrnss} pair
to declare parallelism with loop-carried dependences. Synchronizalions must be performed between the
iterations that depend on each other. For example, dependence along the J-dimension exists in the following
program. We use Doacross to declare parallelism along the I-dimension, but synchronization between
iterations is required. The (ForalL Emtall) and (Panto, Parend) commands can be interpreted either as a
Doall loop or as a Doacross loop.

4B5 i‘ Advorrced Cnvnptunerfirrhiteczure

Duacrnss I = 2, N
[In .l = 2, N

S]: A(I,J)=(r'-"t(l,[_J— li])—A(l, J + 1',t)l'2
Enddo

Endacmss

Another program construct is the {Cube-_gi|1, Coend) pair. All computations specified within the block
could be executed in parallel. But parallel processes may be created with a slight time difference in real
impletnentations. This is quite different from the semantics of the Doall loop or Doacross loop structures.
Syrtchronizations among concurrent processes created within the pair are implied. Formally, the command

Cube-gin

Pl
P2

P»
Coend

causes processes P], P1, .. . , P, to start simultaneously and to proceed concurrently until they have all ended.
The command (Pa rbe-gin, Faren-d} has equivalent meaning.

Finally, we introduce the Forlt and Join commands in the following example. During the execution of a
process P, we can use a Fork Q command to spawn a new process Q:

Process P Process Q

Fork Q E
E End

Join Q

The Join Q command recombines the two processes into one process. Execution of Q is initialized when
the Fnrk Q statement in P is executed. Programs P and Q are executed concurrently until either P executes the
Join Q statement or Q terminates. Whichever one finishes first must wait for the other to complete execution,
before they can he rejoined.

111 it UNIX or LINUX environment, flie Fork-Join statements provide a direct mechanism for dynamic
process creation including multiple activations of the same process. The Cnbe-gin-Cttend statements provide
a structured single-entry, single-exit control command which is not as dynamic as the Furl:-Jain. The
(Farhegin, Farend) command is equivalent to the (Cube-gin, Coend] command.

10.1.3 Optimizing Compilers for Parallelism
Because high-level languages are used almost exclusively to write programs today, compilers have become a
necessity in modem computers. The role of a compiler is to remove the burden of program optimization and
code generation from the programmer. A parallelizing compiler consists of the following three major phases:
flow analysts, optimizations, and code generation, as depicted in Fig. li).4.

nrwrr=rmrrd¢s.r.o1-gwge=.ma - —

Sup-arscalar
processor:
scheduling,

Soil-no Coda

Flew
analysts

Program
op-tlmlzalons

Para llal
coda generation

Data dependence,
Control dopondonco,
Rouse analysis

Mlactorlzatlon,
Parallotlzatlons,
Locality, Pipolln lng

Granutarlty,
Degree of parallelism
Co-do scheduling

Sha'ne|-ntomory
rnultlprocoesor:
portltloring,

multicomputer:
cl lstr lb-utoo data

Distributed-memory

and computations,register allocation, synchronization,
contain switching, load lrralanclng, message-paslng_
ate. etc. etc.

Fig. 111.4 Cor-nplarlort phases in pararltni code generation

Flow Analysis This phase reveals t11e program flow patterns in order to determine data and control
dependences in the source code. We have discussed data dependence relations among scalar-type instructions
in previous chapters. Scalar dependence analysis is extended below to structured data arrays or manices.
Depending on the machine structure, the granularities of parallelism to be exploited are quite different. Thus
the l-‘tow analysis is conducted at different execution levels on different parallel computers.

Generally speaking, instruction-level parallelism is exploited in superscalar or "r-‘LS1 processors; loop
level in Sllvlll, vector, or systolic computers; and task level in multiprocessors. multicomputers, or a network
of workstations. Of course, exceptions do exist. For example. fine-grain parallelism can in theory be pushed
down to multicomputers with a globally shared address space. The flow analysis must also reveal code.-‘data
reuse and memory-access patterns.
Pretgmm Optimization: This refers to the rransfomiation of user programs in order to explore the
hardivare capabilities as much as possible. Transformation can be conducted at thc loop level, locality level,
or prefetching level with the ultimate goal ofreaching global optimization. The optimization often transforms
a code into an Equivalent but “better” form in the same representation language. These transfonnations should
be machine-independent.

In reality, most transfomtations are constrained by the machine architecture. This is the main reason why
many such compilers are machine-dependent. At the least, we vvantto design a compiler which can run on most
machines with only minor modifications. One can also conduct curtain transformations preceding the global

FM Mtfiruw Hffltitmpwtnv
4911 T " Aduertced Covnpunerfitrhiteczure

optimization. This may require a source-to-source optimization {sometimes canied out by a pracompiicr),
which transforms the program from one high-level language to another before using a dedicated compiler for
the second language on a target machine.

The ultimate goal of program optimization is to maximize the speed of code execution. T'his involves the
minimization of code length and of memory accesses and the exploitation of parallelism in programs. The
optimization techniques include vectorizration using pipelined hardware and parallelization using multiple
processors simultaneously. The compiler should be designed to reduce the nmning time with minimum
resource binding. Other optimizations demand the expansion of routines or procedure integration with
inlining. Both local and global optimizations are needed in most programs. Sometimes thc optimization
should be conducted at the algorithmic level and must involve the programmer.

Machine-dependent transformations are meant to achieve more efficient allocation of machine resources,
such as processors, memory, registers, and functional units. Replacement of complex operations by cheaper
ones is often practiced. Other o_ptimizations include elimination of unnecessary branches or common
expressions. Instruction scheduling can he used to eliminate pipeline or memory delays in executing
consecutive instructions.
Fhrallel C/ode Gurerertion Code generation usually involves transformation from one representation to
another, called an Inrermediatejbrm. A code model must he chosen as an intermediate form. Parallel code
is even more demanding because parallel constructs must be included. Code generation is closely tied to the
instruction scheduling policies used. Basic blocks linl-ted by control-flow commands are often optimized to
encourage a high degree of parallelism. Special data stnrctures are needed to represent instruction blocks.

Parallel code generation is very different for diiTerent computer classes. For example, a superscalar
processor may be software-scheduled or hardware-scheduled. How to optimize the register allocation on a
RISC or superscalar processor, how to reduce the synchronization overhead when codes are partitioned for
multiprocessor execution, and how to implement message-passing commands when codestdata ane distributed
(or replicated) on a multicomputer are added difficulties in parallel code generation. Compiler directives can
be used to help generate parallel code when automated code generation cannot he implemented easily.

Two well-known exploratory optimizing compilers were developed over mid-l ‘J80: one was Parafrase at
the University of Illinois, and the other was the PFC (Parallel Fortran Converter] at Rice University. These
systems are briefly introduced bclow.

Porafmse and?-rrrafmee I This system, developed by David Kuck and coworkers at lllinoi s, is a source-to-
source program restructurer (or compiler preprocessor) which transforms sequential Fortran 77 programs into
forms suitable for vcctorization or parallclization. Parafrase contains more than 10!) program transformations
which a.re encoded as prtsses. Aposs list is used to identify the particular sequence of transformations needed
for restructuring a given sequential program. The output of Parafrase is the converted concurrent program.

Different programs use different pass list and thus go through different sequences of transformations. The
pass lists can be optimized for specific machine architectures and specific program constructs. Parafrase 2
was developed for handling programs written in C and Pascal, in addition to convening Fortran codes.
Information on Parafrase can he found in [Kuck84] and on Parafrase 2 in [PolychronopoulosB9].

Parafrase is retargetable to produce code for different classes of parallelfvector computers. The program
transformed by Farafiase still needs a conventional optimizing compiler to produce the object code for the
target machine. The Parafrase technology was later transferred to implement the RAP vec-torizer by Kuck
and Associates, Inc.

t.....»..n.1..t.t.t....g....,.....,..t — .,,,,
The PFC and PamScope Ken Kennedy and his associates at Rice University developed PFC as an
automatic source-to-source vectorizer. It translated Fortran T7 code into Fortran 9|] code. A categorized
dependence testing scheme was developed in PFC for revealing opportunities for loop vectorization. The
PFC package was also extended to PFC+ for parallel code generation on shared-memory multiprocessors.
PFC and PFC l also supported the ParaScope pnogramming enviromnent.

PFC [Allen and Kennedy, I934] perfonned syntax analysis, including the following four steps:

(I) lnterprocedural flow analysis using call graphs.
(2) Standard transformations such as Do-loop normalization, subscript categorization, deletion of dead

codcs, ctc.
(3) Dependence analysis which applied the separability, GCD, and Banerjee tests jointly.
(4) Vector code generation. PFC+ ftuther implemented a parallel code generation algorithm {Callahan

ct al, 1938).

Commercial Compiler: Optimizing compilers have also been developed in a number of commercial
parallelfvector computers, including the Alliant FXI F Fortran compiler, the Convex parsllelizinglvec-torizing
compiler, the Cray CFT compiler, the IBM vectorizing Fortran compiler, the VAST vectorizcr by Pacific
Sierria, lnc., and lntel iPSC-VX compiler. [BM also developed a PTRAN (Parallel Fortran) system based on
control dependence with interproccdural analysis.

DEPENDENCE ANALYSIS OF DATAARRAYS

— Dependence testing of successive iterations in multidimensional data arrays is described in
this section. This provides a theoretical foundation for the development of vcctorizing or

parallelizing compilers.

10.3.1 lteration Space and Dependencerfitialysis
Flow dependence, antidependence, and output dependence were defined for scalar data in Section 2.1.2. They
can be summarized by the existence ofdynamic references ofR, and R1, ifand only ifeither R, or R1 is a write
operation, R] executes before R3, or R] and R3 both write the same variable. ‘Nhen the referenced object is a
data array indexed by a multidimensional subscript, the dependence becomes very difficult to determine at
compile time. since subscript values are not in general available.

Precise and efficient dependence tests are essential to the effectiveness of a parallelizing compiler. The
process of computing all the data dependences in a program is called dependence anaiysis. The testing
scheme presented below is based on the work of Goff, Kennedy, and Tseng (1991). These dependence tests
were implemented at Rice University in PFC with the parallel Paraficope progranuning environment.
Dependence Testing Calculating data dependence for an'ays is complicated by the fact that two array
references may not access the same memory location. Dependence testing is the method used to determine
whether dependences exist between two subscripted references to the same an'ay in a loop nest. For the
purpose of this explication, we ignore any control flow except for the loops themselves. Suppose we wish
to test whether or not there exists a dependence from statement 5', to S; in the following model loop nest of
rt levels. represented by :1 intcgcr indiccs r',, F2, .. ., i,,.

FM Mtfiruw H'IH:'nm;|w|n1'
491 i " Admtnced Cmnpunerfiichiteczure

DI] I-| = L], LI]

Du ll = L1! LT:

Do t,,=1.,,, 1.-',,
S]: 1‘\l:ji_(i-|, ..., I-M), ...,j,;1.{t|, ..., I-FD =

51: "'=.|‘\.(‘t';'](t-1,, ..., I-H), ...,gm{f-1, ...,?-"D

Enddn

Eltddu
Enddu

Iteration Space The .-1-dimensional discrete Canesian space for !‘l—|2lCCp loops is called an iteration space.
The iteration is represented as coordinates in the iteration space. The foiiowing example clarifies the concept
oftexicagraphic order for the successive iterations in :1 loop nest.

Ir)
Kg Example 10.3 Lexicographic order for sequential execution

of successive iterations in a loop structure
(Monica Lam,1992)

COtI5iClBT a hvo-dimensional iteration space (Fig. I D5} representing the following two-level loop nest in imit-
incrcment steps:

Do i= 0,5
Du j = i, '1'

fifli)= ~-
Enddo

Endd-n

I5
|~,;.$--§_-§__|.-_J__-|.__J ta‘-—l--l--I--|--t--1 -~*--r-+-1-—+-L-J wt-+-+-+-+-4-1 I31‘-I-*0--I-l--0--1 --L-+-+-+-+-+-1

‘if

'-E";

5 -- -- --- -- -- -- -- --
4 -- -- --- -- - -- -- --
2. -- -- -- - -- -- -- toe
2 —- —- - —- - -— —- --
1 -- -- -- - -- -- --

Fig. 10.5 A two-dimensional it:era1:iort space for the loop nest: in Ex:-.rnpie 10.3

...............................,...... — .,,,
The following sequential order of iteration is a lexicographic order".

(0, 0). to. 1), (0, 2), (0. 3), (0, 4), (0, 5). to, s), (0. 1}
(1.1). (1. 1). (1, 3). (1, 4). (1,5). (1.6). (1. 7)

(2, 2). (2, 3). (2, 4). (2. 5). (2, 6). (2, 1)
(3. 3). (3. 4). (3. 5). (3. 6). (3. 1')

(4. 4). (4. 5). (4. 6). (4. 7)
(5, 5). (5, 6). (5, 7)

The lexicographic order is important to performing matrix transfonnation, which can be applied for loop
optimization. We will apply lexicographic orders for loop parallelizatiotl in Section 10.5.

Dependence Equations Let rr and B bc vectors of n integer indices within tl1e ranges of the upper and
lower bounds of the n loops. There is a dependence from S, to S2 if and only if there exist rr and ,8 such that
tr is lexicographically less than or equal to ,3 and the following system of dependence equation.r is satisfied:

fl-(t2')= g,-[)3] Vi, l 5 FE m (10.2)

Otlierwise the two references are independent.
The dependence equations in Eq. 10.2 are linear expressions of the loop index variables. Dependence

testing is thus equivalent to the problem of linear Diophantine equations, which is an NP-complete problem.
Exact tests are dependence tests that will detect dependences if and only if they exist. In practice, exact tests
are not performed due to the excessive overhead involved. Only approximate solutions {which are eflicient
to implement} are sought.

Parallelizing compilers have traditionally relied on two dependence tests to detect data dependences
between pairs of array references: Banerg'ee’s inequalities tlianeijec, 1988) and GED tests (Wolfe, 1989).
However, these tests are usually more general than necessary.

ln Section 10.3.2, we present a practical testing algorithm develop-ed by Rice University researchers led by
Ken Kennedy. The best algorithm is based on partitioning the subscripts in a pair of array references. A suite
of simple tests is developed to reduce the cost of performing dependence analysis, making it more practical
for most compilers.
Distance and Direction Hector: Suppose there exists a data dependence for or = (tn, :13, rr,,) and ,5 =
(J31, B3, ..., fin). Then the distance vector D = (D1, ..., DR] is defined as B — 0!. The d|'n=.'ctr'on vector d = (J1,
d1, .. ., d,,} of the dependence is defined by

l < ifn, < ,3,-
d,- = { = iftl‘, = ,3, {ll).3_]

lb ifn,->,B,

The elements are always displayed in order from left to right and from the outermost to the innermost loop
in the nest.

For example, consider the following loop nest:
Dn t= .-1,, U1

Doj = L1, U2

fill i‘ Advorrced Cmnptuterfiirhitecture

Do It = L3, U3
A[_i+ l_,j,k— l}=A{r',j, I:)+ C

Enddn
Enddo

End-do

The distance and direction vectors for the dependence between iterations along three dilnensions of the
anay A are ('1,0, —l} and [_<, = , 1>}, respectively. Since several different values of cr and ,6 may satisfy the
dependence equations, a set of distance and direction vectors may be needed to completely describe the
dependence.

Direction vectors are lisefill for calculating the level of loop-canted dependences. Adependence is carried
by the outermost loop for which the direction in the direction vector is not “="'. For instance, the direction
vector (<, = , >1 for the dependence above shows the dependence is carried on the i-loop.

Carried dependences are important because they determine which loops cannot be executed in parallel
without synchronization. Direction vectors are also useful in determining whetlier loop interchange is legal
and profitable. Distance vectors are more precise versions of direction vectors that specify the actual distance
in loop iterations between two accesses to the same memory location. ‘They may be used to guide opti-
mizations to exploit parallelism or the memory hierarchy.

10.3.2 Subscript Separability an-rl Partitioning
Dependence testing thus has two goals. It tries to disprove the dependence between pairs of subscripted
references to the same array variable. If dependences exist, it tries to characterize them in some manner,
usually as a minimum complete set of distance and direction vectors. Dependence testing must also be
cortscrvntive and assume the existence ofony dependence it cannot dilspmve. Otherwise the validity of any
optimizations based on dependence information is not guaranteed.
Subscript Categories The term .snbscrr'pt refers to one of the subscripted positions in a pair of anay
references, i.e. the pair of subscripts in some dimension of the two array references. When testing for
dependence, we classify subscript positions by the total number of distinct loop indices they contain.

A subscript is said to be zero index variable (ZlV] if the subscript position contains no index in either
reference. A subscript is said to be single indetr voriabie (SW) if only one index occurs in that position. Any
subscript with more than one index is said to be multiple indct variable (MW).

I»)
Cg Example 10.4 Subscript types in a loop computation
Consider the following loop nest of three levels, identified by indices v',j, and k.

Do r, = Ll, o‘,
Do J: =12, 1.-'2

Do It = L," L;

Misnt.i.,,.g..@s,,.,s — 4,,
A[5, r'— 1,j}=A(N, i, k) + C

Enddn
Enddn

Enddn

When testing for a flow dependence between the two references to A in the code, the first subscript is ZIV
because 5 and N are both. constants, the second is SIV because only index i appears in this dimension, and the
third is MW because both indices] and k appear in the third dimension. For simplicity, we have ignored the
output dependence in this example.

Subscript Separnbility When testing multidimensional arrays, we say that a subscript position is separable
if its indices do not occur in t11e other subscripts. If two different subscripts contain the same index, we say
they are coupled. Separability is important because multidimensional array references can cause imprecision
in dependence testing.

if all the subscripts are separable, we may compute the direction vector for each subscript independently
and merge the direction vectors on a positional basis with fitll precision. The following examples clarify these
concepts.

I/)
[<3 Example 10.5 From separability to direction vector and

distance vector
Consider the following loop nest:

Du i| = L], [F1

D" I = L2, U2
Du .t= 1.3, L3

At?-.fJl = Atfli, kl + '3
Enddn

Enddn
En-dd-n

The fust subscript is separable because index. i does not appear in the other dimensions, but the second and
third are coupled because they both contain the index]. ZIV subscripts are separable because they contain
no indices.

Consider another loop nest:

D0 q= ,:,, U,
Du ;= L2, U2

Do k = .r.,,, L-",,
A(r'+ l,j,k 1)=A{i,j, k}+ C

End-do
End-do

Enddn

495 ‘i Advanced Cornprreerfirchitecture

The leftmost direction in the direction vector is determined by testing the first subscript, the middle
direction by testing the second subscript, and t11c rightmost direction by testing the third subscript.

The resulting direction vector (-1 , = , >] is precise. The same approach applied to distances allows us to
calculate the exact distance vector (l , 0, 1}.

Subscript Pkrrtirioning We need to classify all the subscripts in a pair of array references as separable
or as part of some minimal coupled group. A coupled group is minrlrrrai if it cannot be partitioned into two
nonempty subgroups with distinct sets of indices. Once a partition is achieved, each separable subscript and
each coupled group has completely disjoint sets of indices.

Each partition may then be tested in isolation and the resulting distance or direction vectors merged
without any loss of precision. Since each variable and coupled subscript group contains a unique subset of
indices, a merge may be fit/ought of as a Cartesian product.

ln the following loop nest, tl'|e first subscript yields the direction vector (<1) for 1:he i-loop. The second
subscript yields the direction vector [=10 for the _,r'-loop. The resulting Cartesian product is the single vector
t<, =3-

Dn r= L|,U1
DU = L2, Ll:

A(r'- l.j}=A(i,_;]+ C
Enddrr

Enddn

Consider another loop nest where the first subscript yields the direction vector {<2} for the i-loop.
D0 i = L1, U]

no j =r.,, U2
an-+1, 5} = no, N] + c

Enddrr
Enddu

Since j does not appear in any subscript, we must assume the full set of direction vectors for the j-loop:
{(<), (=), {>1}. Thus a merge yields the following set ofdirection vectors for both dimensions:

{(1 "ii. (‘E =1. (‘H I-‘ll

10.3.3 Categorized Depenrlenr:eTest:s
The goal of dependence testing is to construct the complete set of distance and direction vectors representing
potential dependences between an arbitrary pair of subscripted referenom to the same array variable. Since
distance vectors may be treated as precise direction vectors. we will simply refer to direction vectors.
Tire T-irstirrgrlllgioritlrm The following procedure is for dependence testing based on a partitioning approach,
which can isolate unrelated indices and localize the computation involved and thus is easier to implernenl.

{ll Partition the subscripts into separable and minimal coupled groups using the following algorithm:

MrMt.r.,,.g..q.,,.,...i — 4,,
Subscript I"artitinningAlgnrithm (Gofl, Kennedy, and Tseng, 1991)

Input: A pairofm-dimensional array references
containing subscripts S| ...Sm enclosed in n loops
with indices I, ...f,,.

'Dutput:A set ofpartitions Pl . . . P"-, n’ S n, each
containing a separable or minimal couplod group.

Fnreachi, 1 Eién Do
Pr <— l5.-i

Endfor
For each index I,-, l 5 ii n Du

it ~t— inane}
For each remaining partition 11- Do

if3S| E such that SI contains ipthcn
ifir= inrme} then

Ir <—_f
else

P,-t. <— Pk u E’,-
Diseard P_‘_,-

Endit"
En-dif

Endfor
Endfnr

(2) Label each subscript as ZI\-K SIY, or I'vE[\{
(3) For each separable subscript, apply tl1e appropriate single subscript test (ZIUI, SIY, MIV) based on

the complexity ofthe subscript. This will produce independence or direction vectors for the indices
occurring in that subscript.

(4) For each coupled group, apply a multiple subscript test to produce a set of direction vectors for the
indices occurring within that group.

{'5} If any test yields independence, no dependences exist.
{st Otherwise merge all the direction vectors computed in the previous steps imo a single set of direc1:ion

vectors for the two references.

Tim Categories Dependence test results for ZN subscripts are treated specially. If a ?.I'v‘ subscript proves
irrdependeuce, the dependence test algorithm halts immediately. lf independence is not proved, the ZIV test
does not produce direction vectors, and so no merge is necessary. For the implementation of the above
algorithm, we have specified how to perform the single subscript tests (?.W__ SIY, MW) separately. We
consider below the trivial ease ot'ZIV first, then SIY, and finally MW which is more involved.

We first consider dependence tests for single separable subscripts. All tests presented assume that the
subscript being tested contains expressions that are linear in the loop index variables. A subscript expression
is linear if it has the fonn a| i| + 113?; + ...+ 11,, in + e, where ii is thc index for the loop at nesting level Ir;
all oh 15 it 5 rr, are integer constants; and c is an expression possibly containing loop-invariant. symbolic
expressions.

fill ‘i Advanced Cmnpttoernrchitecrure

The 2'tl|"‘l'e:r The ZIV test is a dependence test performed on two loop-invariant expressions. If the system
determines that the two expressions cannot be equal, it has proved independence. Otherwise the subscript
does not contribute any direction vectors and may be ignored. The ZW test can be easily extended for
symbolic expressions. Simply fonn the expression representing the ditferenoe between the two subscript
expressions. If the difference simplifies to a nonzero constant, we have proved independence.

The SI? ‘first An SW subscript for index i is said to be stnmg if it has the form (oi + c|, m" + C2), i.e. if it
is Iincar and the coefticicnts of the two occurrences of the index i are constant and equal. For strong SW
subscripts, define the dependence distance as

d=r’-r= (10.4)
I

A dependence exists if and only ifd is an integer and la‘ l E U — L, where U and L are the loop upper and
lower bounds. For dependences that do exist, the dependence direction is given by

I< Hd>O
Direction= i = ifd = -[1 (I05)

l> fidcfl

The strong SIV test is thus an exact test that can be implemented very efliciently in a few operations. A
bounded iteration space is shown in Fig. ltlfia. The case ofa strong SIV test is shown in Fig. 10.-Eb.

Another advantage ofthe strong SW test is that it can be easily extended to handle loop-invariant symbolic
expressions. The trick is to first evaluate the dependence distance d symbolically. ll‘ the result is a constant,
then the test may be performed as above. Otherwise calculate the difference between the loop bounds and
compare the result with d symbolically.

A weak SW’ subscript has the form (tn i + cl, {I2 i’ + C2), where the co-efficients of the two oeeturenees
of index i have different constant values. As stated previously, weak SIV subscripts may be solved using
the single-index exact test. However. we also find it helpful to view the problem geometrically, where the
dependence equation

fll i+ cl =rI2i" + c-2

describes a line in the two-dimensional plane with i and i’ as axes.
The weak SW test can then be fomiulated as determining whether the line derived from the dependence

equation intersects with any integer points in the space bounded by the loop upper and lower bounds, as
shown in Fig. lD.5.

Two special cases should be studied separately.

‘Meek-Zero Silt’ ‘ten The case in which .o| = D or tr; = 0 is called a weak-zero SN subscript, as illustrated
in Fig. 10.6c. If H1 = 0, the dependence equation reduces to

. ¢'2'¢“|
r

.n|

M.Mt.t.,,.,...t.,..,..i —
H’

u-— 0 0 0 ‘,0’,

0 0 X0"! 0
0 :0/I 0 0

|_- /O’/O G O
’ Iilt;

1_ u
GOOD

[a] Bounded iteration space

do 1|:-1 - 1,4
1 1|: Mil - I-.tl'|

- 0 0 ‘Io’!
0 K0", 0

X0", 0 0

- _ X 0 0 0
 ,,

[c] Weak-zero SIV

Fig. 1lI.i Geornetric view of SIV nest: in four cases (Cour-nesy of Gui e1: al. 1991: reprirmed fmrn ACFI
SIGFLAN Confl Progmmtning Language Design and hnpJementutiun.Tu*cnto.Cana.da. 1991]

It is only necessary to check that the resulting value for i is an integer and within the loop hounds
A similar check applies when 0| = 0.

The weak-rem SW test finds dependences caused by aparticular iteration i. In scientific cndes, r IS usually
the first ur last itm-atinn of thc lnnp, eliminating om: possible direction vcctur for the dependence

do 1c 1 - 1,4
In 1|; F-.(i'| — Elfi — 1'}

9‘

- 0 0 K0
ca K0", 0

’,c/I 0 0
- /,0’, 0 0 <3
i

[I1] Strung SIV

in 1|: 1 - 1,a
1- 1I3 Riii - A [5 - i'l

- 0 0 go"!
0 go”, 0
0 ‘,0’, 0

— /0" 0 0
 -

in/$0
{d] Weak-crossing SW

SUD i‘ " Advanced Compimerfirchiteottrre

Consider the following loop for a strong SW test:
Do i= 1, N

Ali — ZN} = Ft(i+ N)
Enddn

The strong SIV test can evaluate the dependence distance d as ZN — N, which simplifies to N. This is
compared with the loop bounds symbolically, proving independence since N ‘-> .'t~'- l.

Consider the following simplified loop in the program tomcatv from the SPEC benchmark suite
(Uniejewski, 1989):

D-n i = 1, H

Yti, N) =Y(i.Nl I YtN,Nl
Enddn

The weak-zero SIV test. can detcnninc that the use ofY(l, N) causes a loop-carried true dependence from
the first iteration to all the other iterations. Similarly, with aid from symbolic analysis, the weak-zero SIV
test can discover that the use ofY(N, N) causes a loop-can-ied antidependence from all iterations to the last
iteration. By identifying the first and last iterations as the only cause of dependences, the weak-zero SW test
advises the user or compiler to peel the first and last iterations of the loop, resulting in the following parallel
loop:

Y{l, N) = ‘([1, N) + Y(N, N)
Do i = 2, N I

Y[t1N)= Yti. 1'4] + Y0". Ni
End-tin
Y['N, N) = Y{N, N) + Y[N, N)

Weak-Crowning Sl'i"'l"e:t All subscripts where n2 = —n| an: wen}:-crossing SIV. These subscripts typically
occur as pan ofCho|esky decomposition, also illustrated in Fig. l{J.6d. In these cases we set i= i’ and dcrivc
the dependence equation

. ('2 ' Ft,=i
Eco

This corresponds to the intersection of the dependence equation with the line i = r’. To determine whether
dependences exist, we simply need to check that the resulting value i is within the loop bounds and is either
an integer or has st noninteger part equal to L"2.

Weak-crossing SIV subscripts cause crossing dependences, loop-carried dependences whose end points
all cross iteration i, These dependences may be eliminated using a loop-spfirting transforrnation {Kennedy
et al, I99 I } as described below.

Consider the following loop from the Callal1an—Dongarra~Levine vector lest (Callahan et al., I988]:
[In i= LN

A[i}=A{N—i+ l_)+C
Enddn

Tl'le weak-crossing SH’ test determines that dependences exist between the definition and use ofA and that
they all cross iteration {N + l)f2. Splitting the loop at that iteration results in two parallel loops:

amtr.1....t.t....,...s......r . — ,,,,
[Io r'= l, (ii.-'+ l}f2

At[r'J=A(_N—r'— l_‘_t+C
Endtln
Do i={N+ I]-"2+ l,N

At[r’j=A{l'~l—r'—l]+C
En-rldn

The MW Ten: SIV tests can be extended to handle complex iteration spaces where loop bounds may be
filrlctions ofoflrer loop indices, e.g. triangular or trapezoidal loops. We need to compute the minimum and
maximum loop bounds for each loop index.

Starting at the outermost loop nest and working inward. we replace each index in a loop upper bound with
its maximum value (or minimal if it is a negative tenn). We do the opposite in the lower hound, replacing
each index with its minimal value (or maximal if it is a negative team}.

We evaluate the resulting expressions to calculate the minimal and maximal values for the loop index and
then repeat for the next inner loop. This algorithm returns the maximal range for each index. all that is needed
for SIV tests.

The Banerjee-GCD test may be employed to construct all legal direction vectors for linear subscripts
containing multiple indices. In most cases the test can also determine the minimal dependence distance for
the carrier loop.

A special case of Mil-" subscripts, called F.DlV[rest1-ictcd double—index variable) subscripts, have the form
(o| F + c|, I71] + cl]. They are similar to SIV subscripts except that randy‘ are distinct indices. By observing
different loop botuids for i andj, SIV tests may also be extended to test RDIV subscripts exactly,

A large body of work was performed in the field of dependence testing at Rice University, the University
of lllinois, and Oregon Graduate Institute. What was described above is only one of the many dependence
testing algorithms proposed. Experimental results are reported from these research centers. Readers are
advised to read published material on Banerjee's test and the GCD test, which provide other inexact and
conservative soluliorm to the problem.

The development of a paralleliaing compiler is limited by the difficulty of having to deal with many
nonperfcctly nested loops. The lack of datatlow information is often the ultimate limit on automatic
compilation of parallel code.

CODE OPTI MIIATI ON AND SCH EDULING

— 1n this section, we describe thc roles of compilers in code optimization and code generation
for parallel computers. In no case can one expect production of a true optimal code which

matches the hardware behavior perfectly. Compilation is a sottware technique which transforms the source
program to generate better object code. which can reduce the running time and memory requirement. On a
parallel computer, program optimization often demands an effort from both the programmerand the compiler.

10.4.1 Scalar Optimization with Basic Blocks
Instruction scheduling is often supported by both compiler techniques and dynamic scheduling hardware. In
order to exploit insrmcrion-level parallelism (ILP), we need to optimize the code generation and scheduling
process under both machine and program constraints. Machine constraints are caused by mutually exclusive

SUI i‘ Advartced Cmnpiunerfitrhiteczure

use of functional units, registers, data paths, and memory. Program constraints are caused by data and control
dependences. Some processors. like those with VLIW architecture, explicitly specify [LP in their instntctions.
Dthers may use hardware interlock, out-of-order execution, or speculative execution. Even machines vvith
dynamic scheduling hardware can benefit from compiler scheduling techniques.

There are two alternative approaches to supporting instruction scheduling. One is to provide an additional
set of nontrapping instructions so that the compiler can perform aggressive static irtstmction scheduling.
This approach requires an extension of the instruction set of existing processors. The second approach is
to support out-of-order execution in the rnicro—architec1ure so that the hardware can perform aggressive
dynamic instruction scheduiing. This approach usually does not require the instruction set to be modified but
requires complex hardware support.

ln general, instruction scheduling methods ensure that control dependences, data dependences, and
resource limitations are properly handled during concurrent execution. The goal is to produce a schedule
that minimizes the execution time or the memory demand, in addition to enforcing correctness of execution.
Static scheduling at compile time requires intelligent compilation support, whereas dynamic scheduling at
rim time requires sophisticated hardware support In practice, dynamic scheduling can be assisted by static
scheduling in improving performance.
Precedence Constraint: Speculative execution requires the use of program profiling to estimate
effectiveness. Speculative exceptions must not terminate execution. In other words, precise exception
handling is desired to alleviate the control dependence problem. The data dependence problem involves
instruction ordering and register allocation issues.

lfa flow dependence is detected, the write rnust proceed ahead of the read operation involved. Similarly,
output dependence produces different results if two writes to the same location are executed in a different
order. Antidependence enforces a read to be ahead of the write operation involved. We need to analyze
the memory variables. Scalar data dependence is much easier to detect. Dependence among arrays of data
elements is much more involved, as shown in Section 10.3. Other difficulties lie in interprocedural analysis,
pointer analysis, and register allocations interacting with code scheduling.

Basic Block Scheduling Abasic black [orj ust a bt'ocI:_) is a sequence ofstatements satisfying two properties:
(1) No statement but the first can be reached from outside the block; i.e. there are no branches into the middle
of the block. (2) All statements are executed consecutively if the first one is. Therefore, no branches out or
halts are allowed until the end of the block. All blocks are required to be maxirrtai in the sense that they cannot
be extended up or down without violating these properties.

For local optimization only, an extended basic block is defined as a sequence of statements in which the
first statement is the only entry point. Thus an extended block may have branches out in the middle of the
code but no branches into it. The basic steps for constructing basic blocks are summarized below:

{ll Find the !cader.s, which are the first statements in a block. Leaders are identified as being one or more
ofthe following:
(a) The first statement ofthe code.
{bl Thc target ofa conditional orunconditional branch.
{ct A statcrrtcnt following a conditional branch.

(2) For a leader, a basic block consists of the leader and all statements following up to but excluding the
next lcadcr. Notc thatthc hcg inning ofinacccs siblc codc {dead codcj is not con sidcrctl a lcadcr. [n fact,
dcad co-dc should hc cliniinatcd.

MtM,,.t.mg..qs,.m — 5,,

3?) Example10.6 Basic block construction in a bubble sort
program (S.Graham,j.LHennessy,and].D.Ullman,
1992)

Abubblc sort prugralu sorts an array A[j] with statically allocated storage. Each clement of;-1 requires 4 bytes
of byte-addressable rnemoly. The elements ofA[;] are numberedj — 1, 2, ..., n. where rt is a variable. To be
Speeifie, /l[1] is stun:-tl in location addr(/1) + 4 * {j I), where addr(A} produces the starting address of the
array A. Thc following source code is for bubble sort:

Fur i:=r:—ldowntu 1 do
Fur j 2= 1 to idn

If AU] >A[j+ 1] rm.--1
Begin

~mw:=ALn
ALI] -= Alf + 1]
AU - 1] 2= temp

End
End nfj-Innp

End nf i-lnnp

If a three-acldress machine is assunied, the above code is translated into the following assembly language
cu-du. Variable names an the right of := stand for values, and on thc left for addresses.

lFH—l
s5: ifi <1 l gutu sl

j := l
s4: ifj > i gutu s2

tl := — I
:= 4 * t1
:= A[t2] /A[j]f
:= + I
= :4 - 1
:= 4 * t5

t‘? := A[t6] .lA[j+l]f
ift3 < = sf gain $3 /it‘ A[j] >A[j+l] then begin ...,‘
t8 := j — l
t9 := 4 " IE
temp := A[t9] I temp := A[j]f
I10 := j + 1
t11 := tlfl — 1

EGEESI-1'3

--SCH i Advanced Compiraerfitrchttectute

112 ;=4 "'tl1
113 ;=.-14112]
114 :=j -1
t1s==4 * n4
A{tl5] == :13
ms :=j » 1
t11==t1e-1
t1s==4 * tn

tA[j+I 1:

fA[_i] := A[_i - I]!

A{tl 8] := temp IALH 1] := temp!
j:=j I 1
gotos4
i:=i—l
goto 55
halt

53:

52:

st:
The above 31 statements are divided into B basic blocks as shown in Fig ll) T A programflow grqph ts

drawn to show the precedence relationship among the basis blocks. Each node I11 the flow graph oorrespondtng
to one basic block may contain different numbers of statements. The entry node 15 B1, and the exit node is B2

B1‘

B2

B3

B4

B6

B7

Emit‘

|:=n—1

at-cigotoout

|:=1 Em

|'|'p-|go1oB5

tt;=|"-1

|j13-i:=|j' 4+ 4 B5

B;=y—1

.Mt1fl-t:=te|r'p

gotofl-2B5
I gobfl-4

BB I

Fig. 10.? A flow grq:-I1 showing the pmoodcnon rchdonshlp among bash: blocks in the bubble sort program
{Courtesy ot'S.Graham.j. l_ Henrtesoy. and]. D Lllrnart Cottrse on Cede Dpflrnlzmlon and Code
GH'.|flfl‘flq|‘l,lNl!S1!fl‘fl Ire-drone of Compmer Salome. Stattforcl University. 199'!)

»...,.t.t.-.1..n..i....,.~.,i.,.....i — 5,,
While a program is being compiled, basic block records should keep pointers to predecessors and

successors. Storage reclamation techniques or linked list structures can be used to represent blocks. Sources
of program optimization include algebraic optimization to eliminate redundant operations, and other
optimizations conducted within the basic blocks locally or on a global basis.

10.4.1 Local and Global Optimizations
We first describe local code optimization within basic blocks. Then we study global optimizations among
basic blocks. Boflt iniraprooodural and interprocedutal optimizations are discussed. Finally, we identify
some machine-dependent optimizations. Readers will realize the limitations and potentials of these code
optimization methods.
Local Dptirnizortiona
These are code optimizations performed only within basic blocks. The information needed for optimization
is gathered entirely from a single basic block, not from an extended basic bloclt. No cont:roI—fiow information
between blocks is considered. Listed below are some local optimizations often performed:

{ii Locoi Common S-ubeirpression Elimination If a subeitpression is to be evaluated more than once within
a single block, it can be replaced by a single evaluation. For Example |o.s, in block B7, t9 and tl5 each
compute 4 "' (j - i}, and 112 and tlii each compute 4 “' j. Replacing 115 by t9, and 118 by 112, we obtain the
following revised code for B1’, which is shorter to execute.

tfi := j l
t'-1 := 4 " til
temp := A[t'5l']
tl2 := 4 * j
ti3 := .4.[ti2]
ans] -.=t13
A[tl'.'-'3] := temp

{.2} Local Constant Folding or Propogorion Sometimes some constants used in instructions can be computed
at compile time. This often takes place in the initialization blocks. The compile-time generated constants are
then folded to eliminate unnecessary calculations at run time. in other cases, a local copy may be propagated
to eliminate unnecessary calculations.

{3} Algebraic Optimization to Si'npl'ifiv Earpressiorrs For example, one can replace the t'derrtr'.l}r statement A :=
B + 0 or A := B * 1 by A := B and later even replace references to this A by references to B. Or one can use
the commutative law to combine expressions C := A + B and D := B + A. The associative and di'srri£mrr've
i‘aw.'r can also be applied on equal-priority operators, such as replacing (rt — b) + c by ti (b — c) if (b — c) has
already been evaluated earlier.

{4} instruction Reordering Code reordering is often practiced to maximize tlte pipeline utilization or to enable
overlapped memory accesses. Some orders yield better code than others. Reordered instructions lead to better
scheduling, preventing pipeline or memory delays. In the following example, instruction I3 may be delayed
in memory accesses:

SUE i‘ Advoinced Covripuneriliirhiteczure

ll: Load R1, A
12: Load R2, B
13: Add R2, R1, R2 — delayed
14: Load R3, C

With reordering, the instruction 13 may experience no delay:
Load R1, A
Load R2, B
Load R3, C-
Add R2, R1, R2 — not delayed

{5} Efimination ofDeod Code or Unorv Operators Code segments or even basic blocks which are not accessible
or will never be referenced can be eliminated to save compile time, run time, and spaoe requirements.

GEE:

Unary operators, sueh as arithmetic negation and logical cornplement, can often be eliminated by applying
algebraic laws, such as x I {—_v) = x — __\-', —{.t — y] = _t-' — x, (—x] " (—_t-'} = x ' _1-', Not(Not A) = A, etc. Boolean
expression evaluation can often be optimized after some form of minimization.

Gabe] Optimizations These are code optimizations performed across basic block boundaries. Control-
flow information among basic blocks is needed. John I-lennessy (1992) has classified intraprocedural global
optimizations into three types:

{I} Global Versions ofl_ocol Optimizations These include global common subeitpression elimination, global
constant propagation, dead code elimination, etc. The following example fiirtber optimizes the code in
Example 10.6 if some global optimizations are performed.

Ir)
é?) Example 10.1 Global optimizations in the bubble sort

program (5. Graham,j. L. Hennessy, and
]. D. Ullman,1992)

ln Example I116, block B? needs to compute A[t9] =A[4 * (j l)], which was oomputed in block B6. To reach
Bi’, Bo must be executed first and the value ofj never changes between the two nodes. Thus the first three
statements of B7 can be replaced by temp := t3. Similarly, t5‘ computes the same value as t2, I12 computes the
same value as 1:6, and tl3 computes the same value as t7. The entire block B7 may be replaced by

temp := t3
A[t2] := t7
A[t6] := temp

and, substituting for temp by
A[t2] := t7
A[t6] := t3

»..t..t..n.t..n.t....,..@,s......i — ,,,,
The revised program, after both local and global optimizations, is obtained as follows:

Bl: i := n — l
B2: lt‘i<1gotoout
B3: j := l
B4: lfj :'=igoto B5
B6: tl:= j — I

12 '.= 4 * ll
13 := A[t2j iAl_j]l
to 1= 4 * j
17 ;= altsj iAlj+1ji'
ll‘ 13 <= :7 golo B8

Bl: Alli] := ti‘
Alto] := t3

BS: j :=j + 1
golo B4

B5: i := i — I
golo B2

out:

{2} Loop Optiniizorions These include various loop transformations to be described in subsequent sections
for the purpose of vectorization, parallelization, or both. Somtimes code motion and induction variable
elimination can simplify loop structures. For example, one can replace the calculation ofan induction variable
involving a multiplication by an addition to its former value. The addition takes less time to perform and thus
results in a shorter execution time.

In other eases, loop-invariant variables or codes can be moved out of the loop to simplify the loop nest.
One can also lower the loop control overhead using loop unrolling to reduce iteration or loop fusion to merge
loops. Loops can be exchanged to facilitate pipelining of long vectors. Many loop optimization examples will
be given in subsequent sections.
(3) Ccmrel-flmv Gptimizofim These are other global optimizations dealing with control structure but not
directly with loops. A good example is code hoisting, which eliminates copies of identical code on parallel
paths in a llow graph. This can save space significantly, but would have no impact on execution time.

lnterprocedural global optimizations are much more difficult to perfonn due to sensitivity and global
dependence relationships. Sometimes, procedure integration can be performed to replace a call to a procedure
by an instantiation of the procedtne body. This may also trigger the discovery of other optimization
opportunities. Interprocedure dependence analysis must be performed in order to reveal these opportunities.
Machine-Dependent Optimizations With a finite number of registers, memory cells, and ftlnctional
units in a machine, the efficient allocation of machine resources affects both space and time optimization
of programs. For example, strength reduction replaces complex operations by cheaper operations, such as
replacing 211 by o + H, :12 by n " ti, and i'engr.lr[.5‘l + S2} by lcngrh[.S‘l) + i'ength[5'2}. We will address register
and memory allocation problems in code generation methods in the next section.

Sill i‘ - Advorrced Compmerfirrhitecture

Other fiow control optimizations cart be conducted at the machine level. Good examples include the
elimination of unnecessary branches, the replacement of instruction sequences by simpler equivalent code
sequences, instruction reordering and multiple instruction issues in superscalar processors. Machine-level
parallelism is usually exploited at the fine-grain instruction level. System-level parallelism is usually
exploited in coarse-grain computations.

10.4.] Veceorization and Parallelizaticm Methods
Besides scalar optimizations, we need to perforrn vector andfor parallel optimizations. The purpose is to
improve the perfonnance of programs that manipulate large data arrays or can be partitioned for parallel
execution. Kectoriaarion is the process of converting scalar looping operations into equivalent vector
instruction execution. Poroilelizotion aims at converting sequential code into parallel form, which can enable
parallel execution by multiple processors.

An optimizing compiler that does vectorization automatically or semiautomalically with directives from
programmers is-called a vectorizing compiler or simply a veclortcer. Similarly, aparofielizing compiler should
be designed to generate parallel code from sequential code automatically or semiautomatically. We introduce
below various methods suggested for vectorization and parallelization. Vector hardware must be provided to
speed up vector operations. lvlultiprocessors or multicomputers must be used to execute parallelized codes.
lnhibitors ofvectorization and parallelization are also identified in some program constructs in order to avoid
unrewarding attempts.
Hicrorixurion Method: We describe below several basic methods for vectorization. Many other methods
can be found in the extensive literature available on the subject. We use Fortran 90 notation; for example,
successive iterations in the following loop are totally independent:

Do 2t]I=8. 120,2
20 sn)=a(1|s)~cn+1}

This scalar loop can be convened into one vector-odd instruction defined by the following array assignment:
Alli: 120:2) = Btfl 1 :l23:2l I C|_'5l:l2 1 :2)

{ll Lise of Tempomry Storage Consider the following Do loop:
Do 20 [= l, N

All] = BU) + CU)
2o Bo] = 2 * A(l+1)

This loop represents the following sequence of scalar operations:
a[1)= art) + cu)
B(l) = 2 " M2}
M3) = Bill + Cl?)
B[2) = 2 * M3}

ln order to enable pipelined execution by vector hardware, we need to introduce a temporary array
TEMP{l :N) to produce the following vector code:

Mtnnt.t,,.g..qe,.n — 5,,
TEM Pll IN) = A|{21N+I)
All :N_) = B{1iN)+ C[l:'N)
B{1:N} = 2 " TEMP{l:N}

Without the TEMP array, the second array assignment B(l:N) may use the modified Ml :N) array which
was not intended in the original code.

{2} Loop interchanging Vectorization is often performed in the inner loop rather than in the outer loop.
Sometimes we intercltenge the loops to enable the veetorization. The general rules for loop interchanges are
to make the most profitable vectorizable loop the innermost loop, to make the most profitable parallelizable
loop the outermost loop, to enable memory accesses to consecutive elements in arrays, and to bring a loop
with longer vector length (iteration count} to the innermost loop for vectotimtion. The profitability is defined
by i1'nproverne11t in execution time. Consider the following loop nest with two levels:

Do 2(lI=' 2, N
[lo ll} J = 2, N

S|: A('l,I}=(A(L.T—l)1A{I,.l P 1)f2 (10.6)
ID Continue
20 Continue

The statement S] is both flow-dependent and imtidependent on itsell‘witl:t the direction vectors {=, <1 and
(I, >1, or more precisely the distanoe vectors (0, -1) and [0, 1), respectively. This implies that the loop cannot
be vectorized along the J-dimension. Therefore, we have to intettltange the two loops:

Du 20 J = 2, N
Do 20 1 = 2, N

A(l,_I}=(A(I,J 1)+A{l,.I+1)}!2
26 Cnnfi nue

Now, the inner loop [I-dimension] can be vectorized with the zero distance vector. The vectorized code is
Do 201 = 2, N

A{2:N, J) = (A{2:N_. J — 1) t A{2:N, J I 1)}/2
20 Cnnti nue

ln general, an innermost loop cannot be vectorized if forward dependence direction (*1) and heclcward
dependence direction (>1 coexist. The [=} direction does not prevent vectorization.

{3} Loop Distribution Nested loops can be veetoriizod by distributing the outermost loop and vectorizing each
of the resulting loops or loop nests.

Do ID] = 1, N
B(I, 1) = U
Do 20] = l, M

Afl) = AU) + B|[I, J) * C(l, J]
20 Continue

D[[] = E{l] + All}
lll Continue

SH] i ' Advoiiced CompuoerA.n:hitecto.re

The I-loop is distributed to three copies, separated by the ne-am J-loop from the assigrunent to array B and
D, and vectorized as follows:

Bil :N, 1] = 0 (a zero vector]
Do 30 I = 1. N

AH) =A(l] I- Bil, i:M) “‘ CH, l:l'vl)
3G Continue

D(1:N) = E(l:N] I-A{l:l"~l)
{4} Vector Reduction We have defined vector reduction instructions in Eqs. 3.6 and 3.7. A number of
reductions are defined in Fortran §0. In general, a vector reduction produces a scalar value from one or two
data arrays. Examples include the sunl, product, maximum, and minimum of all the elements in a single array.
The dot pmduct produces a scalar S = I.;| A, >< B, from two arrays 1'-it-[I :11} and B(1:n]. The loop

Do 4'0 I = l, N
S]: A{l) = Blil) + C(I)
5'2: S = S + A(_l]-
S5: AMAX =]'v'lAX[AMAX, A(I})
40 Continue

has the following dependence relations: .S'|(=E2, S|{=].S'3, .S‘2(~=i)S2, S3 ‘=1 S3. Altltotlgh statements S2 and S3
each forrn a dependence cycle, each statement is recognized as a reduction operation and can be 'v’¢ClIG1‘l2JCtIl
as follows:

5,: A(l:N) = B(1:N] I C(l:N}
S1: S = S I SUM{A{l:N]|]
S3: ANIAX = IVL#tX(A.\'L#tX, lviAXVAI.{A{1:N)])

where SUM, MAX, and MAXVAL are all vector operations.
{Q Node Spitting The data dependence cycle can sometimes be broken by node splitting. Consider the
following loop:

Do 50 I = 2, N
5-'1: T{I}=A(l~1)iA(I i l)
5'2: AU) = EH] I CU}
S0 Continue

Now we have the dependence cycle .5‘,{-Q5‘; and S,{>‘_tS‘;_, which seems to prevent vectorization. However,
we can split statement 5| into two parts and apply statement reordering:

Do 50 I=2, N
Si“: X(I} = All t 1]
5'2: A(I) = B(I] I CH}
51.51 T(1l=Aii—1l' *' Kill
Si} Continue

i...t.n.1.....t.t...,...,........i — ,,,
The new loop structure has no dependence cycle and thus can be vectorized:

5‘;.rI X(2:N) = A(3:N + I)
5;: A(2:N) = B(2:N] + C(2:N}
.5-‘lb: T[2:N_) = A(ltN — 1] + X{2:N}

It should be noted that node splitting cannot resolve all dependence cycles.
(6) Other Vector Optimizations There are many other methods for vectorization, and we do not intend to
discuss them all. For example, senior variables in a loop can sometimes be expanded into dimensional arrays
to enable vectorization. Suberpressions in a complex expression can be vectorized separately. Loops can be
peeled, um-oiled, rerolled, or tiled (blocking) for vectorization.

Some machine-dependent optimizations can also be performed, such as amp mining [loop sectioning]
and pipeline citainirig, introduced in Chapter 8. Sometimes a vector register can be used as an accumulator,
making it possible for the compiler to move loads and stores of the register outside the vector loop. The
movement of an operation out ot‘ a loop to a basic block preceding the loop is called hoisting, and the
inverse is call-cd sinking. Vector loads and stores can be hoisted or sunk only when the array reference and
assignment have the same subscripts and all the subscripts are the induction variable of :1 vectorized loop or
loop constants.
Veetorizction Inhibitor: Listed below are some conditions inhibiting or preventing vectorization:

(1) Computed conditional statements such as IF statements which depend on runtime conditions.
(2) Multiple loop entries or exits [not basic blocks).
(3) Function or subroutine calls.
(4) lnputioutput statements.
(5) Reettrrences and their variations.
A mourn-znce exists when a value calculated in one iteration of a loop might be referenced in another

iteration. This occurs when dependence cycles exist between loop iterations. In other words, there must be at
l-cast one loop-currieddependence for a recurrence to exist. Any number of loop-independent dependences can
occur in a loop, but a recurrence does not exist unless that loop contains at least one loop-carried dependence.

Code Pnroillelization Parallel code optimization spreads a single program into many threads for parallel
execution by multiple processors. The purpose is to reduce the total execution time. Each thread is a sequence
ofinstructions that must execute on a single processor. The most often perallelized code structure is perfonned
over the outermost loop ifdependence can be properly controlled and synchronized.

Consider the two-deep loop nest in Eq. 10.6. Because all the dependence relations have a “=” direction in
the I-loop, this outer loop can be peuallelized with no need for synchronization between the loop iterations.
The parallelized code is as follows:

Doall I = Z, N
Do J = Z, N

5'1: A(l,.l}= (A(I,.l— 1] I A[l,.l I" 1)}! 2
Enddo

Endall

FM Mtfiruw H'lHr'n.-rqn;u|n1'
5| I i " Adnorrced Covnpunerfirrhitecrure

Each of the N -1 iterations in the outer loop can he scheduled for a single processor to execute. Each
newly created thread consists of one entire J-loop with a constant index value for 1. If dependence does exist
between the iterations, the Doacross construct can be used with proper synchronization among the iterations.
The Following example shows five execution modes of a serial loop execution to various combinations oi‘
parallelization and vectorization of the same program.

I»)
8 Example 10.8 Five execution modes of a FXI Fortran loop

on the Alliant FXIBO multiprocessor (Alliant
Computer Systems Corporation, 1989)

PX-“Fortran generates code to execute a simple Do loop in scalar, vector, scalar-concurrent, vector-
concurrent, and concurrent outer‘/vector imter (CCWI) modes. The computations involved are performed
either over a one-dimensional data array A(l:2048) or over a two-dirnensional data an-av B[1:256, 1:8),
where A(K)=B(l, J) for K=8{[l]+.l.

By using array A, the computations involved are expressed by a pure scalar loop:

Do K=1,20-48
MK] =-MK] I 5

End-do

where S is a scalar constant Figure 10.821 shows the scalar [serial] execution on a single processor in 30,616
clock cycles.

The same code can be vcctorized into eight vector instructions and executed serially on a single processor
equipped with vector hardware. Each vector instruction works on 256 iterations of the following loop:

.t(1;2n4s;2ss) = an -.2o4s;2ss) + s
The total execution is reduced to 6043 clock cycles as shown in Fig. 1l].Sh.
The scalar-concurrent mode is shown in Fig. lO.Sc. Eight processors are used in parallel, perforrning the

following scalar computations:
Doall I =1, 3

Do l= l, 256
B{I,I]=B[I,.l) F 5

End-do
En-dall

Now, the total execution time is further reduced to 3992 clock cycles.
Figure l0.8d shows the vector-concurrent mode on eight processors, all equipped with vector hardware.

The following vector codes are executed in parallel:
Doall J = l, 3

A[K:2fl40-I—l(:8} = A(K:2040+I(:S] + S
Endall

aatino.t,o,.,..t..,.,.i — 5,,
This voetorized execution by eight processors results in a total time of 961] clock cycles.
Finally, the sarne program can he executed in GOV! mode. The inner loop executes in vector mode, and

the outer loop is executed in parallel mode. In Fortran 90 notation, we have:

EH18, l:256) = B{1:S, l:256] + S

The notal execution time is now reduced to 756 clock cycles, the shortest among the five execution modes.

A111] =A[1]+ S,A[2j|=A{2j| + S, ...,A[2ID4-B) =A{2tJ43]+ S

[a] Scalar exiacutlonon one processor in 30,616 cycle-s

A[1: 25fi]= A{1:256) + s, M251: 512)= A1251 : 5121+ s,
M1793 : zotai = A11 rss : 2o¢a] + s

[lo] Vector oxoctttlort on one processor sequentially in 604-B cycles

P1: H-[1, 1i=a[1. 11+s.a[1.2i=st1,2y+s, a{1.2so1=a-[1,2so1+s
P2: s12, 1i=a{2. 1)+s,a{2_21=et2.2i+s, ...,ot2,2sci=at2,2sci+s

Pa: B[B,1]= B[6, 11+ S, B[E., 2] =B[B, 2]+S, 5118,2515) =8-[8, 256) + S

[oi Scalar-concurrent execution on eight processors In $92‘ cycles

P,: A{1:2D:t1:B}=A[1:2fl41:B]+S
P2: n{2:2o¢2:ai=A{2:2m2:ai+s

P8: A[B:2G4B:3]=A{8:2Il}4B:6]+S

[ell \1'iBCiCI'-GOt1GUffB‘fl‘l&}tB=t>tJ'[|0t‘| on elgtt processors In 96-O cycles

P1: a[1,1:25s]=a(1,1:2sey+s
P2: a{2,1:2ss1=s[2,1:2soi+s

PB: s[s,1:2so)=a{a,1:2so)+s
[oi CCWI exeoutlonon eight processors in 156 cycles

Fig. 1Il.,ll Five execunlon modes of a FX.tFornran loop on 1:l-tefiliant l"1uidp1rocesso1~ {Courtesy ofhl lianr
Computer Systems Cou~p-oration. 1989]

Inhibitor: of Parallelization Most inhibitors of vectorimtion also prevent parallelization. Listed below
are some inhibitors ofparallelization:

(1') Multiple entries or exits.
(2') Function or subroutine calls.

Ff» Mtfirnii H'l'Ht'mn;|wtn-\'
5| 4 i ' Aduortced Cmnptunerfitchitccturc

(3) Input.-‘output statements.
{4} Nontlctctniinisni of patallcl execution.
(5) Loop-carried dcpcndenccs.

While only baclrward dependences interfere with vecto:-irration, forward and backward dependences
both affect parallclization. Thc overhead of synchronization code can outweigh pcrlbrmancc gains from
parallelization. We will illustrate this tradeoff analysis for multitasking on the Cray X-MP in Chapter 1].
Most code paralleliration is conducted at the loop level. To reduce or increase grain size, one must consider
thc tradcotfs between computations and communication. This is a dilficult problem, and none of the existing
compilers for parallelism has this capability. ln most cases, the tradeofi' studies are done by programmers.
However, compiler directives can he used to guide the code optimization process.

10.4.4 Code Generation and Scheduling
Issues involved in code generation include order of cxccution, instruction sclcction, rcgistcr allocation,
branch handling, post-optimizations, etc. We describe the concepts ofbasic blocks and instruction scheduling
schemes for basic blocks. Then we consider register allocation, pattem matching, and other table-driven
methods for advanced code generation. How to expand code generation methods for multiple processors
systematically is still a wide-open research area.
Directed Acyclie Graph: Because instructions within each basic block are sequenced without any
backtracks, computations performed can thus be rcprescntcd by a directed acyclic graph (DAG). A DAG
can he built in one pass through a basic bloclt. The nodes in a DAG represent values. Each interior node is
labeled by the operator that produces its value. Edges on the DAG show the data dependence constraints.
The child.rcn of a node arc the nodcs producing the operand values. The leaf nodes carry the initial values or
constants existing on entry to a basic block.

DAG construction repeats the following steps item node to node. Consider the statement A := B + C in a
basic block. We first find nodes rcprcscnting thc values of B and C. IfB a.nd C arc not computed in thc block,
they must be retrieved from leaf nodes. Otherwise, B and C should come from interior nodes of the DAG.
Then we create a node labeled “+”. Children oi‘ this node are the nodes for values of B and C. If there is
already an identical nodc [same labcl and satnc child nodes}, nodc creation can bc skipped. The node for “+"
becomes the current node for A. tn the case of a data transfer operation A := B, find the node representing the
value of B, Then the node representing B becomes the current node for A. Exceptions do exist. A procedure
cal] must assume all variable values have changed. Ifa variable could possibly point to another variable, thcn
that variable could now have a new value. Assignment to elemenu of an array must be assumed to alter the
entire array.

I»)
g Example 10.9 Construction of a DAG for the inner loop

kernel of the bubble sort program (5.Graham,
]. L. Hennessy, and j. D. U|lman,1992)

Listed below arc the statements contained in the basic block B7 ofthe bubble sort program in Fig. lO.T.

,=»,,.e.m..,..-.t.,t.,,.,...,i.,..,..t — 5,
IS :=
19 :=
lemp :=

t1D :=
t11 :=
H2 :=
t13 :=

t14 :='
H5
A[t15]

L16 :=
tl T :=
113 :=
A [tl 8]

1-I 1
awn]
j+l
no 1
4*n1
Ann]
j-l

j+

4"‘ ll?
temp

The corresponding DAG representation of block B‘? is shown in Fig. ll) 9 For nodes Will‘! the same
operator, one or more names are labeled provided they consume the same operands [although they may use
different values at different times]. The initial value of any variable x is denoted hyxu fiueli as the A519, and

xi“to
te.rnpD at the leafnodes.

H‘

\

I 1
no-1 !Afi+lL=mmp

'2-I?

I
1

\

1

\ M

FIg.1I|I.! Dtrec1:ed acyclic graph representation of the basic block B?.1:he Inner lo-op of 1:hehubl:|le sort:
program in E':tan\pl-es 10.6 and 10.? {Ct5I.l"|2QS}I' of S. Graharm]. L. Horne-ss}t and j D. Ulrnan,
Course an Code Opfl-nlmflfln and Code Ge|1erutlonMksnem lrtscteute of Curnpueer Scienoe. Stanford
University, 1991]

|Aq

4'18 }r.emp:=A[jj

U

4*n4 lAfiL=Afi¢1]
:= t13]

A/

0 0 0 '""==1
leaves

5| Ii i‘ - Adrorrced Compmerfirrhitecture

ln order to construct a DAG systematically, an auxiliary table can he used to keep track of variables and
temporaries. The DAG constmction process automatically detects common subertpressions and eliminates
thorn accordingly. Copy pmpagnriort can be used to compute only one of the vat'iab1es in each class. The
construction process can easily discover the variables used or assigned and the nodes whose values can be
computed at compile time. Any node whose children are constants is itself a constant. One can also label the
edges in a DAG with the delays.

Lin Scheduling A DAG represents the How of instructions in a basic block. A topological sort‘ can be used
to schedule the operations. Let READY be a buffer holding all nodes which are ready to execute. Initially,
the READY buffer holds all leaf nodes with Zero predecessors. Schedule each node in READY as early as
possible, until it becomes empty. Alter all the predecessor (children) nodes are scheduled, the successor
(parent) node should be immediately inserted into the READY buffer.

With list scheduling, each interior node is scheduled after its children. Additional ordering constraints are
needed for a procedtue call or assignment through a pointer. When the root nodes are reached, the schedule
is produced. The length of the schedule equals the critical path on the DAG. To determine the critical path,
both edge delays and nodal delays must be counted.

Some priority scheme can be used in selecting instructions from the READY buffer for scheduling.
For example, the seven interior nodes of the DAG in Fig. ltl.9 can be scheduled as follows, based on the
topological order. In the case of two ternporaries using the same node, we select the lower-numbered one.
The following sequential code results:

112 :=4 *j
til :=j —l
113 :=A[tl2]
19 :=4 '13
temp := A119]
A[tSl] .=t13
A[tl2] := temp

List scheduling schedules operations in topological order. There are no haclrtracks in the schedule. I1 is
considered the best among critical-path. branch-and-bound for nticroinstruction scheduling (Joseph Fisher,
I979}. Variations of topological list scheduling do exist such as introducing a prr'ort'r_y junction for ready
nodes, using tap-dawn versus barium-up direction, and using cycle scheduling as explained below. Whenever
possible, parallel scheduling of nodes should be exploited, of course, subject to data, control, and resource
dependence constraints.

Cycle Scheduling List scheduling is operation-based, which has the advantage that the highest-priority
operation is scheduled first. Another scheduling method for instructions in basic blocks is based on a cycle
.rc.la-eduling concept in which "cycles" rather “operations” are scheduled in order. Let READY be a buffer
holding nodes with zero unscheduled predecessors ready to execute in a current cycle. Let LEADER be a
buffer holding nodes with zero unscheduled predecessors but not ready in a current cycle (cg. due to some
latency unfulfilled). The following cycle scheduling algorithm is modified from the list scheduling algorithm:

Cu rrent-cycle = D

s.o.iMdi,.o.s.,q....,...i — 5,,
Loop until READY and LEADER are empty

For each node rt in READY (in decreasing priority order]-
Try to schedule n in current cycle
If successful, update READY and LEADER

Increment Current-cycle by l
end of loop

The advantages ofcycle scheduling include simplicity in implementation t‘or single-cycle resources, such
as in a superscalar processor. There is no need to keep records of source usage and it is also easier to keep
track of register lifetimes. It can be considered an improvement over the list scheduling scheme, which
may result in more idle cycles. LEADER provides another level ofbulleiing. Nodes in LEADER that have
become ready should be immediately loaded into the READY queue.

Register Allocation Traditional instniction scheduling methods. minimize the number of registers used,
which also reduces the degree ofparallelism exploited. To optimize the code generated from a DAG, one can
convert it to a sequence of expression trees and then study optimization for the trees. The registers can be
allocated with instructions in the scheduling scheme.

in general, more registers would allow more parallelism. The above bottom-up scheduling methods
shorten register lifetimes for expression trees. A round-robin scheme can be used to allocate registers while
the schedule is being generated. Dr one can assume an infinite number of registers to produce a schedule first
and then allocate registers and add spill code later. Another approach is to integrate register allocation with
scheduling by keeping track ofthe liveness ofregisters. When the remaining registers are greater than a given
threshold, one should maximize parallelism. Otherwise, one should reduce the number of registers allocated.

Register allocation can be optimized by register descriptors [or tags) to distinguish among constant,
variable, indexed variable, frame pointer, etc. This tagged register may enable some additional local or global
code optimizations. Another advanced feature is special branch handling, such as delayed branches or using
shorter delay slots if possible.

Code generation can be improved with a better instruction selection scheme. We can first generate code for
expression trees needing no register spills. Dne can also select instructions by recursively matching templates
to parts ofexpression trees. Amatch causes code to be generated and the subtree to he rewritten with a subtree
for the result The process ends when the subtree is reduced to a single node. When template matching fails,
heuristics can be used to generate subgoals for another matching. The key ideas of instruction selection by
pattem matching include:

-['1] Convert codc gcncration to primarily a systematic process.
-[2] Usc trcc-structured pattcms describing instrtlctions and use a trcc-stnicturcd intcrmotliatc ihrm.
{3} Scloct instructions by covering input to instruction patterns.

Major issues in pattern-based instruction selection include development of pattern matching algorithms,
design of intermediate fonn and target machine descriptions, and interaction with low—level optimization.
Extensive table descriptions are needed. Therefore table compression techniques are needed to handle large
numbers of patterns to be matched.

Advanced code generation needs to be directed toward exploitation oi‘ parallelism. Therefore special
compilation support is needed for superscalar and tnultithreaded processors. These are still open research

SIB ‘i Advanced Cmnprioernrchiteeture

problems. Partial solutions to these problems cart he found in subsequent sections. There is still a long way
to go in developing really “intelligent” compilers for parallel computers.

10.4.5 Trace Scheduling Compilation
Branch prediction has been used in :1 software scheduling technique called trace .tciT:eduIr'ng. The idea was
originally developed for scheduling andpacking operations into honeontai micminstntctions. Trace scheduling
was proposed for use in VLIW architecture designed for scientific computation without vectorization.

The concept of trace scheduling is illustrated in Fig. 10.10. A trace is formed by a sequence of basic
blocks, separated by assuming a particular outcome for every branch encountered in the sequence. The code
example shows the first trace involving tiuce basic blocks (A, B, and C). There are many traces for differerit
combinations of branch outcomes. The second trace corresponds to another branch combination. Each trace
is scheduled for parallel execution by a VLIW processor.

Load A [First Trace]
mad B VLIW instructions

AddA,B Loadfit Loae|B luloveR2. R1
Store C Add A.B Store C

Him”; Mme R2. R1 Branch J(.1ID€i

MimiR2.a.s§ |'u'lu_illR1,R3 HranchY,2DD li'IC_R'ir,l CIQBJVR5
= an-ch .'it,1 I I 0

Soon-no Trace :
o

is 1 =
- B.ran¢hY,2 Bibi?-l<B

First Traoe

R4 1inc
ranch Y\ MR5
" Brew
i

Fig. 1Il'.l.1Il'.l Code compaction §orVL|W processor based on trace scheduling developed by joshep Fisher
(1931)

Code Compaction Independent instructions in the trace are compacted into VLIW instructions. Each
VLIW word can be packed with multiple short instructions which can be independently executed in parallel.

t...».n.t....i..i....,....,......... — ,,,
The decoding of these independent instructions is carried out simultaneously. Multiple function units [such
as the memory-access unit, arithmetic unit, branch unit, etc.) are employed to can'y out the parallel execution.
Duly independent operations are packed into a VLIW insmiction.

Branch prediction is based on software hem-istics or on using profiles of previous program executions.
Each trace should correspond to the most likely execution path. The first trace should be the most likely one,
the second trace should be the second most likely one, and so on. In fact, reduction in tl'|e execution time of
an earlier trace is obtained at the expense of that of later traces. in other words, the execution time of likely
traces is reduced at the expense of that of unlikely traces.

Compensation Code The effectiveness of trace scheduling depends on correct predictions at successive
branches in a program. To cope with the problem of code movement Followed by incorrect prediction,
compensation codes are added to ofiitrace paths to provide correct linkage with the rest of program. Because
code compaction may move short instructions up or down in the program, different compensation codes must
be inserted to restore the original code distribution in the code blocks involved.

5*)
Consider an example program consisting oi‘ five basic blocks in Fig. 10.1 la. The initial trace contains blocks
A, B. and D, after it is predicted that execution of I4 and I9 will lead to the lefi path. In Fig. 10. 1 lb, instruction
13 has been moved fi'orn block A to block B, and I7 moved to blocli: D, to form the new blocks A’, B’ and D’.

Therefore, we need to insert instruction I3 in block C’ also and modify the target address to 201 in
branch instruction I9. Similarly, some instructions have been moved up to preceding blocks (Fig. lU.l1c_‘,t.
Compensation codes. Undo I5 and Ill), must he inserted in block C’ to restore the original program semantics.

Example 10.10 Trace scheduling with code compaction
and compensation

Compensation codes (in shaded boxes in Fig. 10.11) are needed on off-trace paths.'I'his will make
the second trace correctly executed, without being aflected by the first trace due to code movement. The
compensation code added should be a small portion of the code blocks. Sometimes the Undo operation
cannot be used due to the lack of an inverse operation in the instruction set. By adding compensation code,
software is perfomiing the function of the branch history bufi'er described irt Chapter 6.

The efiiciency of trace scheduling depends on the degree of correct prediction oi‘ branches. With accurate
branch predictions, the compensation code added may not be executed at all. The fewer the number of most
likely traces to be executed, the better the perforrnance will be.

Trace scheduling was mainly designed for VLIW processors. For superscalar processors, similar techniques
can exploit parallelism in a program whose branch behavior is relatively easier to predict, such as in some
scientific applications.

510 i ' Adrmvced Cmnpmerfixrhéteczure

""I

I I I I I III I I I I I I I I I I II I I I I I I I I I I III I I I I I I I I

___.|p‘ _L. ;.::-5-1 RL,;t
I2. L.».:-.=1--.1 R2, I3
L]. 4'1.-itfi. Rl, RE
1-1. Bsanelt >:.1'lJ, Luu

“U C
_ _ _ _' :5. Sub R:
- '-~ - :9. oral-ml-. '='~.~u zoo
_ _. =1

__ _ _, E
--- " are - ;;:3. an R1, RI
___ -P - _ LLG. 51.:-12 RL, E

{a)Thefi|'sttraoeon1l1-aflowgraeh.

re2%‘
I--"-_-_-----_-_--- I

E:I;_;j...5“

I1'‘t-‘."I""I’I... |.
|_:1-is.-- _
I:-.-'::_:-I‘F]:'- ,.:;'~=r'

'15

|III ,'.. |_"-. |'-',.IHFIII“.-

mQ:*'"'

lU I__________

I‘?

E53

I I I |________

A,

[4 {Branch}
E
[4 {Branch}B’

[3
ts
le "5 B” B”»B~»m~ :2Y>l1,2lI]1 nu [B

Branch
no2oo H D. H3

201 no :14 D»
[12 [11 H3 E
[11

[14

{hj Downward ooda motion. {c} Upward coda rnction

FIg.10.11 Code mot-lems for trace scheduling oompactlng In Example1lJ.1D

LOOP PARALLELIZATION AND PIPELINING
- I This section describes the theory and application of loop lransfommfions for veetorizetion or

parallelization purposes. At the end, we address sofiware pipelining techniques.

10.5.1 LoopTransfom1atiunTI1eor'y
Parallelizing loop nests is one of the most fundamental program optimization techniques demanded in
a vcetorizing and peralleliziug compiler. In this section, we study a loop tn-msformatrion theory and loop
trausfonnafion algorithms derived from this theory. The bulk of the material is based on the work by Wolf
and Lam (1991).

snnnt.rt.r.,..g...,t.r..,...t _ — 5,,
The theory unifies all combinations of loop interchange, skewing, reversal, and tilting as rmimoduiar

rrmisfon-notions. The goal is to maximize the degree of parallelism or data locality in rt loop nest. These
trarrsformations also support efficient use of the memory hierarchy on a parallel machine.

Elementary Transformation: A loop transformation rearranges the execution order of the iterations in a
loop nest. Three elementary loop transformations are introduced below.

{lj Per'rrrrrr.n'rirJ.rr—A permutation 5on a loop nest transforms iteration {]J|, ...,p"] to @151, ...,p|§,j. This
transformation ean he expressed in matrix form as I5 , the rr >< n identity matrix with rows permuted by
5. For rr = 2, a loop interchange transformation maps iteration {'r',jj to iteration (j, ij. In matrix notation,
we ean write this as

O 1 i j
1 0 1‘ — r

U l
The following two-deep loop nest is being trartsformed using the permutation matrix [1 Oil as

depicted in Fig. 1l).l2a.
Dur‘=l,N Dnj=l,N

Doj=l,N l]or'=l,N
AU'l=A{.r'J -I Ctlljl => P\(_1'l=-I“-U! |"CI1lfl

Enddo Enddn
Enddn Enddn

-[2] Rm-‘r'rsof—Re\rersa1 of the ith loop is represented by the identity matrix with the ifn element on the
diagonal equal to ~l.

The following loop nest is being reversed using the transformation matrix ii I 0] as depleted in
Fig. |u.12b. '3 ‘I

Dnr'=l,N Dor'=l,N
Dnj=l,N Duj=—N__—l

="\(1}J'l=Aii—1,.f+ ll =1‘ Ail}-,f‘l=1°'»{F-1,-J‘+I)
En-rlrln Enddu

Enddn Enrldu

-['3j Skeu-'r':rg—Sltewing loop ii by an integer iaetorfwith respeet to loop L maps iteration {p1, ..., p,- |, p,-,
.f'Ir'+I= ' ' '=P_,|' I!.f‘:I,r'r.f':I,|'+l1 "'= par) tn Iiplr ' " rpi Ir .f']r'# .fJr'+I> ' ' "P pf Ir p_,|' ‘I _f.l;Jr'=.f‘J_,l'+l= "'= Anni‘

In the following loop nest, the transformation performed is a skew of the irmer loop with respect

to the outer loop by a faetor of l , represented by the transformation matrix I: 1 as depicted in
Figtue l0.12e.

Dnr'=l,N Doj=l,N
Dn__r'=l,N Duj=l,N

A{i,j)=A{r',_j— l_]|+ =9 A[r',j—r'j=A{rf,_i—r'— l}+
A{r'—l,jj A[r'—l,j—r'j

Enddo Enddu
Enddu Enrlrlu

511 i‘ " Advanced Comprmerfirehiteetum

|—II-1—lIr—II'~|—II|

i Z-_' i |*"|*"1*"l*'1

-- - -- -- Ii

I—IIrI—Ir'—|I-|—sI-I
j I

Bslore Ans:
[a} Loop permutation (interchange of I and jloops}

\\\ Illwas _,. AW]\\\ III\\\ mar
[bl |=::i:a| ofthe} loop Mt"

‘T"1
tr

__L__1

|||I
_.L__|
Ii. _.. - __1011

l l

__-_1_

(c} Showing ofthe inner loop by a factor of1

Fig. 10.1 I Loop transformations perforrned in Example 10.‘? {Courtesy of Monica Lran. WTSC Tumrid Nores.
Smndford Unlve-rslry,1‘?92]

Various combinations of the above elementary loop transfomiarions can be defined. Wolf and Lam
have called thcsc rmimodular rrorufomratioru. The optimization problem is thus to find the unimodular
transformation that maximizes an objective fimction given a set of schedule constraints.
Transformation Nlotrice: Unimodular transformations are defined by unrmoaluior matrices. A unimodular
matrix has three important properties. First, it is square, meaning that it maps an n-dimensional iteration
-space imo an n-dimensional iteration space. Second, it has all integer components, so it maps integer vectors
to integer vectors. Third. the absolute valll-B of its tleterminant is l.

Bccausc of these propcrtics, the product of two unimodular matrices is unimodular, and thc invcrsc of a
unimodular matrix is unitnodular, so that combinations of unimodular loop transformations and the inverse
of unimodular loop transfonnations are also unirnodular loop transfonnarions. A loop transformation is said
to he legal if thc transformed dependence vectors are all lexicographieally positive.

MtMt.t.,,.g..s..,.....i — 52,
A compound loop transformation can be synthesized from a sequence ofprimitive transforrnations, and

the effect of the loop transformation is represented by the products of the various tralisformation matrices for
each primitive lransforlnation. The major issues for loop transformation include how to apply a trartsform,
correctness or locality, and desirability or advantages of applying a transform. Wolf and Lam (1991) have
stated the following conditions for unimodular transfonnations:

[1] Let D be thc set oftlistanoc vectors ofa loop nest. .-it unimodular transformation (matrix) T is Iago], if
and only if Vd E D,

r- tr 2 o (10.1)
(2) Loops 1' through} ofa nested computation with dependence vectors Darcfidft-' pcrmrrroinic, if Vd E D,

((d1*d;, ...,d, |)>G or [_"-?’r'£.icEj:a';,2U} (I03)

Proofs of these two conditions are left as exercises for the reader. 'l'he following example shows how to
determine the legality of unirnodular trartsformarions.

Do i = I, N
Du j = I, N

ac.n=_:(st»".n, st»'+ 1.; In
Enddn

Enddn

This code has dite dependence vector J = (1, -1). The loop interchange transformation is represented by
the matrix

fl l
T: l 1 Q l

The transformation is illegal since T- d = (—l, 1) is lexicographicallgr negative. However, compounding
the interchange with a reversal represented by the transformation matrix

T,_ —l {l ‘D 1 _ {ll —l
U l 1 ‘U l D

is legal because T’ - d = (I , l) is lexicographically positive.

10.5.2 Parallelization and Wavefronting
The theory of loop transformation can be applied to execute loop iterations in parallel. ln this section, we
describe loop parallelization procedures. A wavefrontlng approach is presented for fine-grain parallelization.
Tiling is applied to reduce synchronization costs in coarse-grain computations.

Parallelimrion Condition: The purpose of loop parallelization is to maximize the numberofparallelizable
loops. For n-deep loops whose dependences can be represented with distance vectors, at least (n - l) degrees
of parallelism can be exploited in both fine-grain and coarse-grain cornputations.

The algorithm for loop parallelization consists of two steps: It first transforrns the original loop nest into
a canonical form. namely, aflzlly perrmtrtabie loop nest. It then transforms the fitlly permutable loop nest to
exploit coarse- andfor fine-grain parallelism according to t1'|e target architecture.

514 i‘ Advorrced Cmnpunerfirehitecture

{l 'j Canonical fiarm. Loops with distance vcctors have the special property that they can always bc
transformed into a fully permutable nest via skewing. it is easy to determine how much to skew an
inner loop with respect to an outer one to make these loops fully permutable. For example, if a doubly
nested loop has dependences {[0, 1), (1, -2), (1, -1)}, then skewing the inncr loop by a factor of2 with
respect tothe outer loop produces {[0, 1), (1, 0), (1, 1]}.

{'2} Paralfeiirarion ,rJrot'ess. Iterations ofa loop can execute in parallel if and only if no dependences are
carried by that loop. Such a loop is called a Doall loop. To maximize the degree of parallelism is to
transform thc loop nest to maximize thc numb-cr of Doall loops.

Let (ll, .. ., In) be a loop nest with lexicographically positive dependences d E D. I,- is parallelizable if and
only if "-I-‘d E D, (oi, _ .., d, 1) > {CL . ..,CI}, thc zcro vector, or d,-= 0. Once thc loops are made fitlly permutablc,
the steps to generate Doall parallelism are simple. in the following discussion, we show that the loops in
canonical form can be trivially transformed to produce both fine- and coarse—grain parallelism.
Fine-Grain Hhvefionting A nest ofn fiztlly pctrnutable loops can be transforrncd into code containing at
least in — 1) degrees of parallelism. in the degenerate case where no dependences are carried by these n loops,
the degree of parallelism is n. Otherwise, (rt I) parallel loops can be obtained by skewing the innemiost
loop in thc Fully pcrmutablc nest by cach of the other loops and moving thc innermost loop to the outermost
position.

This transformation, called wavefront transjbrmation, is represented by the following matrix:

11---11
10---on

r= 01---on (no.9)

on---10
Fine-grain parallelism is exploited on vector machines, superscalar processors, and systolic arrays. The

following example shows the entire process of loop parallelization exploiting fine-grain parallelism. The
process includes skewing and wavefront transformation.

l»)
Cg Example 10.11 Loop skewing and wavefront transformation

(Michael Wolf and Monica Lam, 1991)

Figure 10. I 3a shows the iteration slfilfie and dependence ofa source loop nest. The skewed loop nest is shown
l O

in Fig. 10. l 3b atler applying thc matrix T = [1 I] . Figure 10.13-c shows thc result of applying wavefront

transformation to the skewed loop code, which is a result of first skewing the innermost loop to make the
two-dimensional loop nest fully permutahle and then applying the wavefront transfomietion to create one
degree of parallelism.

MlMt.n.g...,g.t..,...l _ — 5,,

FmFu-TI; : 5 503310
A[I2+1] :=1x;=.' [A1121-+A[I2+11+A[|2+2]

D = {(0.1 1. {1 .01. :1. -1:}
iiifllifl
Efiflilii I2

(a) Extract dependence lnfennatlon from source loop nest

For I§r!I’1 toE»+I§do + J ’ 1

“‘i:‘.f*1f';$1’1i?“1ii"i M-m~'l2—1 } [2-1 ll

[1 '1'] 4M-Miltllr
£r= rn={{n,1y, [1.1], (1,0) [2

(bj Skew to make Inner loop nest fully permutable

ForI’1:=0to16de
om lg ;= max (0. Hr, - aim; to mln [5, L1’, 121: do

A [15 -25+ 11 = = 1)'3'A[r’1 -2151 +A[l'1,-2|§+1]
+A[l’1-21‘,+2]

" ,15'5??

Iii

“'-*~\~“~:.~.‘~‘~1-"~a\‘1‘~'.*-~..
‘**~‘$'.~.\-‘ens.

"~§~."\www-..
""'~\-.~"a

Kw

T:

D'= TD={{1,G],[2,1],[1,1]}

[cl Wavefront transformation on the skewed loop nest

Fig.1ll.13 Flne-grain praraiellratlen by loop skewing an-cl warefrent transfnrrruatlon In Example 10.11
(Cournesy eflfiblfand Lam: reprinted from IEEE Tmns. Pnmllel D-lstrlbumd 5)cterrrs. 1991}

There are no dependences between iterations within the innermost loop nest. The transform is a wavefront
transfennatiun because it causes iterations aleng the cliagnnal of the original loop nest to execute in parallel.

SIG i‘ Advorrced Covnpunerfirrhitecture

This wavefront transformation automatically places the maximum Doall loops in the innemiost loops,
maximizing fine-grain parallelism. This is the appropriate transformation for superscalar or\="LIW machines.
Although these machines have a. low degree ofparallelism, finding multiple parallelizahle loops is still ttsetitl.
Coalesoing multiple Doall loops prevents the pitfall of paralleliring only a loop with a small iteration count.

Course-Grain Parallelism For MIMI) coarse-grain multiproccssors, having as many outermost Doall
statements as possible reduces the synchronization overhead. A wavefront transformation produces the
maximum degree of parallelism but makes the outermost loop sequential if any are. For example, consider
the following loop nest:

Do i = l, N
Dn j = 1, N

Atoll =fl'Ali -1 J - lll
Enddo

En-tl-do

This loop nest has the dependence (1, 1), and so the outermost loop is sequential and the innermost

loop is a Doall. The wavefront tran.sformation does not change this. In contrast, the unimodular
l —l . .

transfomiation [0 I il transforms the dependence to (D, ll, making the outer loop a Doall and the tnnecr

loop sequential.
In this example, the dimensionality of the iteration space is two, but the dimensionality of the space

spanned by the dependence vectors is only one. When the dependence vectors do not span the entire iteration
space, it is possible to perform a transformation that makes outermost Doall loops.

A heuristic though nonoptimal approach for making loops Doall is simply to identify loops I, such that all
d, are zero. Those loops can be made outermost Doall. The remaining loops in the tile can he wavefronted to
obtain the remaining parallelism.

Loop parallelization can be achieved through unimodular transformations as well as tiling. For loops with
distance vectors. n-deep loops have at least (n - I) degrees of parallelism. The loop parallelization algorithm
has a common step for fine- and coarse-grain parallelism in creating an n-deep fillly permutable loop nest by
skewing. The algorithm can be tailored for different machines hased on the following guidelines:

' Move Doall loop innermost [if one exists} for fine-grain macl'ii.nes. Apply a wavefront transformation
to create up to {rt — l j Doall loops.

' Create outermost Doall loops for coarse-grain machines. Apply tiling to a fully permutahle loop nest.
~ Use tiling to create loops for both fine- and coarse—grain machines.

10.5.3 Tiling and Localization

Tiling and locality optimization techniques are studied in this section. The ultimate purpose is to reduce
synchronization overhead and to enhance multiprocessor efficicney when loops arc distributed for parallel
execution.
‘Tiling to Reduce Synchronization It is possible to reduce the synchronization cost and improve the data
locality OfP3IB.l.|CllIGCl loops via an optimization known as tiiing (Wolfe, 1939). Tiling is not a unirootlular

sst,ii.t..i,t.r.,..,.~,,s..,,..i — ,,,
transforrnation. In general, tiling maps an n-deep loop nest into a Zn-deep loop nest where the inner ri In-ops
include only a small fixed number of iterations. Figure 10. 14a shows the code after tiling the example in Fig.
I0. l3h using a tile size of 2 >< 2. The two innermost loops execute the iterations within each tile, represented
as 2 >< 2 squares. The two outer loops, represented by the two axes, execute the 3 >< 4 tiles. The outer loops oi‘
the tiled oode control the execution of the tiles.

The Barrie property that supports parallelization, fiill pettltutability, is also the key to tiling; Loops 1,-
through J} of a legal computation ean be tiled if they are fully perrnutable.

Thus, loops in the canonical form of the parallelization algorithm can also be tiled. Moreover, the
characteristics of the controlling loops resemble those of the original set of loops. An abstract view giving
the dependences of the tiles is shown in Fig. ID. 14h. These controlling loops are lhemseh-‘es permutable and
so are easily parallelizaliie. However, each iteration of the outer r: loops is s til-c of iterations instead oi" an
individual iteration. Parallel execution of the tiled loops is shown in Fig. 1iIl.l4c.

Forlti:=IDto5by2oo
ForIl§:=0to11ny2-do

ForI{:=|t{tomin[t{+1,5]do
For|§:=max{I|{,Il§j|tomin{6+Ii, I15-+1]do

A[l§1: = 113* [A[l§-11+.-Ii.[l’2] +A[I’2+ 1}]

[a] Tits-cl code from thosicewseioode in Fig. 1tJ.13b

Eli; iigifl§iii§is ‘IITEIBIEIL fiiilfiiifiYIEIBIEIE4 -‘ififiij-I
fliilfi

‘Et1

’ _. rrj,_ ,_

in; iteration space and dependences of the tiled oodo

ii;

rig
V I-

[G] Paraii-at execution of trio tiiod ioo pet.

Fig. 10.14 Tiling ofthe sitiewed loops for parallel execution on a ooarse-grain rmritlproc-user {Commas} of
Wolf and |_3'i‘\‘ll'I’€1Jtl‘ll'lt£d from IEEE li-ans. Parallel Dietribuiied Sietflfls. W91)

SIB i‘ - Advoricad Compuriierilirehitecture

Tiling can therefore increase the granularity of synchronization and data are often reused within a tile.
Without tiling, when a Doall loop is nested within a non-Doall loop, all processors must be synchronized with
a barrier at the end of each Doall loop.

Using tiling, we can reduce the syrlchronization cost in the following two ways. First, instead of applying
wavefront transfonnation to the loops in canonical form, we first tile the loops and then apply a wavefront.
transformation to the controlling loops ofthe tiles. In this way, the synchronization cost is reduced by the size
of the tile. Certain loops cannot he represented as distances. Direction vectors can be used to represent these
loops. The idea is to represent direction vectors as an infinite set of distance vectors.

Locality optimization in user programs is meant to reduce memory-access penalties. Software pipelining
can reduce the execution time. Both are desired improvements in the performance of parallel computers.
Pro-grain locality can be enhanced with loop interchange, reversal, tiling, and prefetching techniques. The
effon requires a reuse analysis of a “localized” iteration space. Software pipelining relies heavily on sufficient
support from a compiler working effectively with the scheduler.

The fetch of successive elements of a data array is pipelined for an interleaved memory. In order to reduce
the access latency, the loop nest can interchange its indices so that a long vector is moved into the innermost
loop, which can he more effective with pipelined loads. Loop transformations are performed to reuse the data
as soon as possible or to improve the effectiveness of data caches.

Prefctching is often practiced to hide the latency of memory operations. This includes the insertion of
special instmctions to prefetch data from memory to cache. This will enhance the cache hit ratio and reduce
the register occupation rate with a small prefctch overhead. In scientific codes, data prefetching is rather
important. Instruction prefetching, as studied in Chapter 6, is often practiced in modern processors using
prefetch bufiers and an instruction cache. I11 l:he following discussion, we concentrate on data prefetching
techniques.
Tiling fur Locality Blocking or tiling is a well-known technique that improves the data locality ofnumerical
algorithrns. Tiling can he used for different levels of memory hierarchy such as physical memory, caches,
and registers; multilevel tiling can be used to achieve locality at multiple levels of the memory hierarchy
simultaneously.

To illustrate the iniportarlce of tiling, consider the example of tnatrix multiplication:

[In i= l,N
Dnj=1. N

Du k= l, N
Ctr‘, Ir] = Cij, Ir) + A(i,j) >< BU, E]

End-tln
Enddo

Enddn

ln this code, although the same rows of C and B are reused in the next iteration of the middle and outer
loops, respectively, the large volume of data used in the intervening iterations may replace the data fiom the
register file or the cache before they can be reused. ‘filing reorders the execution sequence such that iterations
from loops of the outer dimensions are executed before all the iterations ofthe inner loop are completed. The
tiled matrix multiplication is:

smI.m..i.s.i.,,.,...s.§..,...i — 5,,
Du F =' 1, N, S

Do m = 1, N, 5
[In r'=' 1, H

Dn j= E, |nin{£+s—1,N)
Du k= m, mi_n[m + s-I, N]

CU‘, k] = C(r', k] + A(r',j} X BU, k]
Endihl

Enclcln
En-rl-do

En-lidn
End-do

Tiling reduces the number of intervening iterations and thus dam fetched beiween data reuses. This allows
reused data to still be in the eache or register file and hence reduces memory accesses. The tile size s can be
chosen to allow the maximum reuse for a specific lcvel of rnemnry hierarchy. For ciuaniplc, the tile size is
relevant to the cache size used or the register file size used.

I MFlcip5

9°" I beihtling
j cachetling

55‘ Q ragistsiiling
* nailing

m_

45-

4fl_

fi_

m_

25_

23..

'15-

'10-

5_

F'm-oassels
D I I I I I I I I -

CI 1 2 3 4 5 B 3" B

Fig. 10.15 Performance of a SUD x 500 double precision rratrix muiriplieaizion on the SGI 4D.I'3BD. Cache
1:IIesare64>< 64 ieeradons and regisnertiies are4x‘1{CaureesyofV\hlfand L:u1'urep:~h1:edfn:n1
PCM SIGPLAN Conf. Pmgmmmlng Language Design and Impien-raimflon.Tomnec.\ Canada. 1991}

5311 i‘ " Advanced Comptioerniehiteeture

The improvement obtained from tiling can be far greater than that obtained from traditional compiler
optimizations. Figure 10.15 shows the performance of Sill) >< 500 matrix multiplication on an SGI 4Df3B0
machine consisting of eight MIPS R3000 processors rtnining at 33 M]-lz. Each processor has a 64-Khyte
direct-mapped first-level cache and a 256-Kbyte direct-mapped second-level cache. Results from four
different experiments are reported: without tiling, tiling to reuse data in caches, tiling to reuse data in registers,
and tiling for hotl1 register and caches. For cache tiling, the data are copied into consecutive locations to avoid
cache interference.

Tiling improves the performance on a single processor by a factor of 2.75. The effect oftiling on multiple
processors is even more significant since it reduces not only the average data~access latency but also the
required memory bandwidth. Without cache tiling, contention over the memory bus limits the speedup to
about 4.5 times. Cache tiling permits speedups of over T for eight processors, achieving an overall speed of
64 Mflops when combined with register tiling.
Localimd It-emtion Space Reusing vector spacing offers opportunities for locality optimization. However,
re-use do-es not imply locality. For example, if reuse does not occur soon enough, it may miss the temporal
locality. Therefore, the idea is to make reuse happen soon enough. A localized iteration space contains the
iterations that can exploit reuse. In fact, tiling increases the number of dimensions in which reuse can be
exploited.

Consider the following two~deep nest. Reuse is exploited for loops i andj only, which form the localized
iteration space:

Du i = l, N
Du j = I, N

Bttljl =J'(-”\(t’)- AU?)
En-ddo

End-do

Reference AU") touches different data within the inner loop but reuses the same elements across the outer
loop. More precisely, the same data A-lfj) is used in iterations {i,j], I E i S N. There is reuse, but the reuse is
separated by accesses to N — l other data. When N is large, the data is removed from the cache before it can be
reused, and there is no locality. Therefore. a reuse does not guarantee locality. The tiled code is shown below:

Do F = 1, N, S
Du i = l, N

[In j=f, n1ax[£"+ s-1,N')

Blflfl =.r'(A{fi. Mil)
End-do

Endd-n
Enddo

We choose the tile size such that the data used within the tile can be held within the cache. For this
ettarnple, as long as s is smaller than the cache size, AU} will still he present in the cache when it is reused.
Thus, reuse is exploited for loops i andj only, and so the localized iteration space includes only these loops.

s.s..ti.1...tt.t..,.,.s,.,,.....t — ,,,
ln general, if rt is the first loop with a large bound, counting from innermost to outermost, then reuse

occurring within the inner n loops can be exploited. Therefore the localized vector space of a tiled loop is
simply that of the innermost tile, whether the tile is coalesced or not.

Obviously, memory optimizations are important. Locality can be upheld by intersecting the localized
vector space with the reuse vector space. ln other words, reuse directs the search for unimodular and tiling
transformations. One should use locality information to eliminate unnecessary prefetches.

10.5.4 Software Pipelining
This refers to the pipelining of successive iterations of a loop in the source programs. The advantage of
software pipelining is to reduce the execution time with compact object code. The idea was validated
by implementation of a compiler for Warp, a systolic array of ll) processors built at CMU (Lam, 1983).
Obviously, soft-ware pipelining is more effective for deep hardware pipelines. The concept is illustrated with
an example taken from Larn‘s Tutorial Notes on Compilers for Parallel Machines (1992).
Pipelining of Loop lteration: Successive iterations of the following loop nest are to be executed on a
two-issue processor first without software pipelining and then with pipelining.

Do I= 1, N
All) =A(Tl >< B t '3

Enddn

This is an example of Doall loops in which all iterations are independent. It is assumed that each memory
access (Read or Write] takes one cycle and each arithmetic operation (Mn! and Add] requires two cycles.
Without pipelining, one iteration requires six cycles to execute as listed below:

Cycle Instruction Comment
Read .tFetch A[l]f
Mu] IMultiply by Bi’

-e\ucuw|u--

3*E: i’AddtoCi'

Write IStore A[I]»’

Therefore, N iterations require 6N cycles to complete, ignoring the loop control overhead. Listed below is
the execution of the same oode on an 8-deep instniction pipeline:

Cycle lteration
l 2 3 4

Read
Mul

D‘-Lh-I5-U-Jl‘\-'lI—'

Read
M ul

Add Read
Mul

531 ‘i Advanced Cmnptioerfiirhiteezure

Add Read
Write Mul

Add\GlIKi‘--J

I0 Write
11 Add
I 2 Write
I3
I4 Write

Four iterations ofthe software-pipelined code are shown. Although each iteration requires 8 oyeles to flow
through the pipeline, the four overlapped iterations require only 14 clock cycles to execute. Compared with
the nonpipelined execution, a speedup factor of 24¢’ I4 = l .7 is achieved with the pipelining of four iterations.

N iterations require ZN + IS cycles to execute with the pipeline. Thus, a speedup factor of 6Ni"(2N + 6} is
achieved. As N approaches infinity, a speedup factor of 3 is expected. This shows the advantage of software
pipelining, if other overhead is ignored.
Dnnemu Loop: Unlike unrolling, sofiware pipelining can give optimal results. Locally compacted code
may not he globally optimal. The Doall loops can fill arhitrarily long pipelines with infinite iterations. In the
following Doaeross loop with dependence between iterations, software pipelining can still be done but is
harder to implement

Doaeross l= 1, N
AH} = A{I) >< B
Sum = Sum — A(]);

End-do

The sofiware-pipelined code is shown below:

Read

I:-I.»-est-its)-

E.‘E
Add Read
Write Mul

Add
Write

lt is assumed that one memory access and one aritllmetic operation can be concurrently executed on
the two-issue superscalar processor in each cycle. Thus TBCUITBIICBS can also be parallelizted with software
pipelining.

As in the hardware pipeline scheduling in Chapter ti, the objective of software pipelining is to minimize
the interval at which iterations are initiated; i.e. the initiation latency determines the throughput for the loop.
The basic units of scheduling are minimally indivisible sequences of microinstructjons. [I1 the above Doall
loop example, the initiation latency is two eyeles per iteration, and the Doaeross loop is also pipelined with
an initiation latency of two cycles.

s...t..n.......r..i................... L = 5..
To summarize, sofirware pipelining demands maximizing the tltnougltput by reducing the initiation latency,

as well as by producing small, compacted code size. Thc lrick is to find an itltmtical schedule for cvcry
iteration with a constant initiation latency. The scheduling problem is tractable. if every operation takes unit
execution time and no cyclic dependences exist in the loop.

ti“ -_A U!ummary

A programming model is a collection of program abstractions which present the programmer with a
well-defined view of the software and hardware system. Parallel programming models are defined for
the various types of parallel architectures which we have studied in the rlierchapters of the book.
‘IMa started this chapter with a study of the parallel programming models which have become well-
established. namely: shared variable model. message-passing model. data parallel model. object-oriented
model and functional and logic models.

Foranygiven model for parallel progr'amming.the user needs to be provided with a parallel programming
environment. which consists of parallel languages. compilers. sup port tools for program development. and
runtime supporLThe programming environment must: provide specific features for parallelism aimed at:
optimization. availability. synchronimtion and communication. control of parallelism. data parallelism. and
process management. Paralld language constructs are needed in the programming language. of whidw a
few examples have been presented in this chapter. And the compiler must be capable of optimizing t:he
machine code generated for the type of parallelism available in hardware.

lkctorizing or parallelizing compilers can. in theory. detect and exploit the potential parallelism which
is present in a sequential program. ln this procas. dependence analysis of data arrays can reseal the
presence or absence of dependences between successive references to army elements in a loop. or in
nested loops. in general. two operations can be carried out in parallel only if there is no data or control
dependence between them.We reviewed some specific techniques for dependence analysis of data arrays,
such as iteration space analysis. subscript separability and partitioning. and categorized dependence tests.

Optimimtion of the machine code generated by the compiler. and cycle-by-cycle scheduling of
machine instructions for execution on the procasor. are both critical to achieving high performance
computing. Local optimization can be carried out within basic bloclcs. but in general both local and global
optimizations are r‘equired.We studied several vectorization and parallelization methods. such as the use
of temporary storage. loop interchanging. loop distribution. vector reduction. and node splitting.

Code generation and scheduling make use of directed acyclic graphs ofoperations within basic blocks.
and should utilize a register allocation soategy which does not inhibit parallel execution of instructions.
Trace-sdweduling compilation males use of program traces obtained from multiple previous executions
of the same program.

Loop trartsformations may in general be required prior to prarallelization andior vectorization of
program code. Perrnutatlon, reversal. skewing, and transformatican matrices are some of the specific
techniques which can be applied. ‘Wavefioncing can be useful in exploiting fine-grain parallelism. while
tiling can help achieve locality and reduce synchronization costs in coarse-grain computa1;lons.Software
pipelining of loop iterations is another possible technique to parallelize a sequential program.

rh- Mcfimu-~ um T
534 i" mmun“ Adiwrced Cfl'lT‘lpl.rI|EJ'J\1|.liC|lhlI|E\'IIt|'J'E

55Exercises
Problem 10.1 Explain the following terms
associated with message-passing programming of
multicomputers:

(a} Synchronous sersus asynchronous message-
passing schemes.

(b} Blocking versus nonblocking communications.
(c) The rendezvous concept introduced in the

Ada programming system.
{d} Name-addressing versus channel-addressing

schemes for message passing.
(e} Uncoupling between sender and receiver

using buffers or mailboxes.
{f} Lost-message handling and interrupt-message

handling.

Problem 10.1 Concurrent object-oriented
programmingwasintroduced in Section 10.1 .4.Chain
multiplication ofa list of numbers was illustrated in
Example 10.2 based on a divide-and-conquer strategy.
A fragment of a Lisp-like code for multiplying the
sequence of numbers is given below:

{define tree-product
(lambda [tree]

{if [number ? tree]-
UEE

rem-rwducmerr-mi ml)
(*l"E~‘-‘-Pmdufilfifilfl-"Eel "'EP}l})}

In this code.a tree is passed to tree-product. which
tests to see ifthe tree is a number [i.e. a singleton at
the leaf node}. If so. it returns the tree; otherwise it
sub-divides the problem into two recursive calls.The
left-flee and right-tree are functions which pick off
the left and right branches of the tree. Note tint the
argument to * may be evaluated concurrently.

Write a Lisp code to implement this divide-
and-conquer algorithm for chain multiplication
on a multiprocasor or a multicomputer system.
Compare dwe execution time by running the same

program sequentially on a uniprocessor system.The
chain should be sufficiently long to see the tlilference.

Problem 10.3 Gaussian elimination with partial
pivoting was implemented by [Quinn90] and
Hatcher in C* code on dwe Connection Machine. as
well as in concurrent C code on an nCUBE 3200
multicomputer.

(a) Discuss the translationicompiler effort from
C* to C on the two machines after a careful
rding of the paper by Quinn and Hatcher.

(b) Comment on SPMD [single program and
multiple data streams} programming style
as opposed to SIMD programming style. in
terms of synchronintion implementation and
related performance issues.

(c) Repeat the program conversion experiments
for a first Fourier transform (FFT) algorithm.
Perform the program conversion manually at
the algorithm level using pseudo-codes with
parallel constructs.

Problem 10.4 Explain the following terms related
to shared-wariable programming on multiprocessors.

(a) Multiprogramming.
(b} Multiprocessing in MIMD mode.
(c) Multiprocessing in MPMD mode.
(d) Multitasking.
(e) Multithrding.
{f} Program partitioning.

Problem 10.5 The following arrays are declared
in Fortran 90.

REAL A(10. 10. 5)
REAL B(9. 9)
REAL C(3. 4, 5}

(a) Llst. array elements specified by the following
array expressio ns:A(5, 8?‘. *}. B[3:*:3. 5:8). and
C(*. 3,4}.

(b) Canyou makethefollowingarrayassignments?

..........................g.............. — 5,5
A{3:5. 14.5} = cr. 3, 3=5}.
241.2. rs) = B{7:9,4:6}.
c(*. 4. 4.5) = arm. e.-9). and
A(5.9:10.2:4} =A(?. 3.4. an + c(2.4.-s.1=3).

Problem 10.6 Determine the dependence
relations among the three state mentsin the following
loop nest.The direction vector and distance ‘oEC1'.Ol"
should be specified in all dependence relations.

Do 1= 1. N
Do j = 2. N

S1: All-J} =P~iLJ—1) + BU-J}
$1: Cfil-J} = NI-J) + DI{I+1-J}
$3. D([.j} = 0.1

Enddo
Enddo

Problem 10.7 Consider the following loop nest;

Do I = 1. N

$11 Ail) = BU)
5:‘ CU} =AlU * BU}

Problem 10.9 Consider the following loop nest:

(H)

lb)

(c

Do] = 1.N
Do I = 1. N

S1: A(l,j+1} = B{l.j) + C{l.j}
S1: D(l.j} =A{l,])i2

Enddo
Enddo

Show how to compile the code for
vectorization in the l-loop. assuming Fortran
column-rnrajor storage order.
Show how to compile fl"|E code for
parallelization in fl"|E j-loop using the
Doacross and Endacross commands. You
can use a conditional statement or S.ignol(_|)
and ‘IM:|it[|—1) for synchronimtion in the
concurrent loop.
Show how to compile the loop to perform
the j-loop in vector mode. while using the
Doall and Endall commands for the outer
l-loop.

S3; E(]) = C[I+1} Problem 10.10 Eaqalain the following loop
Enddo transformations and discuss how to apply them for

loop vectorization or parallelization:
(a) Determine the dependence relations among ,(a) Loop permutation.the dwree statements. (b)
(b} Show how to vectorize the code with Fortran Loop reversal.

90 statements. (C) Loop skewing’
(<1) Loop tiling.

Problem 10.8 Consider the following loop nest; (E) wmefront n.anSfm.maIiOn_

Dol = 1. N (f) Locality optimization.
Do] = 2.N (gi Software pipelining.

S1: M11} = Bill) + CKLJ}
$1; C(I.j} = D(L J}!2 Problem 10.11 Loop-carried dependence (LCD)

exists in the following loops:
S3‘ Ell-ll =Al-l-l_1}#1 1' Ell-l_1l|' (H) Consider the forward LCD in the following

Enddo loop:
E"dd° Dol = 1. N

(a} Show the data dependences among the Am =A(-1+1) .|. 114159
statements. Enddo

(b} Show how to parallelize the loop. schedulin3 Explain why a forward LCD does not prevent
the parallelizable |terat|ons to concurrent wctflrizafion Ofakmp‘
PFOCESSOFS.

530 i‘ " Advoarced Cnmpaimerfiichiteczure

(b) The following loop contains backward LCDs:
Do I = 1. N — 1

Afl} = B|[I) + CH}
B-(H1) = D|{I) * 3.14159

Enddo
Show that the loop can be vectorized by
statement reordering.

Problem 10.11 Vectorize or parallelize the
following loops if possible. Otherwise. explain why
it is not possible.

(1)
Do 1 = 1. N

A(I+1) = AU) + 3.14159
Enddo

(bl
Do 1 = 1.1\1

11 (.1. 11} .LE 0.0) then
s = s + 5(1) * ca}
x = an)

Enclif
Enddo

Problem 10.13 Tanenbaum and associates have
suggested a hybrid parallel programming paradigm
using shared objects and broadcasting. Study the
paper that appeared in IEEE Computer (August 1992)
and explain how to apply the software paracligrn for
either multiprocessors or multicomputers.

TM Illnffirthii Hilifiurnponnri .

Parallel Program Development
and Environments

This chapter describes software environments and program development techniques for parallel
comput:ers.We first introduce environments.syncl'1roni:arJon. and execution modes.Then we describe
methods for shared-variable and message-passing program development. The empinsis is on program
rnodularity, fast: communication. load balancing, and performance tuning.

PARALLEL PROGRAMMING ENVIRONMENTS
: An environment for parallel programming consists of hardware platforms, languages

supported, OS and software tools, and application packages. Thc hardware platibmts vary
from shared-memory, message-passing, vector processing, and SIMD to datafiow computers. Usually, we
directly identify the machine models used. such as Cray Y-MP, HEN Butterfly. iPSC--“S60. etc.

The last two decades have seen a revolution in massively parallel computer architecture, with system
pcrlbnnauec rcachirig hundreds of tcraflops and cvcn pctaflops Huge advances in processors, memory,
display systems, system interconnects, and networking have contributed to this revolution, while tl1c range
of applications of such systems has also grown enormously. Newer applications of such systems include
multimedia applications, data mining, and highly sophisticated simulations in science and engineering. As
system hardware has developed rapidly, thc accompanying parallel programming environments have also
evolved and become more powcrlill; attempts have also been made to develop newer parazligms for parallel
programming. ‘Iii-"l1ilc the basic concepts ofparallcl program dcvclopmcnt will he studied in this chapter, we
shall review some of the more recent advances in Chapter 13.

11.1.1 Soft:wareToo|s and Environments
Parallel programming languages such as Linda and Strand 38 provided the minimal parallel programming
environment. Others form an integrated environment consisting of an oditor, a debugger, performance
monitors, and a program visualizer for improving software productivity and the quality of application
programs, such as thc packages Express and TOPSYS.

Figure li.l shows a classification of environment types on the line between the minimal languages and
integrated environments. Integrated environments can be divided into brim‘:-, iinrireti, and l-1-‘Eff-£ll£’\-'c'f(J]IJc’{1f
classes, depending on the maturity ofthe tool sets.

1 .SIB i AdwrieedCmr|pu1terArehi;tecttrre

Parallel
l-afls H995 Linda, omo. Strand-8-B

FORCE, SISAL, Hypertasklng

Software
Toot Type Basie SPISICES-2 SCHEDULE

CODEIROPE, POKER
MOMMA-CS, OLYMPUS

'-'“""°d PIE, Mlluifltzer,
Integrated PAT’ Myflas
Env lronrnnnt

Well
FAUST, Expmss
TOPSYS

Fig. 11.1 Software mu! types for parallel prograrrimlng [Cmrmsy of Chang and Srntdx 1990]

Abasic environment provides a simple program tracing facility for debugging and perib rmancemonito ring
or a graphic rneelianism for speeifyirig the task dependence graph in SCHEDULE, the process call graph in
FAUST, and the process component graph in PIE.

Limited integration provides tools for parallel debugging, performance monitoring, or program
visualization beyond the capability of the basic environments listed. Well-developed environments provide
intensive tools for debugging programs, interaction oftextualfgruphieal representations ofa parallel program,
visualization support for performance monitoring, program visualization, parallel IEO, parallel graphics, etc.

The classification of a particular tool changes with time. For example, C-Linda and Fortran-Linda were
developed to help C and Fortran programmers write parallel programs using the tuple spaces in Linda.

Envirunmurt F-eaturu In designing a parallel programming language, one often faces a dilemma involving
eornprrribr'h'1'_t-', erpressit-‘mess, ease afuse, eflieiency, and prJrmhii'iI_§|-'. Parallel languages are developed either
by introducing new languages such as Linda and Occam or by extending existing sequential languages such
as Fortran 90, C‘, and Cu|1currer1tPaseal. A new parallel prograrnming language has the advantage of using
high-level parallel concepts or constn.|cts forparallelism instead of |.|sir|g imperative (algorithmic) languages
which are inherently sequential.

Most parallel computer designers choose the language extension approach to solving the compatibility
problem. IIigh—1evel parallel constructs were added to Fortran, C, Pascal, and Lisp to make them suitable for
use on parallel computers. Special optimizing compilers are needed to automatically detect parallelism and
trartsforrn sequential cortstnrcts into paralled ones.

Hrmillel Prtgmlm Develepvnent 1., 539

High-level parallel constructs can be implicitly embedded in the syntax or explicitly specified by users.
We have identified three compiler approaches; ;Jrt=proees.sars, ,|'Jree0:rrpiIer.s, and]Jfll"r1”e’i'i:.'iHg eom,rJr'!ers, as
illustrated in Fig. 11.2.

New
lie ST RAND~B-B, Linda, SISAL

pmpmcessor TOPSYS, FAULT, PISC-ES-2
Hyportask ing, SCHEDULE

Param F-ORG E, PIE, lulynss, MON MAC-S
Language i-' Langmge C-ODEJROPE, POKER, OLYMPUS

Extension

Fortran~90, Ma
ii.» lf-:31'lQlJ3Q‘9
Extended oatura-s

Automated ExprQ$_
Flt Forlran

Pmeornpi ler

DINO, lu'l|MDizer, PAT
S-smlautomsled

Flg.11.2 Paraflel hnguagas and oumpiler nedwn-elegy for parallel progmmming at diflerent auturrnation levels

Preprocessors, such as FCIRC Eand MUNMAC S, usecompiler diroctivesormacroprooes Precompilers
include automated Alliant FX Fortran compilers, the Express C automatic parallclizer, and semiautomated
compilers such as DINO, PAT, and M[MDizcr:

Some early parallel language approaches are differentiated in Fig. l 1.2 based on the degree of compilation
support developed. The categorization is by no means fixed. A language tool ean be upgraded from the
semiautomated category to the automated category if the compiler is upgraded . Several parallel programming
tools are summarized in Table ll.l.

In addition to language lcompiler development, a parallel programming environment must have supporting
tools to facilitate the development and testing of parallel programs. Such an environment should provide
software tool sets which can be applied to different phases of the program development cycle such as for
editing, debugging, performance monitoring, and tuning.

-540 i AdnoricedCm1-tprrterfirchitecture

Table 11.1 Reprmenrnthe Parallel Programming Tools

Fir:-I r"t'r.rrr:e.
If. 'ornpu1' ing

Marti-|:'f

Lrrngrrrrge, DE GUT
and Eirnrim-nmem

Fetrmres

Hrrrerlwrrre
Pierform

ripplierrri tins
Remarit and

Re}fé‘r1e'rre£'3

M I Mllire r
shared-memory
nirrssage-pasaittp,
systems

Fortran, UNIX, \="MS,
X-‘Window, S1.rnView,
Do-loop pmaiielization
compiler dirwtives, array
decomposition code
restructuring, 1'nemage~
ow-ins warmt-

X-Ml‘, Y-MI’, Cray 2,
iPSC, Sim. IRIS. NEC.

Scientific nurneritarl
computations: Pacific
Sierra Research
Corp. {I-larrison9U}
and [PSR90].

Expreat
message-passing
systems

Fortran TI, Fortran 90, C,
C-1+, UNIX, D05.
X*Winrlow, Srmifiew,
oodc parallclizatimt,
domain decomposition,
oo1'ru'nu.nkation monitoring,
bondbaimwhtg.

iPSC, ‘r’-Ml‘, Sim,
nCUBE, PC,
Macintosh.

r7‘"" "7"'
Soimtifi-c
{finite-element, -ctc.);
Parasofi Corp.
[Parasofi90].

C-Linda
tuple-spaoe
protocol

C (Fortran called finm C},
UNIX, X-‘Window, new
language cxtemion to
paraiiel prograrrrm ing.

iP'SCIS6»D, Y-MP,
Sun, IBM R6000,
Encore. Scqucnt,
Apollo.

Scientific and
disuihuteri database
processing; Scientific
Computing Asa, Iue.
[A!:ru_ia86].

SC IIED L7 LE
shat-ed-memory
systems

Fortran, C. UNIX.
X-Window. Srmwew.
parallel algorithm

Cray 2, Encore.
Scquent, Allianl.

'"a:;rr.=, numeric; i
[Dongamfifi]. University
of Teruaarsee.

development and Iunct ional
paralieticzation.

GUI = Graphics user interface.

Advances in visualization allow the programmer to visualize parallel computations through dynamic
graphical animation of control flow and data flow patterns. Program visualization pcrlrrits risers to identify
performance bottlenecks in a parallel program more easily than with a purely text-based interface.

Summary The important environment feattrres are summarized below:
{ ll Control-flow graph generation.
{2} Integrated textual.-‘graphical map.
{'3} Parallel dehuggerat source code level.

i '1 .I| It -Rrrollei Fragrant Dcnclc-pvnem is 5|"

{'4} Performance monitoring by either software or hardware mean s.
{'5} Performance prediction model.
(st Program visualizer for displaying program stn.|ct1.rres and data flow patterns.
{Tl Parallel input.~"output for fast data movement.
1' E] Visualization support for program development and guidance tbr parallel computations.
{'9} OS support for parallelism in lront-end or back-end environments.

{ 1 0] Communication support in a network environment.

11.1.1 Y-MP; Paragon and CH-5 Emrironments
The software and programrning environments of the Cray ‘t’—MP, lntel Paragon XPES, and Connection
Machine CM-5 are examined below. Readers can also referto Chapter 13 and the plentilill material available
on the web for additional information on these and other parallel computer environments.

Cray‘!-MP Software The Cray Y-MP ran with the Cray operating systems UNICUS or C05. Two Fortran
compilers, CFT'l'7 and CFT, provided automatic veetorizing, as did C and Pascal compilers. Large library
routines, program management utilities, debugging aids, and a Cray assembler were included in the system
software. Communications and applications soltwarc were also provided by Cray, by a third party, or from
the public domain.

UNIC-OS for Y-MP was written in C and was a time-sharing OS extension of UNIX. UNTCOS supported
optimizing, vectorizing, concurrentizing Fortran compilers and optimizing and vectorizing Pascal and C
compilers. Besides interactive mode, it supported the Network Queueing System {NQ S] forbatch processing.

COS was a multiprogramming, multiprocessing, and multitasking OS. lt oifercd a batch environment to
the user and supported interactive jobs and data transfers through the front-end system. COS programs could
run with a |t'tarti.ttJut't1 of four processors up to 16M words of memory on the Y-MP system. Migration tools
were available to ease conversion from COS to UNICOS.

We will describe three multiprocessirtgfmultitasking methods—macrotaslting. microtasking, and
autotaslcing—in Section l l.2.3. The Cray Y-MP implemented all three methods and they could work together
in a single program.

CFTTF was a multipass, optimizing, transportable compiler. [t carried out vectorization and scalar
optimization of Fortran 77 programs. The Cray assembler, CAL, enabled a user to tailor a program to thc
architecture ofthe Cray Y-MP.

Subroutine libraries contained various utilities, high-performance DD subroutines, numerous math and
scientific routines, and some special-purpose routines for communications and applications. A directory of
applications software for Cray supercomputers was also made available.

lntel Paragon XPIS Software The Intel Paragon XPIS system was an extension of the lntel iPSC.-'35-D
and Delta systems. A summary of the XPIS system is given in Table 11.2. It was claimed to be .-1 scalable,
wormhole, mesh-connected multicomputer using distributed memory. The processing nodes used were
50-MHz iilfifl XP processors.

Paragon ran a distributed UNIXIOS based on OSF technology and was in conforrrtancc with POSLX,
System V.3, and Berkeley 4.3BSD. The languages supported included C, Fort1'art.Ada, C++, and data-parallel
Fortran.

541 i AduencedCmnputerA.rehi1ecture

Table 11.2 lntel Paragon XPIS Mulrlcomp-t.|re.r Sysrern

Capacity 5--300 Gflope peak 64-bit results, 2.8-[GU GIPS peak integer perforrnance,
node—to—nodc message muting at 200 Mbyteafs (full duplex). I-123 Gbyltes
main memory. up to 500 Gbytcsfs aggregate bmtdwidth. ti Gbytea — 1 Tbyte
internal disk storage, up to 6.4 Gbytefs aggregate HO bandwidth.

Node architecture ‘Nodes based. on Intel's 50 MH2: i860 XP processor. 75 Mitt-‘tit. 42 VAX
MIPS peak per processor, 16-[28 Mbytes DRAM per node.

Operating system Distributed UNIX based on OSFreehnotug1.», eonfomianee with POSIX,
System V.3, 4.3 BSD virtual memory, simultaneous batch and interactive

. _‘3E“!'?il‘?ll_-
Programming, ettviromnent C, Fortran, Ada, C - 1-, data-parattet Fortran, integrated tool suite with a

Motiflbesed GUE, FORGE and CAST parallelization tools. lntel
ProSolver parallel equation solvers, BL.-‘t5, NAG, SEGIH: and other math
tibr-arm, interactive parallel clelnrugger |[lPD]|, harclware-aicied performance

__ visualization syseern (_P"v'S_). g
Visualization X Window system, PBX, Distributed Graphics Library {DGL} client

support, AVS and Explorer interactive visualizters, connectivity to I-UPPI
trarne butters

Source: Intel Corporation. Supercomputer Systems Division, Bcaverton, Oregon. 1991.

The integrated tool suite included FORGEandCAST parallelization tools, lntel ProSol\-icr parallel equation
solvers, and BL.-HS, NAG, SEGlih, and other math libraries. The programming environment provided an
interactive parallel debugger HPD} with a hardware-aided perforrnance visualiiettion system (PVS).
CM-5 Software The software support and programming environment for the CM-5 are introduced here.
The CM-5 designers aimed at independent scalability of processing, communication, and lit). This aim must
necessarily he supported hy extensive software, languages, and application libraries.

The sofiware layers ofthe Connection Machine systems are shown in Fig. l 1.3. The operating system used
was CMDST, an enhanced version of UNIXIDS which supported time-sharing and batch processing. The
low-level languages and libraries matched the hardware instnrction-set architectures.

CMDST provided not only standard UNTX services but also supported fast IPC capabilities and data-
parailcl and other parallel prograrnming models. lt also exttnitlcd the UNIX I/D environment to support
parallel reads and writes and managed large files on data vaults.

The Prism programming environment was an integrated Motif—based graphical enviromnent. Users could
dcyclop, execute, debug, and analyze the performance of programs with Prism, which could operate on
terminals or workstations running the X-Window system.

High-icvcl languages supported on the CM-5 included CM Fortran, C-H-, and *Lisp. CM Fortran was
based on standard Fortran 77 with anay processing extensions of standard Fortran Q0. CM I-‘ortran also
offered several extensions beyond Fortran 90, such as a FURALL statement and some additional intrinsic
functions.

' '_| Il|r.u| u _-Fbmtllel Fragrant Developvrlent -L Q3

L.lsorA ppllcatlons

Hlgh~ Level Languages: C’,
CM Fortran

Q?-i *|_lLmm Utllltles Spcu Sclsntlflc S Ba ch
figglgia NQSysttirm

\l'lsuall- '-°“'*°""' Prlsmlanguages
Za“°" s Libraries Cheek-

GMMD pointing

Hamatma Dmra_t|ru maxim
System
[UNIX] I H|F'F'|

I High-performances ' Ulllalqel
parallel file system I \;r.,1E

I Ethernet
I NFS

I FDDI

Fig. 11.3 Soirware layers of the Connection Fhchlne system {Court-may et'Thinlrlng Machines Corporation, 1991)

C‘ was anextension oftheC programming language which supported data-parallelprogramrning. Similarly,
‘Lisp was an extension of the Common Lisp prog;ra|uming language for data-parallel programming. Both
could be used to structure parallel data and to compute, communicate, and transicr data in parallel.

The CM Scientific Software Library included linear algebra routines, fast Fourier transforms. random
number generators, and some statistical analysis packages. Data visualization was aided by an integrated
environment including the CMXII library. CMMD was a CM message-pass ing library permitting concurrent
processing in which synchronization occurs only betw-een matched sending and receiving nodes.

11.1.3 Visualization and Ferforrnance Tuning
The performance of a parallel computer can be e;n.han-cetl at several stages: At the machine design stage, the
architecture and OS should be optimized to yield high resource utilization and maximum system tl'|roughput.
At the algorithm designldata structuring stage. the programmer should match the software with the target
hardware. At the compiling stage, the source code should be optimized tor concurrency, vectorization, or

l544 i Advanced Cmnprrterfirehitecture

scalar optimization at various granularity levels. Finally, the compiled object code should go through further
fine-tuning with the help of program prolilers or run-time information.
lfizuolizafion Support We consider below performance tuning at thc programming, compiling, and
execution stages. To probe further, we add a few perfornianee measures to reflect the resource utilization
rate for a wide class of application programs. These measures are useful in predicting the perlormanoc
and in performing program tuning in an interactive manner. Special program trace methods are needed for
event monitoring in the performance tuning process. A special grnl-Jfrir-s user fHI£"!_'fiI£‘-E‘ is required to support
perfo rmanee monitoring, prediction, and visualization.

In the ND and program development areas. visualization is also needed. Perforrnance tuning requires
extensive software experiments with the help of GUI and utilization support. Tuning an operating system and
an application program requires efiiirt from both ends. System tuning involves the tuning ofvirtual memory
and process priorities, such as adjusting the resident set size and scheduling policy.

Even the best computer architect carmot guarantee the performance of a system tmtil the machine is tested
by actually running real software programs. During the architecture design stage, simulation may be used
to predict performance. llowever, simulation experiments are often biased or restricted by theoretical load
characteristics.

During the compiling and execution stages, user programs can be modified eidter through programmer
guidance or through the use ofan intelligent compiler for auto matic code transformations toward optimization
or vectorization. Program modification can be extended all the way bee-it to the algorithm design stage.
Choosing better data structures can often make a big difference.

Performance Tuning If special hardware/software mcchanisrns are available, one can also collect run-time
information, such as processor and memory utilization patterns, to guide the code transformation. One can
also conduct a critical-path analysis ofprograrrts in order to reveal the bottleneck. Bottleneck removal or
shortening the critical path through grain packing or other techniques ca.rr improve the system performance.

Besides measuring the MIPS, Mflops, or TPS rate, performance tuning may require a check of the CPU
utilization rate, cachehit ratio, page fault rate, load index, synchronization frequency, memory-access pattem,
OSlcor:npiler overhead, and interprocessor communication or data rnovcmcnt delays. These measures reflect
the degree of matching between software and hardware.

To tune a computer system for a given application, the gap between hardware and software must he
closed. Conrpifer .n‘r'reeriv'e.s can be inserted to guide code optimization. Program prc-filers can he used
to modifir the object code in multiple passes through the compiler. Program tuning at rim time must be
assisted by program traces and event monitoring. These may require special hardwareisoltware support. The
purpose of these traces is to produce system control parameters for more efficient processor allocation, better
memory utilization, higher eache bit ratios, fewer page faults, more effieient synchronization, and lower-
communication overhead.

Run—time program tuning is much more difficult to implement than compile—time tuning. However, the
latter lacks run-time oonditions, making it diffieult to predict the performance accurately. Thus both compile-
time and r|.|r1-time techniques are needed in the performance tuning process.

R1rollelPrrgr'omDesrela-pvnent L 5,15

SYNCHRONIZATIONAND MULTIPROCESSING MODES

1 Principles ofvarious synchronization mechanisms for interproccss communication are studied
first. Then we describe various modes for multiprocessing with shared memory.

11.2.1 Principles of Synchronization
The performance and correctness of a parallel program execution rely heavily on efiieient synchronization
among concurrent computations in multiple processors. As revealed in Chapter 6, both hardware and software
mechanisms are needed to synchronize various granules ofparallel operations.

The source ofthe synchronization problem is the sharing of writable objects {data or structures) among
processes. Once a writable object permanently becomes read-only, the synchronization problem vanishes at
that point. Synchronization consists ofimplcmenting the orderofopcratiorts in an algorithm by observing the
dependences for writable data. Shared object access in an MIMD arch itecture requires dynamic management
at run time, which is much more complex than that of an SIMD architecture using loclrstep to achieve
synchronization at compile time.

Low-level synchronization primitives are olien implemented directly in hardware. Resources sueh as the
CPU, bus or network, and memory units may also be involved in synchronization of parallel computations.

We examine below rrtoorrc operrrrions, war‘! pr-orocofs, for'rnes.s policies, access order, and sor"e-oce¢'s.s
prr)!oeol'5‘, based on the work of Bitar { I 99 I)_, for implementing efficient synchronization schemes.

Atomic Operations Two classes of shared memory access operations are {'1 j an individual wort‘ or rt'rr're
sueh as Registerl := Jr and (E) an indivisible rerrrl-morfrfthrt-‘rim’ such as .1‘ :=flx) or__r-' t =j{.1'j.

From the synchronization point of view, the ordcrofprogram operations is described by re'rfi-nmrfiflr‘-tt'riIe’
operations over shared writable objects ealled atoms. An operation on an atom is ealled an oromic operation.

A hard atom is one whose access races are resolved by hardware such as Tcst&Ser, whereas a soft atom is
one whose access races are resolved by software such as a shared data structure protected by a Tcst&Set bit.

The atomicity ofobjccts m|.|.st be explicitly implemented by the software {on soil atoms), or the software
mu st explicitly delegate the responsibility to the hardware (forhard ato msj.

The execution of operations may be out of program order as long as the execution order preserves the
meaning of the code. Three kinds ofprogram depcntleuees are identified below:

' Doro dependent-e.s: WAR, RAW, and WAW as defined in Chapters 2 and 5.
' Comm! depensienr-e.s: Program flow control statements such as goto and ffltlren.
' Side-effirrrr deperrde'rree.s': Due to exceptions, traps, HO accesses, time out, etc.

The correct execution order, as enforced by correct synchronization, must observe the program
dependences. The atomicity ofopcrations is maintained by ob sewing dependences. Therefore, synchronized
execution order must resolve any race condit ions at run time.

Wrlit Protocol: There are two kinds of n'oirpro.rocol'.s when the sole—aceess right is denied due to conflicts.
ln a bust-' n'or'r, the process remains loaded in tl're processor's context registers and is allowed to continually
retry. Wliile it does eon sume processor cycles, the reason forusing busy wait is that it ofiers a faster response
when the shared objc-et becomes available.

546 i ' .~'rdrrorrcedCm11puterA.rchi1eeture

In a sice;J wait, the process is removed from the processor and put in a wait queue. The process being
suspended must he notified of the event it is waiting for. The system complexity increases in a multiprocessor
using sleep wait as compared with those implementing busy wait.

When locks areused to synchronize processes in a multiprocessor, busy wait is used more often than sleep
wait. Busy wait may olfcr a better pcribrmanoc if it emails less use of processors, memories, or network
channels. lfslecp-wait queues are managed using lock synchronization, it may be necessary fora process to
wait for access to a sleep-wait quc|.|e.

Busy wait can be implemented with a self-service protocol by polling across the network, or with a full-
service protocol by being notified across the network when thc atom becomes available.
Fairness P‘-oficie: Busy wait may reduce synchronization delay when the shared object becomes available.
However, it wastes processor cycles by continually checking the object state and also may cause hot spots in
memory access.

In sleep wait, the resources arc better utilized, but a longer synchronization delay may rcsult. For all
suspended processes waiting in a qucue, a_,if¢n'rncs's' poi'ir_'_r must be used to revive oneofthe waiting processes.
Thrce fairness policies arc summarized bctow:

' FIFO: The wait queue follows a first-in-first-out policy.
r Bortnoled: The number ofturrts a waiting process will miss is upper-bounded.
I Lit-'e!ot'k;fit:e: One waiting process will always proceed; not all will wait forever.

In general, the higher level of fairness corresponds to the more expensive implementation. Another
concem is the prevention of deadlock among competing processes.

Sole-Access Protocol: Conflicting atomic operations arc serialized by rncans of sole-access protocols.
Three synchronization methods are described below based on who updates the atom and whether sole access
is granted before or afier the atomic operations:

{1} Lock Synchronization In this method, the atom is updated by the requester process and sole access is
granted before the atomic operation. For this reason, it is also called par-.s'__wrehroni:ofion. The method can be
applied for shared read-only aocess. The lock granularity is a major issue in loclt synchronization.

Most hardware-implemented locking applies to finer—grai11 physical units such as the memory module,
cache, memoryfcache block, etc. Lock mechanisms are described in Section 11.3.1.

{2} Optimistic Synchronization This method also updates the atom by the requester process. But sole acoess is
granted after the atomic opcration, as described below. It is also called post-.s'_vncirroor'n:a'ion. A process may
SGCUTB sole access after first complefing an allomir; operation on a Focal‘ version ofthe atom and then exccuting
another atomic operation on the global version of the atom.

The second atomic operation detennines ifa concurrent update of the atom has been made since the first
operation was begun. If a concurrent update has taken place, the global version is not updated; instead, the
first atomic operation is aborted and restarted from the ncw global version.

The name qrrtimistie is due to the fact that the method expects that there will be no concurrent access to the
atom during the execution ofa single atomic operation. This method was designed to eliminate the bottleneck
created by a coarse-grain lock for the object of the first atomic operation.

i '1 .I| \ -Rsraliel Fragrant Deuclopvnem in 5‘-y

This idea led to the concept ofopn'mis'rie eoneurrenet-‘ developed by Kong and Robinson (1931). Dptirnistic
synchronization requires extra work in order to implement the global update operations, and the method also
incurs a possible abortion cost.

{3} Server Synehmnizcrtion This method updates the atom by the server process of the requesting process,
as suggested by tl1e name. Compared with lock synchronization and optimistic synchronization, server
st-'m-hroniznrion offers full service.

An atom has a unique update server. A process requesting an atomic operation on the atom sends the
request to the atom‘s update server. The update server may be a specialized server processor {SP} associated
‘with the atom‘s memory module.

Remote procedure calls and object-oriented or actor systems, in which shared objects are encapsulated
by a process, provide examples of server synchronization. ln a shared-memory multiprocessor using hard
atoms, all three synchronization methods can be implemented, whereas only server synchronization is used
in a message-passing multicomputer.

A soft atom occurs only under lock synchronization or optimistic synchronization. A specialized server
processor must be used to implement server synchronization in a multiprocessor with a centralized shared
memory.

In a message-passing system, the node processors with local memories can implement server
synchronization without using additional server processors.

Synchronization Environment Afier leaming about the principles oflPC and synchronization methods,
we consider several implementation issues in developing parallel programs for multiprocessors.

Parallel program development hinges on how effieiernt synchronization is implemented with locks,
semaphores, and monitors. We assess below various synchronization environments.

lt is often desired to move the synchronization logic closer to the shared memory units in order to reduce
bus trat’fic- or network contention and CPU usage in the synchronization process. Such a synchronization
environment may require the use of a server processor for coordinating the synchronization process and
virtual memory management. The Cedar multiprocessor system has included this feature in globally shared
memory units.

ln general, synchronization controls the granularity of partitioned algorithms, aifects the ease ofwriting
correct programs, determines the fairness in selecting among competing processes, and ultimately influences
the cfficiency of parallel program execution. Special hardware and software support are needed to create an
eflieient and user-friendly environment.

Due to the dynamic run-time behavior, a poor synchronization environment may cause excessive waste
in CPU cycles or network bandwidths, which otherwise could be more effectively used by other active
processes. A poorly written parallel program may result in excessive synchronization that cancels all the
advantages of parallelism. Therefore, an ideal synchronization environment should be jointly developed by
designers and programmers.

11.1.2 Multiprocessor Execution Modes
Multiprocessor supercomputers are built for vector processing as well as ibr parallel processing across
multiple processors. Multiprocessing modes include parallel execution from the fine-grain process level to
the medium-grain task level, and to the coarse-grain program level.

54]] i “ Advanced Cmnprrterfirchitecture

ln this section, we examine the programming requirements for intrinsic multiprocessing as well as lor
multitasking. Experiences using the Cray Y-MP are presented along with a programming example.

Multiprocessing Requirement: lvlultiprocessing at the process level requiresthe uscof shared memory in a
tightly coupled system. Summarized below are special requirements for facilitating efiieient rnultiprooessing:

' Fast context switching among multiple processes resident in processors.
~ Multiple register sets to facilitate context switching.
' Fast memory access with conflict-free memory allocation.
- Effective synchronization mechanism among multiple processors.
* Software tools for achieving parallel processing and performance monitoring.
' System and application software for interactive users.

As machine size increases, the problems of communication overhead and el"t'ec1ive exploitation of
parallelism in a user program become more challenging. Meeting the challenges relies to a great extem on
the development of system hardware and sofiware support to free programmers from dealing with tedious
program partitioning, parallel scheduling, memory consismncy, and latency tolerance.

Nlultitaslcing Environment: Three generation.sol'multitasking software were developed by Cray Research,
NEG, and other multiprocessor manufacturers. Multitasking exploits parallelism at several levels:

- Funetional units are pipelinocl or chained together.
- Multiple functional units are used concurrently.
- HO and CPU activities are overlapped.
- Multiple CPUs cooperate on a single prograrn to achieve minimal execution time.

In a multitasking environment, the tasks and data structures of a job must be properly partitioned to
allow parallel execution without conflict. However, the availability ofprocessors, the order of execution, and
the completion oftasks are l'l.|nctions of the run-time conditions ofthe machine. Therelbre, multitasking is
nondcterministic with respect to time.

On the other hand, tasks themselves must be deterministic with respect to results. To ensure successi'i.|l
multitasking, the user must precisely define and include the necessary communication and synchronization
mechanisms and provide protection for shared data in critical sections.

Reentrancy is a useful property allowing one copy of a program module to be used by more than one task
in parallel. Nonreentrmt code can be used only once during the liletimc of the program. Reentrant code, if
residing in the critical section, can be used in a serial tashion and is called scrirrlilv rerrsrrbfc code.

Roentrant code, which is called many times by dificrent tasks, must be assigned with local variables and
control indicators stored in independent locations each time the routine is called. The standard and familiar
stack mechanism has been employed in Cray multiproccssors to support recntrancy.

11.1.3 Multitasking on Cray Multipnocesson
Three levclsofmultitasking are described below lbrparallcl execution on C ray X-MP or Y-MP multiproccs sors.
Multitasking tradeoi'fs are demonstrated by an example program execution.

Fhrullel Prrzgmun Development mi, gr"

Nlnerutnsking When multitasking is conducted at the level of subroutine calls, it is called nrrrcmrrrslring
with medium to coarse grains. Macrotasking has been imp lcmentcd ever sincethe introduction ofCray X-MP
systems. The concept ofmacrotasking is depicted in Fig. ll.4a.

Program Catt brk [S1,
[oonoeot] Catt brlr [S2,

Carr brk [S3,
Carl brlr [S4, -|_.-\---_-~_-

sinature“ TlrnoZ.-|
Prone-soorIDI 51 I I I

rulaerotaeklng I

Ms-=-=» E
HW1 E
Pro-oe-sso=r2

mesa
[at Macrotasldng across S|JlLl|'0Llll'IG cats

Program Do I = 1,N
LIOI

piExecution timeL-I

ewes-r»l.1.=1 1 er J,~=.-*1. 1 ~=+ It es l I ~=r .1
Mleretaslrlng I

Paw»
Pmvr
mm
Pmws

[tr] Mtcrotaslrhig across loop Iterations

Fig. 11.4 Htrloeaskir-lg at one difierent processing levels

A main program forks a subroutine Si and then forks out three additional subroutines S2, S3 and S4.
llrlacrotaslring is best suited to programs with larger, longer-running tasks. The program interface with the

-SSH i “ Advanced Cmnprrterfirehitecture

Cray Y-MP system’s niacrotaskjng capability was a set of Forn-an-callable subroutines that explicitly defined
and synchronized tasks at tl1c subroutine lcvel.

The execution of these four subroutine -calls on a uniprocessor (processor 0} is done sequentially.
Macrotasking can spread the calls across four processors. Note that each processor may have a difiercnt
l.':I.DC1lll(}1'Ill11'It7. However, the overall execution time is reduced due to parallel processing.
Adia-creaking This corresponds to multitasking at the loop control level with finer granularity. Compiler
directives are often used to declare parallel execution of independent or dependent iterations ofa looping
program construct.

This technique was implemented in Alliant FX multiproccssors using the Dnacrnss directive. Figure 11,-'-lb
illustrates the spread of every tour instructions of a Do loop to tour processors simultaneously through
microtasking.

When the iterations are independent ofeach othcr, microtasking is easier to imp lcmcnt. When dependence
does exist between the iterations, the system must resolve thc dependence before parallel execution can be
continued. lntcrproccssor communication is nocdcd to resolve the dependences.

In addition to working effieiently on parts of programs where the granularity is small, microtasking works
well when thc number of processors available for the job is unknown or may vary during thc program's
execution. Additionally, in a batch environment where processors may become available for short periods,
the microtaskcd job can dynamically adjust to thc number of available processors.

Autotasking The autotasking feature automatically divides a program into discrete tasks for parallel
execution on a multiprocessor. ln the past, macrotasking was achieved by direct programmer intervention.
Microtasking was aided by an interactive co mpiler.

Autotaskirlg demands much higher degrees of automation. Only some Cray multiproccssors, like the
Cray Y-MP and C-90, were provided with autotasking sofiware. Some compiler or assembler directives
were provided to allow programmers to fine-tune their code for better performance, especially in production
environments.

11: should be noted that through program fine-tuning, plus the use of aututasking software support, the
above multitasking fcat|.|rc can improve both individual job performance and overall system throughput in a
production environment.

At its highest capability, autotasking should be able to achieve fully automatic multiprocessing. It should
allow user programs to be automatically partitioned over multiple processors -[without user intervention].
Autotasking is based on the microtasking design and shares several advantages with rnierotasking: very low
overhead synchronization cost, excellent dynamic performance independent of thc number of processors
available, both large and small granularity parallelism, and so on. In addition to being iiilly automatic,
autotasking exceeds mierotasking in overall performance and in thc various levels of parallelism that can be
employed.

Nlultituslring Tradeofi: Speedup from multitasking may occur only when the time saved in executing
parallel tasks outweighs thc overhead penalty. The overhead is very sensitive to task granularity; it includes
the initiation, management, and interaction oftasles. These arc often accomplished by adding codc to the
original code, as exeinplified bclow.

"1 JlR1.roJleJPngrawiDeuelopvnem C. 55'

I/)
lg Example 11.1 Maerotasking on a Cray X-MP dual-processor

system (Courtesy of Cray Research, 198?)

This program can benefit. from multitasking depending on the execution time of the subroutine SUBU) and
the overhead introduced in service routinex. Before one attempts to convert serial eode into multitasked e-ode,
the expected peribrmanee should be predicted to ensure a net gain.

Consider the sequential execution of the following eode on an X-MP uniprocessor:

Program Main

Dn 1ClOI= 1, 50

Du 1U.l=1, 2
CALL SUB-(J)

ID Continue

IOU Continue

STOP
END

The 100 loop has dependent iterations which cannot be executed in parallel. The 10 loop has independent
iterations whieh are being attempted for multitasking. The following multitaslted eode is written for a dual-
proeessor X-M P.

Program Main
Con1moniMTflST, IDN, JOB
CALL TSKSTART (IDTASK, T) SUBRUUTINE T
JOB = 1 ConunonfMTflST, IDN, JOB
Du 100 1 = 1, SU 101 CALL E\-"WA1'"i'[_lS'1",I

CALL EVPOSTIf1ST] CALL EVCLE.-'\R(IS'l')
CALL SUB-(1) IF (JOB .NE. 1) GUTU 102
CALL i_iVWAl'1'['lI}N) CALL SUBIIZJ
CALL EVCLE.-kR(LDN) CALL E\"POST(1DN)

liilii Continue GDTCI H11
JOB = 2 102 RETURN
CALL E\~"PC'ST{1S'l'] END
C ALL TS l(WAlT{[DTA SK]
STOP
END

-551 i “ AdmncedCmnp|nerA.rchi1ec:ure

The execution of the sequential program on one CPU consists of two parts:
Timell CPU} = ti1ne(Seq) + tirnc[SUB] = (0.04 + 0.90) >< (20.83 s) = 20.03 s where time(SUB] accounts

for the 96% of time spent in subroutine SUB, and time{Seq) for 4% spent on the remaining portion of the
program. The total run time measured on one CPU was 20.83 s.

To execute the multitaslred program on two CPUS requires

. . 1 .Time (2 CPUs) = time {Seq} + q t1me(SUB} + overhead

The subroutine SUB was equally divided between two CPLls. This reduces time{SUB_] by one-half. The
overhead is estimated below with some approximation of the delays caused by workload imbalance and
memory contention. The service routines TSKSTART, TSKWAIT, FNPOST, EVCLEAR, and EVW.-'sIT
were used in thc Cray X-MP to establish the multitasking structure.

Overhead — time(TSKSTART) e tlme{TSKWAlT) + 51 >< time(EVP{]ST}
+ {workload imbalanee delay) + (memory contention delay)

— I500 CP+ I500 CP+ 5] >< l500CP~5[l X200 CP+
50>< 1500 CP+ (0.02 >< 50>< 0.2 5} — 0.216 5

where the CF {clock periodj is equal to 9.5 ns. Therefore,
l

Time (2 CPUs) — (0.4 >< 20.83) + q >-: (0.96 >< 20.83) + 0.216 — 11.05 s.
We thus project the following speedup:

tim¢(1CPUl 30.33
sF’°“d“P ' time{2CPUsj ' E ' 1'38

This speedup helps decide whether multitasking is worthwhile. The actual speedup of this program as
measured by Cray programmers was L35. This indicates that the above prediction is indeed very close.

Factors ai'l'-eeting performance include task granularity, frequency of calls, balanced partitioning ofwork,
and programming skill in the choice ofmultitasking mechanisms.

Multitasking ofiers a speedup which is upper-bounded by the number ofprocessors in a system. Because
vector processing oficrs a greater speedup potential over scalar processing [in the Cray X-MP, vectorizafion
offered a speedup in the range of lllto20}, multitasking should notbe employed atthe expense ofvectorization.

In thc case ofa short vector length, scalar processing may outpcrtbrrn vector processing. In the case ofa
small task sine, vector processing {or even scalar processing] may outpcrlbrrn multitasking.

Both scalar and vector codes may be multitaskcd, depending on the granularity and the overh-cad.
For coarse-grain computations with reasonably low overhead (as in the above example], multitasking is
appropriate and advantageous.

SHARED-VARIABLE PROGRAM STRUCTURES

1 We describe below the use of spin locks, suspend locks, binary and counting semaphores,
and monitors for shared-variable programming. These mechanisms can be used to implement

i '1 .I| \ -R1.roJi\eiPr£gmvn Deuelepvriem in 553

various synchronization methods among concurrent processes. Shared-variable constmcts are also used in
OS kemel development tor protected aocess to certain kemel data structunes.

11.3.1 Locks for Protected Access
Lock and unlock mechanisms are described below using shared variables among multiple processes. Binary
for-ks are used globally among multiple processes. Spin forks are based on a time-slot concept. Dekkerk
for-ks are based on using distributed requests jointly with a spin lock. Spec ial multiprocessor ir|stn.|etions a.n:
needed to implement these locking mechanisms.

Spin Loch The entrance and exit ofa CS can be controlled by a binary spin Jock mechanism in which the
gate is protected by a single binary variable .1", which is shared by all processes attempting to enter the CS.

l»)
é} Example 11.2 Definition ofa binary spin lock
The gate variables‘ is initially Set to D, COlT'B'SPOI1d1I1g to the open status. Each process P} is allowed to test the
value ofx until it becomes I]. Then it can enter the CS. The gate must be closed by setting x = l after entering.

Shared var it: {[I,l) i'I‘he spin loekf
at :— 0 iThe CS is open initially!

Process Pi for all i
Repeat

E iSpinning with busy waiti
Until it — U
at :- 1 iClose gate after entryi

E iThe critical seetioni
at :— 0 i()pert gate after done and exiti

After the CS is completed, the gate is reopened. Abusy-wait protocol is used in spin locks. Test and set
of lock variable value must be indivisible to prevent simultaneous entries into the CS by multiple processes.

I»)
Cg Example 11.3 Definition of a generalized spin lock with

n possible values
One way to guarantee mutually exclusive entry is to use a gencraiired spin I04:-k with n processes as defined
below. The gate variablex is allowed to assume n integer valucs{l,2, ...,n]. The fact that .1‘ = i implies that
the gate is open only to process P,-.

--554 i ' AdmncedCm11puterA.rchitaeture

Shared var x: (1, 2, 3, .. ., n} iT'hc spin lock!
It := l iThc CS is initially open to process PM

Process P; fo1'alli= 1, 2, ..., 11-]
Repeat

E {Spinning with busy wait!
Until X = i i"En1Iy."

5 1"Tbc critical section!
x := i + 1 i'E.xiti

Process P, iTl1e last process!
Repeat

E iSpinning with busy wait!
Until X - n iEntryf

E i'l‘he critical section/‘
x :—l {Exit and returnte P,i

Initially, the lock is open to P|. .-°tfierP| finishes with the CS, the gate is open to P3, and so on. The last
process P" will reset the lock to x = l.

This solution guarantees mutual exclusion at the expense oflonger waiting times. The processes must wait
cvcn if then: are no conflicting requests at the same tirnc.

Deltkeri Protocol To guarantee mutual exclusion without unnecessary waiting, Dekker has suggested the
use of separate request variables by different processes along with the use ofa spin lock.

55'“)
The iollowing program shows Dekker's solution for two processes. Each process uses a request variable -(pi)
to indicate if it wishes to be insin‘c {_ l lor outside (0) thc CS. When both processes indicate thc same wish to
be i11side, a spin lock (x - I or 2) is used to resolve the conflict.

Example 11.4 Dekker's protocol for protected access to
a critical section by two processes

var pl , p2: (inside, outside}
Eihared var xi (1, 2)

x := I iThe CS is initially open to process PH
pl := outside; pl := outside

Process 1 Process 2
pl := inside p2 := inside
if p2 = inside then ifpl = inside tltcn
begin begin

ifx=2then ifx=ltl1en

Rrroltlei Fragrant Deuele-pvrtent in

begin begin
pl := outside p2 := outside
Repeat until x = l Repeat until rt = 2
pl := inside p2 := inside

end en-d
Repeat Repeal
until p2 = outside until pl = outside

end end
E .-‘The critical section! E iTl:|c critical sectioni

K := 2 iDpcn to process 2:‘ it := 1 iflpen to process 1/
pl .= outside; pl := outside

This scheme avoids unnecessary waiting delays whencverthere is no conflicting request.Tl1egcneralization
of Deklter‘s method to a large numbcrofprocesses is very cumbersome and also cspen sivc to implement -[sec
Problem 1 1 .2 1.

Suspend Loch These types ofloclcs use the sleep-wait protocol. A process blocked liom entering a CS
is removed from the proccssor‘s ready-to-n|n queue. lnstcad, the stcspended process is put in a wait queue.
When the suspend lock is opened, one of the suspended processes in the wait queue is reactivated using one
ofthe iaimcss policies.

Spin locks or suspend locks can be implemented in a multiprocessor system using special instnrctions
such as Test&Sct, Fetch&A.dd, and Compare&Swap, depending on the atomic operations supported by the
hardware ir| a given computer.

The Test&Set{_x, _v,-) instruction operates en two boolean variables: The spin lock x is shared by multiple
processes, and the local condition variable __t-',- indicates the ontsrric {CI} and in.s'in'c { l) wishes ofprocess P,-.
As an atomic action, this instruction sets _{|-',- to the old value oi" the lock .r and closes the lock (1) as follows:

Test&Set-['x, _t-3):
<f. __v,- := .1:; .1: := l >

If‘ both processes simultaneously wish to enter the CS, only one can succeed in cfesing the spin lock x and
thus mutual exclusion is guaranteed.

I»)
& Example 11.5 Test&Set implementation of Dekker’s

protocol for accessing a critical section
Shared vat rt: (D, 1)
var yl, y2: (G, 1]
Process l

ify] = 1 then Test&.Set1(x, yl)

555 i .~\dmncedCmr1pi1terA.rchitecture

ifyl = l then Test&.Sct(rt, 3'2}
E IThc critical sccti-ant

I. := 0 fExitl'
E fNc-ncritieal scctioni

Process E
it'y2 - 1 then Test&Set(x, v2)

if y2 — I then Tcst&Set{:t, yl}
E f'l'he critical section!

It :-— 0 II-lxitl
E fNrmcritical sectionr‘

The Test&Set instruction can be used to implemem Deltker's protocol, as shown in the above program in
which __v,- corresponds to the request variable pi from process 1' lor i = I and 2, respectively.

11.3 .1 Semaphore: and Applications
Spin locks using the busy-wait protocol may cause excessive waiting in a multiprogrammcd multiprocessor
system. Eliminating busy waiting in processes would make better u.sc of the resources if a process blocked
from entering a CS goes to sleep and is awakened when tl1e C 5 is opened.

This improves processor utilization. Instead of using processors to execute a spinning process, they could
be used more productively in executing other ready-to-run processes. Scmrr,rJharcs were developed as an
improvement on the sleep-wait protocol.

Binary Semaphore: Critical sections can be viewed as sections of railroad track. Scnraphorcs are control
signals for avoiding collisions bctwccn trains (processes) on thc same track section (CS). Dijkstra (1968)
introduced the use ofbinary semaphores tor the rnanagernerrt ofooncurrent processes seeking to access CSs.

A binarft-‘sen1¢r;J}rm'c's is a be-clean variable taking the value of ll or l. Each shared rcsowce or CS can be
associated with a dedicated semaphore. Only two atomic operations {primitives}, P and I-", are used to access
the CS represented by the semaphore apart from initialization by setting s - 1_

' The Pfsj operation causes the value of the semaphore s to be decreased by 1 ifs is not already tl;
process is granted acoess to resource or CS. Otherwise, process enters wait state.

I The I/{5} operation causes the value ofthe semaphore .1‘ to be increased by 1 ifs is not already 1;
process releases the resource or exits CS.

The physical meaning of s —- I is the availability of a single copy of the resource represented by s. On
the other hand, s = I) means the resource is being occupied. ‘When the resource is a CS, a binary semaphore
corresponds essentially to a gate or lock variable used in the sleep-wait protocol.

Counting Semaphore: A couming senrqshartr s is a norrnegative integer tab: ing (rt + I] possible values (I,
1, 2, n for some integcrn 2 l. Thcrctbre a binary semaphore corresponds to thc special caseofn = l. A
counting semaphore with a maximum value ofn acts as a collection ofn permits corresponding to the use of
n copies ofa shared resource.

f '1 .I| \ -Rrralilel Fragrant Dcuclopvriem is 551

A shared resource can be a program scgrncnt, a data table, or any passive device such as memory or IICI
resources. A pcmtit is issued upon each request until all copies are taken. Formally, we define Pts) and I--'{.s_)
on courting semaphores as follows:

I Pfsj: lfs '> D, then .s .= .s — 1; else suspend thc execution ofthe current process and place it in a wait
queue.

- I/(st: s: = s + 1. If the wait queue is not empty, then wake up one of the processes.

lntuitively, the operation P{.s) corresponds to the submission of a request for a permit. V{'sj corresponds
to the retum of a permit after a process finishes using a copy of the resource. Note that both operators are
atomic. lfthe maximum value ofa counting semaphore {is = rt] has already been reached, the V-[st operation
will not increase the value ofs beyond the upper bound n.

System Deadlock .S_'1-"stem rierrrfloek refers to thc situation in a multiprocessor when concurrent processes
are holding resources and preventing each other from completing their execution.

In general, a deadlock can be prevented if one or more of the following four necessary conditions arc
removed:

{1} Marital cxci'usion—Eacl1 process has caclusivc control of its allocated resources.
-['2] ."i"r:I.rr-;Jret'rr'r,r.1!r'r;-rr—.-it process cannot release its allocated resources until completion.
(31 Hold and it-'rrir—Pmcesscs can hold resources while waiting for additional resources.
1'4} Cirt-ulcr it-oir—Mul|iple processes wait for each others resources in a circular dependence situation.

Shared-Rem urce Allocation P- I-"operators and semaphores can be uscd to allocate and deallocate shared
resources in a multiprocessor to avoid deadlock among concurrent processes.

L»)
£5 Example 11.6 Resource allocation using P-V operators

to prevent deadlock
Four processes are sharing six resources in the process declaration shown in Fig. ll.Sa. The sis resource
types are represented by binary semaphores .5‘; for i = I, 2, . . ., IS. Allocation ofthe resource S; to process P; is
requested by P[.S',-), and the release of resource SI is rcquested by l’{S,-). The resource request-release pattern
ofeach process forj = 1, 2, 3, 4 is shown by a column ofsuch P-V pairs.

All four processes can submit their requests asynchronously. lt is the request ordering that leads to
deadlock. The release ordering does not make any difference.

The resource rrhlomtion grrrplr shown in Fig. ll .5b is a directed graph where the nodes correspond to the
six resource types. An edge with the label Pk from node .S',- to node means process Pk is requesting resource

while holding resource S,-. i
Acycle, S, —> S3 —> S4 —> S5 —> S5 —> SI, in Fig. ll.5b implies the possibility ofa eirt-afar H-‘Hf! among

processes P| , Pg, and P4. To break the deadlock possibility, one can modify the resource request pattem in
process 4 as shown in the fifth column.

»—--555 i Advm1cedCnn1puter.l|rcM‘.ec:nre

An-cw allocation graph rcxu Its in Fig. 1 1. 5-4:, where nn cyclr: ex isrs aficr revcming thc edge between .S'| and
S5. Of course, this reversing should not invalidate the demand by process 4.

Pro-eeee1 Pm-sees 2 Pm-eeee 3 Process 4 Process 4

P{S1j

P{S2j

P[S3]

I

I

I

vrs1 J
I

vrszy
urea;

P1 P1P

Q Q

P152]

W541

P{S5{|
I

was;

W541
I

W523
I

I

P[S3j|

P[S5j|

I

I

vrssy

W53!

I

P{S5)
I

F'[S-5]
0

P-rs1 1
I

I

vrsey
\r[s1)
vrsay

{aj Four concurrent p-recesses

{Modlfledj
I

P{S1)

P-{say
I

P{S5]
I

I

wee)
was)
\rrs1 1

P4 Q Q P4 Q Q

@ P3 ® P3
Pd @ P4 @

{hi Reeoume afio-cation graph with [bl Modmed resource allocation graph without
olrcuar wall. drcurar waft.

Fig. 11.5 Shared rerruurte illunfiun using P-V operators to pr'e~|ent system deadlock {a'EPl'lII‘lflfl| from
Hwang, Proc.lEEE,19B7)

i '1 .I| \ -Rrrollel Fragrant Deuelrrpvnem is 559

Doodloelr Jhloidonee .Shm'e preverrriorr as outlined above may result in poor resource utilization. Eh-‘rrrmrie
deariloek rrtoirfreree depends on the run-ti me condition s, which may introduce a larger overhead in detecting
tl'|e potential existence ofa deadlock.

Although dynamic detection may lead to better resource utilization, the tradeoff in detection and recovery
costs must be considered before choosing between static and dynamic methods.

Most parallel computers have a static prevention method duc to its simplicity of implementation.
Sophisticated dynamic avoidance or a recovery scheme for the deadlock problem requires one to minimin:
the incurred coststojustiiy the net gains. Breaking adead lock problem by aborting some noncritical processes
should result in a minimum recovery cost.

A meaningful analysis of the recovery costs associated with various options is difficult. This is the main
reason why sophisticated deadlock recovery mechanisms have not been built into most multiproccssors.

The P and l-"operators are usually implemented by the underlying operating system kcmcl. They can also
be implemented by special hardware or by software traps. Spin locks and P- I-"operators are both low-level,
fine-grain, atomic operations which are more often used in system programming than in user programming.
Only binary semaphores are used in controlling a CS. Counting semaphores are used in the deadlock-iroe
allocation of shared resources with multiple oopies each.

The main problem is that such low-level operations are error-prone and not appealing to ordinary
programmers who enjoy the simplicity ofusing high-level language.

11.3 .3 Monitors and Applications
In using locks or semaphores to tlefine critical sections, shared variables are global to all processes. CS5 are
embodied within processes, which may be scattered throughout the entire program. This may pose some
problems in program modularization or debugging, which in t|.|rn limits parallelism.

Hoare (19174) proposed a monitor construct ibr structuring an operating system. We describe below the
structure of monitors for parallel programming applications.

Monitor Structure A monitor‘ is a high-level program constn.|ct For structured programming that
emphasizes modularity and encapsulation. As shown in Fig. ll.6, a monitor eollcets shared variables and
associated prooedures into a single construct which allows only one process access at a time.

Atypical monitor consists of the following three pans: The first part defines the monitor name and declares
all local variables to be used. The second part is a collection ofprocedures using the variables declared. The
third part is forthe initialization ofall local variables.

In a monitor, tl'|e CSs are removed from the bodies of user programs and become procedures or functions
defined over variables eonfined within the boundary of the monitor. A process invokes the appropriate
procedure within the monitor when it wishes to enterthe desired CS. instead ofproviding individual process
managernent, a monitor behaves like a secretary in an oflice who provides services to a number of persons
[processes]. Each program can declare and use as many monitors as required.

53."/)

-5-fill i AdnorrcedCm1-iprrternrchitecrure

Procedures Pmcggg

Monitor

Shared
‘Variablesi

Construct:
Mon itor secretary {namei

[declaration of local data]
Procedure name [parameter list)

begin
5 ibfldari

end
[declaration of other lo-cal procedure]

beg i n
[initialization of to-cal data]

end

Hg.11.i Theso-uen.e*ecfan1orde:rfcrsn~oen.a*edprcgr-amrnhig

Producer-Consumer Implementation The monitor procedures should not access any nonlocal variables
outside the monitor. An example monitor for implementing the pmeentrrre-eonsrrnrer problem is shown below:

Example 11.1 Monitor for a producer process and
a consumer process

In this monitor. two proeedtrrcs are defined ovcr the declared local variables. The producer process sends
messages that are received by the consumer process. The communication between producer and con sumcr is
hand led by the deposrr and_;'breh procedures defined below:

Monitor Producer-Consu mcr
Bufl'er[0:n—l]: integer
Irtpointer, Outpoittter: integer
Not full , Note-rnpty: Buffer conditions
Count: integer index

Fhmllel Pnzgmm Develrrprnem "M1,, “I

Procedure Dcpositfl)
be-gin

ifC0uni = I1 then Wflilfilfllfilll)
Bufl'e1'(Inpuinter} := I
Inpuinter :— (Inpoimer + 1} mod n
Count := Count + I

signal {_Notcrnpty]
end

Procedure Fer-chili
be-gin

ifCount = III then waihtllutempty)
I := Buff:-r{_Dutpu-inter}
Outpointer :-'-" (Outpointer + 1) mod 11
Count := Count -- I
signal (Notfullj

end

begin
[npninter := O
Outpointer :— 0
Count := G

end

Thc deposit proccdurc appends tn or inserts messages into the communication btrficr. Thc fetch proccdurc
takes or fetches messages for the con sumcr. The producer process mills the deposit procedure for service, and
thc consumer process calls thc fctch procedure lor sen-"ice.

Only one process (either producer or con sumcr) can call the desired procedure at a time. A monitor is not
itstclfa process. A monitor is a static module ofdata and procedure doclaratiorrs. Thc producer and consu m-er
are amivr: processes which must be programmed separately as slzrown below:

Producer Consumer
1: integer 1: integer
repeat repeat
begin begin

Producc1[I) Fetchfl]
Dcposit|[_ I) Consume-[_[)

end end

5-GI i Aduorrced Cmnprrter.-trchiteeture

Monitor Applierrrinm All the operations of semaphores can be simulated by monitors, and vice versa.
Monitors have been suggested tbr use in a number of parallel programming applications.

Brinoh-Hansen (1977) used monitors for Concurrent Pascal programming. In general, a parallel
program may contain two ditferent kinds of program modules: rierit-‘e _proeesses and prrs.sr'1-'e rmrIiaJr.s.
As in the produe-er—consun1er example, all shared variables are defined within the monitors; interproeess
communications are handled by calling procedures in the same monitor Dificrent groups of processes may
use different monitors {secretaries} for different types of services [procedures] which may roquire special
shared resources (local variables].

Severaldistinct advantages are observed in using monitorsto support [PC or interprocessorsynchroninition.
First, all dedicated services [procedures] are placed together within each monitor Therefore, a calling
process can be lieed liom worrying about these procedure details. Second, the monitor designer does not
have to worry about how many user processes may access it. Third, monitors provide modularity in program
debugging and maintenance.

For example, one can program a disk scheduler as a dedicated monitor. All user processes can submit
requests to the disk scheduler, and only one is serviced by a driver procedure at a time. Monitors hide
information within their boundaries, which implies the potential for concurrent object-oriented programming
and effieient handling of abstract data types. Programs using monitors are not only easier to debug but
also are easier to use in exploiting parallelism. The localization of shared variables is an important asset in
concurrent programming.

Monitors can be implemented directly with data and procedure declarations, or indirectly through the use
of semaphores such as using P- i-"primitives to declare the entry and exit ofa monitor Monitors can also be
implemented with the help ofa kcmcl of data struct|.|res and routines. A monitor kemel may include special
primitives for erttrjt-', v.-‘nit, and sigmrl operations. Wirth -[1977] proposed a Modula kemel for implementing
monitors when using the language for parallel programming.

MESSAGE-PASSING PROGRAM DEVELOPMENT

1 Multicomputer programming demands the distribution of computational load and data
structures to various node processors for balanced parallel processing. Message-passing

paradigms are needed for intemode communications. Overthe last two decades, message-passing has gained
importance as a means ofachieving distributed computing.

Three programrdata decomposition techniques, namely, rtittrrmfrt, ermrmf, and object rfeemnprJ.siIrTrJH, are
presented for programming a multicomputer. In each case, example problems are given to illustrate the
decomposition technique involved.

11.4.1 Distributing the Computation
The key to using a muhicomputer system is to distribute the computations among an ensemble ofcomputer
(processor-memory] nodes. Each node executes its own program, and all nodes are interconnected by a
network. Concurrent processes created at dificrent nodes communicate by passing messages. In this section,
we assess the basic programming environment for multicomputers. We study program tuning to achieve load
balancing directed toward higher pertbrmanee.

f '1 .I| It -Fbroltel Fragrant Develrrpvriem is 5‘;

Host and Node Environment: The programming environment of a multicomputer may include an
optional host r|.|n-time system and resident operating systems in all node computers.

For example, a Cosmic Environment was developed for the hypercube computer at Caltech. The host
envitomttent was a UNIX processor and used UNIX and language processor utilities to oommunicatc with
the node processes and other host processes through messages.

A separate OS kemel was located in each node computer that supported multiprogramming, with an
address space confined to local memory. Many node processes could be created at each no-dc. In fact, the total
number ofnode processes could be greater than the number ofnode computers in the system.

All node processes executed concurrently in different physical nodes or interleaved through
multiprogramming within the same node. Node processes communicated with each other by sending or
receiving messages.

The Cosmic kernel [later modified to the Reactive Kernel) at Calteeh was one such node operating system
that supported this process-model programming.

There were no shared variables betwoen node processes in the Cosmic kernel, even if they resided in
the same node. The node processes did not have acoess to inputioutput devices, and all IEO activities were
handled by the hosts.

The Cosmic Cube programming environment did not use new programming languages. Existing sequential
programming languages such as C, Pascal, Fortran, Lisp, Assembly, etc. were used to write process codes.
A library of C functions and procedures was developed to control message-passing and process-spawning
operations.

This approach used explicit parallelism built on top of cttisting compiler technology. Many interesting
Cosmic features were built into or modified in commercial systems such as the Intel iP5C and nCLFBE
computers. Various multicomputer programming environments differ mainly in the languages and message-
passing paradigms used.

ln programming a multicomputer, the process involves separation of the user interface from the
computational kemel, leaving the user interface on the host or a designated node, moving the kemel to each
node, and adding a message interface between them.

ln order to distribute the computation, the programmer chooses a decomposition method and then maps
the decompo sition to all the nodes. A node-to-node communication protocol mu st be established. Finally, one
needs to balance the load and reduce the communicatiomcomputation ratio.
Message ‘type: and Parameter: Example l{}.I demonstrated the need for message passing. In a
mu lticomputer program, a process must distinguish between a numbcrofdiffercnt mes sage types. Apartic ular
field ofall messages can be reserved to carry a memrge r_i-pe (identified by an integer].

Diiferent message types may demand different actions by the sending or receiving processes. Messages
of different types are handled in a specific order. For example, the Cosmic Environment! Reactive Kernel
dispatched messages according to thc types received, and supported customized message functions on top of
the X-window primitives.

Let us examine the basic message parameters associated with sendand receive system calls. The message-
passing primitives are specified by:

senrf frvpe, bnfter, length, node, prner.=.s.s]
receive {i'_!|=pe, bnpfjtlrr, length)

r5-E4 i “ AdmnccdCmnputerA.rchi1ecturc

where type identifies the message type, [J1.f,ifi"i’l" indicates the location ofthe message, length specifics the
length of tl1e message {in bytes], ironic designates the destination node, and pm;-css is the process [D at thc
destination node.

Thc send and receive primitives are used by the sending and receiving processes, respectively. Theretbre,
the buifer field in send specifics the memory location of the message to be retrievcri from. On the other hand,
the buffer field in rec-ei1-e specifies where the arriving message will be stored.

Once stored in a local memory, a message can be retrieved only by the local proces No remote memory
access is allowed in a pure message-passing multicomputer. The implementation requirements of the two
message-passing models arc studied bclow.

11.4.1 Synchronous Message Passing
The message-passing process involvesa sender and one or more receivcr(s]. When a process sendsa message,
the system must decide a number of issues: first, whether the receiver should cooperate or be ready to receive
it; second, whether the communication path has been established or not; and third, whether one or more
messages can be scnt to tl1e same destination node orto multiple destinations.

ln a synchronous communication network, the sender process and receiver process must be synchronized
in time and space. Time synchronization means both processes must be ready before message transmission
can take place. Space synchronization demands the availability ofa communication path, i.e. a sequence of
connected channels from source to destination.

The simplest implementation allows only one message on a communication channel at a time. No bufi'ers
are used in such a communication network. Therefore, blocking is possible ifthe channel requested is busy
or in error. For this reason, synchronous message passing belongs to the class oi" blocking communication
systems. The correct protocol must be adopted to ensure the coupling of the sender and receiver in time and
space. Blocking may take place very often in sueh a network. How to minimize the delays caused by blocking
is a major issue to be considered.

Synchronous message handling simply ignores blocked messages, asstlming no buffers are used with
the communication channels. This scheme has been implemented as one oftwo possible message-handling
modes in the lntel iP5C systems. Thc idea is to halt further execution oi'instructions in a process until the
desired message is sent or received.

When a process issues a request to receive a message, the process, being blocked, executes no further
instructions until thc expected message has been received. ifthe message arrives ahead of tl'|e request, the
receiver will wait only until the message is copied into the local memory from the system bufier in which it
was temporarily stored.

Similarly, when a sender initiates a message transfer, the sending process is blocked until the message
is copied from local memory into the message-passing network by the node kernel. Synchronous message
handling is easier to implement but may not result in the highest performance possible in a given network.

'|'heJ\du Experience Example synchronous message-pas sing programming systems inc ludc the unbu H"-cred
Ada system, which uses a rendezvous concept to synchronize the sender with the receiver. ln such a system,
the early arrival at the rendezvous must wait ibr the late arrival. Ada nscs a mtrrze-nrfr.il"es.sfrtg scheme in which
(Node, PlD] is used to identify a process residing at a node.

i '1 .I| It -R1.roltlclPrcgrovn Dcuclopvnem 1.. “S

The Ada system allows two-way data flow dining a single rendezvous. Apt-oeess calls another process by
name without divulging its own identity. Ada implements a select primitive, which allows a process (task) to
conditionally select an entry call to execute among multiple entries.

Programming with the rendezvous concept can easily implement a H.".|'fi(JI£’ pror-stints’ col‘! {RFC} besides
tl1csel'er-I option. lt also supports dynamic task creation and priorities in ta_sk selection.

The Oeeom Experience The CSP (communicating sequential processes) model proposed by lloare
employs a selective synchronous scheme based on a tightly synchronized form of message passing. In 1933
CSP was modified and ealled the Oeeam system by INMOS/Transputer developers, based on a chrome!-
r1drt're.s's'ing scheme. This scheme established a communication path between senderand receiver by directional
channel tracing. The Dccam system used one-way data flow.

ln a synchronous message-passing system, the number ofcompletcd receive operations is identical to the
number of oompletod send operations at the other end. The blocking problem can be avoided or alleviated
using buffers in the message-passing network.

Bufiering is like a telephone system with an answering machine or like a tax machine. The sender and
receiver do not have to be available at the same time, and yet they can communicate with each other.

11.4.3 Asynchronous Message Passing
This programming paradigm requires the use of bufi'c'rs on communication channels or the use ofa global
mailbox. Message sending and receiving do not have to be synchronized in time or space. Nonblocking
eontnmnieation is possible if suflieiently large buffers are used along the eomntunieation channels.

Blocked messages are buflered for later transmission. This system is lflre a postal service system using
many mailboxes as bul“Ters. No synchronization is needed because the sender docs not have to know if and
when a message is received. The receiverespccting a message will not be suspended from regular execution.

Even when we consider a bufiered asynchronous system nonblocking, the system may eventually be
blocked due to the use oflirnited-size channel buflezrs. Ifthe network traflie is not heavy or saturated, n1or:lr:rate-
sin: buffers will lead to essentially nonblocking communications. Most advanced message-passing networks
use asynchronous communications for the sake of better resource utilization and shorter communication
delays. An arbitrary delay may result in a bufiered communication scheme under very heavy load.

Caltech‘s Cosmic programming environment supported asynchronous message passing. lntel‘s iPSC
system also supported asynchronous message handling. Asynchronous reecit-‘es allow processes to alert the
node kernel that certain messages are expected and should be delivered as soon as they arrive.

ln the meantime, the receiving process can cominue its work ii" needed. An asynchronous send allow a
sender to alert the kemel that it wants to send a message, but the process does not wait tmtil the message is
sent. Obviously, asynchronous communication is more efficient and sometimes faster.
The Linda Experience The Linda programming system also operates asynchronously. Uncoupling of the
sender and receiver in time and space is expected. Linda is based on a global mailbox or bulletin-board
concept for achieving asynchronous communication s. This is done through the use ofa tuple space, which is
logically shared by all concurrem processes.

The tuple space consists ot'ru,r.1fes, which are typed dam sequences. Any process can add a tuple to the
shared tuple space or remove a matching triple from the space. If no match is found, the process suspends
until a match is Found later. lt can also read a copy ofa matching tuple without removing it from the space.

FM Mtfiruw H'IHr'nm;n;urn1'
5-El i ' Advanced Cmnprrterfirehiteeture

ln many ways, the tuple space behaves like a bulletin board where anybody can add a notice (tuple), read
a notice, or remove a notice. The tuple space, therefore, becomes a global mailbox which can be accessed by
all processes tor the purpose ofeither sending, broadcasting, or reociving messages (tuplesj.

Concurrent programming works in Linda by pattem matching on the tuple signatures [mg fields). The
concept oftuple space can be implemented on either shared-memory multiproccssors or distributed-memory
multicomputers.

Interrupt and Lost Message: lntenupt messages are a special form of asynchronous message handling.
Instead of continuing working while waiting for a regular message to arrive, interrupt handling is carried out
immediately by the receiver without having the receiving process post a receive when it is ready to receive.
After the interrupt is serviced, the interrupted process may resume its original work.

Messages are often lost in a message-passing system. When an incoming message is not expected or
needed, it may be ignored and thus lost. Messages directed to the wrong processor wrong node will not be
found or retrieved by the intended process, and the node kernel may not be able to cope with the problem.

These messages may end up in the system message bufi'ers and eventually be lost. This may not be the
fault ofa programmer. Special detection aid ordebuggirrg tools are needed to inspect message buFfers and to
correct possible system configuration or programming errors.

MAPPING PROGRAMS ONTO MULTI COMPUTERS

1 This section dcscrflres program decomposition techniques based on data domains, control
structures, functionality, and object-oriented concepts. ln all cases, we aim at performance

tuning and enhancement ofmcssage-passing programming. At the end, we characterize the environment tor
heterogeneous programming.

11.5.1 Domain DecompositionTer:hr|iques
Programming a multicomputer requires three major steps: n'eo'Jrrr;x1sirrl'Jn, m¢rppr'ng, and tuning. The goals
are to balance the loacL minimize communication overheacL reduce sequential bottlenecks, and make the
program scalable. Decomposition ofthe it calculation is a perfect example ofdomain decomposition .

In general, ifa calculation is based on a large, static data stn.|cture and the amoum ofwork is about the
same for each data clement, then one should partition the data structure evenly.

The resulting programming technique is called rlonmirr demon-xJsi!r'orr. This technique can be used with
a wide range of applications, including physical modeling, matrix computations, and databasefloiowledge
base management.

Perfect Decomposition To choose the best decomposition method for a given application, one needs
to understand the rnathemat-ical formulation, the data domain, the algorithm used, and the flow of control
{communication pattern]. Certain applications fall naturally into the perfect rte:-orrrpnsirion category. Such
parallel applications can bedivided evenly into a set ofprocesscs that roqu ire little orno communication with
each othcr.

This category is the easiest to decompose. Thett computation is a good example ofa perfect decomposition
in which only the partial sums need to be communicated. Theordcr in which these sum.mations are perlo rmcd
is immaterial, and thus interprocess synchronization is rmnecessary.

Rnollel Pngrom Deuclopvnem L 551

Perfect decomposition often leads to SPMD operational mode. ln other words, the same node program is
replicated at all the nodes. Real applicatioris ofthis kind range from the modeling ofproteins with thousands
of atoms and millions of possible configurations to financial speculation involving investments subject to
parallel evaluation of multiple hypothetical porttblio cases simultanoously.

Perfect decomposition requires very little communication overhead, and the balanced computations often
rcsult in nearly 100% efficiency. This kind of decomposition requires the least amount of programmer effort.

Often the same sequential program running on a single processor will be running on all node processors,
each with a difterent data Once an interprocess dependence relationship exists, the conditions tor perfect
decomposition may be compromised.

Domain Decomposition The key to domain deco mpo sition is the regui.nrr'r__t' of ttre data structures involved.
Three kinds of problem domains are identified below as natural candidates for domain decomposition:

{ll .'~i‘mn'.:- dam .S‘f.r‘ttL‘Iti!'£"—F0l' example, matrix factorization for solving rt large finite~clifl'erence problem
on a system with a regular network topology.

-['2] E{vrn:rrrrie darn strrr-r'rrrres' tied to at .sr'ngi'e entir_v—For example, in a many-body problem, Subsets of
the bodies can be distributed to diiicrent nodes. Through gravitational iorces, the bodies may be
interacting with each other and moving in space. The calculation for each body can stay on the original
node assigned.

{3} Fixed dornoflr it-frir aft-'rn1mr'e eo.rnpnmn'on.s' it-'r'r!1r'n t-‘r.rrr'on.s" regions‘ q,f'tIn: ri'orrrar'n—For example, a
program that models fluid vortices, where the domain stays fixed but the whirlpools move around.

Three major steps are specified below to decompose the domain of a given application:

{lj Distribute the subdomain ofdata to various nodes.
{'2} Ftcstrict the computation so that each node program updates its own subdomain of data.
{'3} Put the commtmication in node programs.

The way to implement the above steps is first to port the sequential program to various nodes. The porting
procedure involves the following operations: Compile and test the existing sequential program on one node
and then run multiplecopies ofthe same program on many nodes at once, after putting in thecommunication
commands required. Localize the node program execution over its own data. Finally, tune the program to
enhance the performance.

P)
lg Example 11.8 LINPACK matrix factorization using domain

decomposition (justin Rattner, lntel Scientific
Com puters, 1 990)

Gaussian elimination is oflen performed in factoring a square matrix in the LINPACK linear equations
package. The regular nature ofthis algorithm and the regularity ofthe domain make it inherently parallel and
suitable for domain decomposition.

Distributing the domain only requires partitioning the characteristic matrix into sections and distributing
them among the processor nodes. We will first examine the sequential L-INPACK. Gaussian elimination

i -5-GI i Advanced Cmnputerfirehizteettrre

algorithm. After determining the matrix distribution, we then distribute the computation, resulting in a
parallel matrix factorization algorithm.

Tne LU factorization is a triply nested loop: The outer loop controls how much ofthe matrix remains to be
iactorized. At each iteration, the remaining part of the matrix is a smaller submatrix in the lower right-hand
corner. The elimination process requires that intbtmation from one node be broadcast to all the other nodes.
A sequential factor algorithm in LINPACK is as follows:

Sequential FaetorAlgnrithm
l'ori= l to n — 1 do

Find max[.-I-|_‘_i, F) to .-f{_n, i)] in ith column,
Swap rows to make .-ifi, i] the pivot,
Divide A(i+ 1, i] to .d(n, Ob]; Afr‘, I‘),
l'ori=r'+1tondo
’l'urir=i+1tondo

.+i(.l:,j] 4- .—’l{_.i",j) — .-!{.l:, r‘] >< .»l|['r',j)
end ofk-loop

end ofj-loop
end of r’-loop

This sequential code can be executed directly on a single node. The next step is to distribute the matrix
elements. The matrix is distributed by columns among the processor nodes. The matrix domain is mapped to
the nodes so that all the processors own approximately the same number ofcolumns ofthe matrix.

Figure 11.? showsa column-wrapped mapping ofa 12 >< 12 matrix onto four processors. Oncea column
becomes the pivot column, it requires no fiurthercomputation. By using this column mapping, all processors
can be kept busy during most ofthe computation, and a new processor owns the pivot eolumn at each step.

Column number of matrix
12 45B?BQ1fl1112

, 5,

." ll i

n-\,__

Q~~"---

--cs

_-
-I-2--II-I-2"l--I-I-;-2--2-2-1-}-2"}I-$5-I.1--+-1*tr.
M>41»‘0__-uu+‘_a|-n-beo-we0»-no-ln0+1-4->44+54w

3._--_- __::_:____-._

w.'1.
.."'\i''-s''1:
G,'_:\.‘-

--.Eh.I5..lln..K

.1
--1--'--'1--em-F-;-u-'u-------_u-'--‘---_-----‘-

M-g-as.-g-4‘*5.-geman-:~-g-an.-g-3-.-:+*-.-gm».++g-pg~*-.1-g-;~

-‘H4''1'-JPu--‘F"1.--

,________._____________

ea1
..-\.'''''"'\-.'\-\.''_ 5".Du...""'"ht.

.1 q
ru--ur--qr’-u-rr-ur_n--'_-ur_-III-

N::-1-1::-:0:-:-;-:3-pg-.1:5.1-:51;.t-5+3::1‘-g.-14;.1-1:,

_.__.____..__._______

no;-.

,1’ ;"'
::R'.'_,r

-1 i
w -'

53;?’/5 ' _ I.
'/5:?’ . . ":§f I
_,I' Ii’; I: I ‘

-Fiat
k-'5‘

Node rlumberof multicomputer

Fig. 11.1’ Column-wrapped rnapping of a 1'1 x 12 man-ix onus four nodes ofa multicomputer [Courtesy ef
justlrt Ramon lntel Scientific Cornpumrs. 1990}

"1 JI|r.u| s :Rrrollel Fragrant Deueloprnent in “Q

The rxrrrrfleifireror oigorirhrrr is designed to make the pivoting prooessor control the computation at each
outer-loop iteration. The processor owning the first column finds the pivot element, swaps the pivot row with
the first row, and divides the pivot column by the pivot, just as in the sequential factor algorithm.

After the first iteration, the pivot processor broadcasts the pivot column and the pivot row number as a
message to all the remaining processors. Any processor receiving this message swaps its pivot row with its
first row. Then all processors perform the remaining subtraction and scaling from each remaining column
simultanoously.

This parallel factorimtion algorithm is specified below, where n is the order of the matrix, N is the total
number ofnodes, i is the global index, fr is a local index with an initial value of l, and p is the index of
lire processor The value ofp is different for each processor and is in the range 0 S p < N. In addition, all
processors use thc same node program as stated below.

Parallel Factor Algorithm
p <t— index ofthis prooessor
forr'=1ton— l do

il'{i — llmod N=p then
Find max in the hth column
Swap row iand Ir to make ¢l{_i, F) the pivot
Divide A-[_r' + 1, i) to Am, it by Afr‘, it
Broadcast pivot column, .—i(_r' + 1, F) to xlffl, ii],

and pivot row number it
Ir r— h + l

else
Receive the pivot package
Swap rows
Scale and subtract the pivot column from mch remaining eolumn

end of I-loop

The above parallel algorithm is modified fi'or:n the serial algorithm by the addition of a res‘! to determine
the pivot processor and system calls to send {broadcast} the pivot information to all the processor nodes. This
simple change may result in a maximum speedup proportional to the number N of processors used in the
multicomputer

Performance Tuning From a successive pivoting point of view, the above algo rithrn is essentially
sequential. While a pivot colum.n is being determined, all the remaining processors are waiting for it. When
the pivot is finally broadcast, all the processors can subtract in parallel and then proceed with the next pivot
node, etc.

From a performance poirrt ofvicw, thc load is not lirlly balanced across the nodes. The sequential bottleneck
is in the successive pivoting processors. The mapping ofthe matrix columns in a modulo fashion has already
provided a better load balance than assigning adjacent columrts to the same processor.

The peribrmance can be lirrther tuned by reordering the algorithm to speed up the pivot and broadcast
process, or by dividing the row in parallel instead ofthe co lumn. Furthermore, one can change the granularity

-STU i ' AdvoncedCmr1prrterA.rchi1eeture

usin a hfoeit of =orr‘rh.-rr to obtain fewer and lon er tnessa , which will im rove the eommunieationr’B L ta’ E“ P
computation ratio.

In other applications, such as seismic processing, finite-element analysis, vision integration, and
multidimensional complex FFT, the performance bottleneck is in different areas such as extensive
synchronization delays or dynamically changing data structures. ln each case, performance tuning will be
the used dificrently.

11.5.1 Corrtrol Der:ompositionT-eehniques
When the domain and data structure are irregular or unpredictable, we cannot apply domain decomposition.
One alternative is to focus on distributing the flow ofeontrul of the computation rathcr than on distributing
the domain.

An example ofa domain that is not suitable for domain decomposition is the irregular search space created
by a game tree where the branching factor varies from node to node. The search tree must be dynamically
assigned to maintain a balanced load.

ln general, er;-nrroi {f£'CG!fi]XJ.S‘fIftJH is used for symbolic processing problems such as those in artificial
intelligence applications. ln this section, we will study several control decomposition strategies, including

,|i:irrrr:~rr'rrn.rr! rfceornposirrbrr and a mnmrger-norker q|'J]J.|"4'Jr‘t-tZ‘.fl

Functional Decomposition An algorithm can be visualized as a set
of interconnected functional modules. The flow of control is indicated
by directed edges in the diagram. For small problems, these functional
modules tend to be executed sequentially, one afiur another. However,
large problems may have significant parallelism between the modules.

I»)
Cg Example 11.9 Image understanding

with functional
decomposition

Figure 11.3 shows an example of functional decomposition for image
understanding.

Image enhancement, edge detection, pattern recognition, and scene
and motion analysis are processed by four functional modules in a
pipclined fashion {with a feedback branch, if adaptively done) over a
sequence of image frames.

The iirnctionality requires the application ofdi fi'c"rcnt decompo sition
techniques, depending on the data structures and computations
involved. One needs to add special message interfaces between
dificrent iirnctional modules.

Image Frame

Functrond Modtle 1
Edge Enhanoernent

|'»'|tror
Deereon

Block
‘ties

Func-trend Modrje 2
Edge detection

Decision
Block

var-.
Flll'lG'llC|l'li| Module 3
Patbrn Classification

Decision
Block

‘rho
Fu nclronal Module 4

Scene and Hobo n A9.Decreon
Block

‘tbs

Image Description

Fig.11.ll Functional decornpositlon
itrr lrrogc u-ndersrsrndlng

'1 uRarollcl Fragrant Deuclopvnem L 5-"

Usually differumt functional modules are assigned to -zlifferrent processor nodes. Some no-ales will be
floating-point-intensive, some for symbolic manipulation, some for input foutput activities, etc.
l'ln'Ionager-Worlterflppr-ouch This is a divide-and-conquer techn iquc. The idea is to divide the application
i11to tasks, not nocessarily having the same size, and use one ofthe processes to serve as a manager node and
the rest as worker nodes.

As illustrated in Fig. 11.9, the manager is responsible lor dispatching tasks out as worker nodes hccome
available. The manager must also oomniunicatc with the user or the host node for inputloutput operations.

In putfoutput

___________1

I I I | I I I I | I I I I | I I I I | I I | I I I I | I I I I | I I I I | I I I I | I I I I | I

______________I

0 M.....,...~..a.

Q? \}@
Worker No-dos

Muttloom outer

Fig. 11.! Manager-werlear mapping for oontrol decomposition [C-ourtasy ofjustln Rauner. lntel S-clendlic
Computers. 1990]

Thc manager fimctions include managcmcm ofglohal data structures, maintaining a list of suhprogram_s
[tasks], and assigning problemsltaslcs to workers. The worker node, onoe it becomes available, should request
|:l'|e job, tcceiwe the job, and perform the assigned task. The manager must perform dynamic load balancing
among the workers in onzlerto enhance the performance ofthe entire system.

gj,"5
A typical application of the manager-worker decomposition is to sol\-e the N-quecns problem on a
mtllticomputcr. The problem is to find all possible solutions for placing Nquccns on an N >< N chessboard so
that no more than onc quoen is on each row, mach column, or each diagonal.

Example 11.10 Solving the N-queens problem on a
multicomputer

STI i .lidiioricedCon'|piiterArchl1ec:irre

In other words, each row, coIum.n, or diagonal must have exactly one queen and no queen can attack
another, as illustrated in Fig. l1.1l]. The way the N-queen prob lcm is solved is to generate a search tree using
the workers to solve each leaf node ofthe search troe.

.l.

' I
-I Q |-

\ I

W.

Problem: Find all solutions for placing N queens on an N‘ 1-rill‘
chessooard so that there rs exactly one queen on eaeh now,
each eolumn, and each diagonal.

Fig. 11.10 N-queen: problu'n:ili.n loramplc oi nianageri-worlu|' decornpoilltlnn {Coirolsy of just:in' Rat:t:ri|r.
lntel Sderrtilic Cornpuiiers. 1WD}

The manager builds and maintains the top level of the search tree, assigns workers to build difiercnt
branches ofthe tree, and keeps track of the total number of solutions {chcssboard patterns) generated. Each
worker should be able to split the problem into subproblcms and to solve a subproblem.

Once a branch is too heavily extended, the worker can report to the manager which will ofi‘-load subtree
operations to other available nodes. C lose communication between tl1e manager and the workers is necessa.ry
to keep up a well-belaneed processing of the search tree on a dynamic basis.

Performance Tuning One technique for tuning the performance is to use double-bulifer messages in a
manager-worker decomposition. The idea is to send a worker two pieces of work the first. time. As soon as
the worker is finished working on the first piece, another piece is readily available.

Once the communication feomputation issues have been well balanced, the results from the first piece of
work are returned to the manager who can send over another piece of work before the worker finishes the
second piece. There is always one job waiting in thc worker's queue, and thus workers are kept busy all the
time.

A potential problem with the manager-worker approach is that the manager may become the bottleneck.
Aeeorriing to Intel iPSC experience, up to SD workers managed by a single manager did not create a serious
bottleneck problem as long as a good communication fcomputation ratio was maintained.

. 1 -I .1 Ir.uI»r\ -
Hsrotllel Prcgmnr Develepvrrent is 573

C learly, for a multicomputer consisting of thousands of processors, the manager bottleneck problem can
become more serious. One can then consider providing a hierarchy ofmanagers.

Another possibie solution is to use floating managers or multitasking processors, which can execute both
a worker process ora manager process on tl'Ie same processor. These options must he carefully analyzed and
experimented with before they can be adopted in real applications.

11.5 .3 Hebe rogeneous Processing
ln this section, we lcam how to combine object-oriented programming with message-passing techniques for
distributed computing applications. We first characterize objects in relation to parallelism. Then we illustrate
the object‘ doc‘-r7mpo.siIinn concept using an air traflic control simulation example.

Finally, we present the concept of !a__verer1'rnrrrrrilefisni ttsing a seismic monitoring example which involves
all the decomposition techniques we have learned. Such concepts may be needed to solve very large-scale
problems.

Object: and Parallelism The object-oriented approach to parallel programming ofi'ers a formal basis for
decomposing the data strucmres and threads of control in user programs. in what follows, we define objects
and reveal the relationship between objects and parallel processing.

______l

I I I I I I I l I l I l I I I

Object
Diia Asst of stack-oparatim proosd ores:

Tap pstaelr = naw[staeIr]
Po inter]II.I1“5i'l{|ZIS‘iBGi'i.C|aiII.|I'I'Ii

datum = pcIp[ps’ae.k]
fi'as{pstaeItjI

{Stack} An object
r______ I

ifa] Defining a stack as an object

Stack
capo

{I:IJ Shared access to a stack cbjectny rnumpts tastes

Fig. 11.11 A stack obiect and its slsarad access by rnulflple task:

I5T4 i “ AdIioncedCmnpIrterA.rchi1ectu.re

The idea oi" objects comes from rfnrn ribsrrtrctrhn, in order to hide low-level details from programmers. An
objectencompasses a set of logically related data and a set of procedures which operate on the object's data,
as illustrated by the example in Fig. l1.l1a.

The example shows that temporary storage in the form ofa stack can be treated as an object consisting ofa
last-in-first-out queue of data which can be pushed down or popped up in its rnanagerncnt. It should be noted
that an object type {class} is conceptually ditiercnt from instances ofthe object type.

Those instances, called objects, are the ones used in program execution. Only the object's procedures
have access to the object's data. A programmer can be freed from knowing the detailed implementation of
the objects.

This simplifies program debugging and testing efforts, and offers modularity in program development,
which are all desired features for parallel programming.

Shared data suuctures can be organized as objects. Shared aocess to a stack object by multiple tasks is
shown in Fig. l 1.1 lb. Aparallel program may be composed ofmultiple threads ofeirecution that access both
private and shared data.

Threads ofesec ution can be allocated as instances ofa task type. lftasks mu st com municatc by exchanging
messages, the shared object is accessed via message passing, which must be synchronized by a systcm-
defincd class of queue objects.

Object Decomposition This technique ofiers natural advantages for parallel computers. lt avoids the
use of global variables. simplifies the programidata partitioning process, and provides higher granularity of
interaction among objects through the use of predefined procedures ‘For accessing objects.

Ada and C++ both support data abstraction in object-oriented programming on message-passing systems.
The following air traflic simulation system explains the key concepts behind object decomposition for
parallel programming, The goal ofthe simulation is to measure the effects of scheduling, weather, ctc., on
air traffic flow control.

5515
Three fundamental obj cot types are identified in Fig. 11.12. First, the airports contain information regarding
their location, runways, etc. Second, airplanes contain information related to position, velocity, l'i.Iel capacity,
ctc. Third, air space sectors are pro-specified by the American Flight Agency.

Objects of these types are manipulated by four task types: The air dispatchers allocate airplanes and pilots
{scheduling}. The pilots ope-rare the airplanes. The air traffic controllers manage the safe use of airports and
airspace sectors to at-oid collisions.

Example 11.11 Air traffic simulation on a multicomputer

The tasks interact by invoking procedures on shared airplane, airport, and airspace objects. Thc
communication among the tasks and between tasks and objects can be simulated by a message-passing
multicomputer. Appropriate protocols must be established in these message-passing operations.

The use of multiple tasks with separate functions in this application is also an example of control
decomposition. The computational complexity of this air traflic simulation problem is controlled by
partitioning the airspace into sectors.

. 1 '1 .1 rulnrs -
Fb.rmllelPr'rgron1 Developvrrent 1 575

fTask Typesi

All line Ar rhno
Deoetchers: Controllers:

UA LAX
NW CH-G
M SF-D

Airtime
Pilots:
Smnh

Yamamoto

Sector
Controllers

Sector A
Sector B

III
I I I
I O I
I I I

UA101
NWfi~B-

M1035
JAL3?

Parttionod
Aoros pace

Sectors
G3

I-

Airport Airplane Space Sector
Objects ospcn Objects

Ki Ooloet Typesoi
Fig. 11.11 Air trarlfic simulation using decomposition techniques

The air traffic controller manages the separation of airplanes within each sector. Wlren an airplane crosses
between two sectors, thc ciontroller must pass the duty to the next sector controller on the route of the flight.

Sector partitioning of the airspace is indeed a domain decomposition ofthe problem. Different sector
controllers are simulated at dificrent nodes ofa multicomputer. In order to conduct real-time simulations, all
thc object information must be retrieved from the local memory without page faults from the backup store.

For example, distribution of the airports should be made to associate the airports and their controllers
wit]:|i.r1 the sa.rr1c sector node. As airplanes fly from one to another, the are scnt as messages
among nodes. Load balance can be achieved by defining the sector boundaries, interleaving sector objects, or
allowing sector migration dynamically as trafiic becomes dense.

Hetcmgeneom Processing A growing trend in oomputing is to use a network of resources tor
hererogoneoris prrre.r.si‘ng (HP). A large-scale complex problem can be solved by combining a number of
computers of various kinds in a network crwirpnrnent.

On a mulficomputcr-based network, I-[Pcan be practiced using a combinationofdecomposition techniques.
ln what follows, we describe computations with embedded parallelism at various processing layers.

I -5T6 i .lIdIrorrcedCmr|puterArchi1ecrrrre

Layered Decomposition ln solving large and complex problems, we may have to employ a programatic
layered approach to extracting parallelism using different decomposition techniques at different levels. Such
an approach can be called in_yero:i deeorrrpo.si!iorr.

The functional approach to image understanding (Fig. ILB} can be considered a four-layered decomposition.
As machine sizc reaches thousands of nodes, we have to develop programming techniques on that scale.

The layered approach certainly addresses the scalability problem with foresight. Example applications
include weather simulation, fluid flow, structural analysis. molecular dynamics, and seismic monitoring.

I/)
lg Example 11.12 Heterogeneous processing based on

layered parallelism
The problem ofscismic monitoring requires the processing ofa large amount of seismic data using a layered
approach consisting ofthrcc levels, as illustrated in Fig. 11.13.

H“"'_f;’:;‘g"f:lS Pei-rear parrlleliern at up level
“'9' Alll 1' r oorri
°B"_"°-"?° rmirmifiissgiiianir "9

flmflafi pmoeesoa.

Sgndmdyds "_'°‘-"‘:1';:

Fmdimal
S Dd. RH . N Us oeoorrposiion

asequenceothl
decision making
progarns.

Real HQ. as1'
Yes

Red-trne lrielli-gems
lrierpreter Interprewion

Dorein
rteoor'|'¢Iusi1on'Ior

time dfla

tlumsive paratelientl

Hg. 11.1 3 Layered parallelism In dttompcrslrrg the seismic monlaormg protrlerntorlvenerogenoous processing

I----——---——----——------------ I I I I I I I I I ,. I I I I I I 1 I I I I I I I I I I I I I I v I I I I I I I I I J I I I

Grew I" .maklprtgmn Dwebpmem I FM-Illa? Hil tumaenm i 57.’

At the highest level, perleet parallelism is expected because real-time signals come in from monitors
located at various sites using separate processors mostly running with Fortran seismic code.

Once thc seismic signals are cleaned up by the distributed processors, w'e need to use a middle level of
Functional decomposition corresponding to a sequence oi".-M decisions.

Finally, the interpretation ofreal-time data may require domain decomposition lor each signal domain.

Difierent types oi'c-omputers are used at diiferent levels in the layered approach. The monitor processors
used at the top level are nothing hut separated signal processors with numeric, Fortran, and vector processing
capabilities.

The ii.|nctional decomposition may use neural simulators, Lisp processors, or other symbolic maehines
with extended memory and intelligence interpretation capabilities.

The bottom level ofdomain decomposition demands a highcr degree of parallelism ifthe survey sites are
numerous. Graphicsfvisualizalion capabilities are needed to inlerprci the final results. The above example
presents a typical ease of heterogeneous processing in a network environment.

Ii l Summaryat
in d1is chapter, we studied software environments and program development techniques for parallel
computers. Parallel programming languages must address important issues such as compatibility,
expressive.ness,ease ofuse.efliciency,and portobilioqand usually l2l'iBI'E are trade-ol‘Fs involved while addressing
dwese issues. Parallel programming environmenu must provide the required tools for program design.
debugirig, visualizatiomperformance monitoring and tuning, inputloutput, and to-rnmunitation.As specific
examples, we studied the Cr'ay‘|"-HE Paragon and CM-5 parallel programming environments.

The closely related issues of synchronization and multiprocessing modes are central to any panllel
processing environmencwe studied the basic principles of synchronization in terms of atomic opemtinm.
wait pmtocots, filirness policies, and sole-access protocols. Multiprocessing nequires fast context-switching and
efficient synchronization. Multitasking may be seen as one variant of multiprocessing; depending on its
granularity. it may be dubbed macro-tasking or micro-tasking. The multitasking mechanism provided on
Cray multiprocessor: was studied as a specific example.

One important model ofparallcl programs is the shared variable model.S-ince multiple parallel processes
access shared variables in memory. locks can be employed for achieving protected access.A lock may
be implemented as a spin lock or a suspend lock. Semaphore: provide a higher level of synchronization
mechanism than |od<s.The two basic operations on a semaphore s are P{s) andV[s). Monitors provide a
still higher level of synchronisation, encapsulating bodi shared variables and the permitted operations on
d1em.We studied these synchronization mechanisms with the help of example applications.

Another equally important model of parallel programs is the message-passing model. in which die
various processes running in para|lel—on multiple processors—do not in general share main memory.
Program development for multicomputers under this model must also address the issue of distributing
the computation over available nodes, since this distribufion determines the demands made on the
message-passing subsystem. and thereby the overall system perFom1ance.ln this context. the advantages

TM iilnffirnil-' Hllllfmruionm
STE i .-iidvonced Computer.-hchitecture

and disadvantages of synchnonous versus asynchronous message passing were discussed. although it is
true that the asynchronous model is more used.

Decomposition techniques ane needed lor rrrapping programs onto multicomputers. Domain
decomp-osidon and control decomposition techniques were described in this chapter, with several specific
e:mmples.The concept of heterogeneous processing was introduced.

lgExercises
Problem 11.1 Explain the following terms
associated with fast and efficient synchronization
schemes on a shared-memory multiprocessor:

(al Busy-wait versus sleep-wait protocols lor
sole access of a critical section.

(bl Fairness policies for reviving one of the
suspended processes waiting in a queue.

(cl Lock mechanisms for pre-synchronization to
achieve sole access to a critical section.

(dl Optimistic concurrency or the post-
synchronization method.

(el Server synchronization and the corresponding
synchronization environment.

Problem 11.2 Distinguish between spin locks and
suspend locks for sole access to a critical section.
Generalize Deklter‘s protocol fi"om two procedures
to three or more procedures sharing critical
sections. Also implement the generalized Delsluers
protocol using the Test8rSet atomic operation.

Problem 11.3 There are many ways to solve
the mutual exclusion problem based on different
implementation schemes, such as the use of spin
locks or Dekl<er's protocol. Describe the following
schemes:

la] Implementing mutually exclusive access to a
critical section using binary semophons.

(bl lmplementi ng mutual exclusion using a monitor
called by processes competing for access to a
critical section.

Problem 11.4 Dijkstra [Dijl<stra53] has defined
the well-known dining philosophers pnoblem:There
are five philosophers dining around a mble as shown.

oio

$2Os
lQl

Each of the philosophers engages in only two
activities. thinldng or eating. as characterized below
as process Bfor i = 1,2, ,_,, 5,

P; : begin
loop

Think
Fetch protocol
Eot
Release protocol

enclloop
end

'_maklpngmn Daebpmem I rho-Mnffimli Hfi turmio-1m i 579

A bowl with an endless supply of spaghetti is
placed in the center of the table. Each philosopher is
given a plate.There are five forks on the table. one
between adjacent philosophers. Each philosopher
enters a thinking period while not eating. in order
to be able to eat. the philosopher must get hold of
two neighboring forks from his left and right sides.
The fetch protocol specifies how each of the forks will
be picked up.The release protocol specifies how the
forks will be released after eating. Each philosopher
is allowed to pick up one fork at a time from his left
or from his right side. Each fork can be used by only
one philosopher at a time. No fork can be passed
around the table.and a fork must be put back where
it was picked up.

The problem is to design the fetch protocol and
the release protocol for the philosophers so that no
deadlock will occur. A deadlock means a circular
wait situation in which each philosopher holds one
fork and refuses to release it.A deadlock means
starvation.so we should avoid it in the solution.

(a) Use the P and V operators and binary
semaphores to specify the fetch and release
protocols. One semaphore can be used to
represent the fork on the right. and another
semaphore to represent the fork on the left.
The purpose of dae protocols is to prevent
deadlock from occurring so that no individual
starvation will occur. lnitialht all the forks are
placed on the table corresponding to an initial
value of 1 for the semaphores. When a fork is
picked up. its semaphore is changed to a value
of ID.

(bl Design a monimr to control dae fetch and
release of the forks. ln this case,the fetch and
release are each spedfied by a procedure in
the monitor.Also, specify the philosophers as
user processes calling the monitor to claim
forks. Again, no deadlock or starvation is
allowed under the same assumption made in
part (al.

Problem 11.5 Explain why mutual emclusion, non-
preemptian. wait for, and circular wait are necessary
conditions but not sufficient conditions for a system
deadlock to occur. Also distinguish among the
deadlock prevention, avoidance. detection. and recovery
schemes. Comment on their implementation costs
and expected performances.

Problem 11.5 Five concurrent processes
are specified below using four resource types
represented by four semaphores. Answer the
following questions witl1 reasoning and justification.
Begin

shared record
begin

var S1, S1, S3, S4:semaphore:
var blocked. unblocked: integer:

end
initial blocked = U. unblocked = 1:
initial 5,= 51 = S3 = unblocked; 5., = blocked;
cohegin

A: begin P(S1);\l'(S1); P(51);V(S7_): end;
B; begin P(51); P(57_'_l;V(S4];V[$1};V($1}; end:
C: begin P(S}J; F(53];Vl_’5;_'|;Vi_'S3}: end;
D: begin H54]; F151}; P{S1‘_l;V(S1);V(S;_}; end;

E1 besi" F‘(5al= P(51l= ""l51)=\"(5:lH=I1d=
coend

End

(a) is a deadlock possible among the five code
seg|'nents represented by A, B, C. D, and E!’
Which subset of code segments may enter a
deadlock on what resources?

(bl lf the deadlock situation does occur in part
(al. what additional code segments could be
indefinitely blocked?

(cl is a deadlock inevitable or does it depend
on race conditions? justify your answer with
rsoning using a resource allocation graph.

[d] Make a minor change in one pnograrn segment

FM Illnffirm-H Hfillimoponm
5811 W Adi-ianciedCon1pirter.i|.rcliiitecture

to prevent a deadlock from occuning. justify
the claim with a resource allocation graph
similar to Fig. 11.5.

Problem 11.7 Sdieduling access to a moving-
head disk can be implemented by a monitor. The
implementation consists of daree components: user
processes which request. access, and release the
disk service; B. disk scheduler which performs the
scheduling of disk data to be accessed by one user
at a time; and driver procedures that perform actual
data transfer.

(all Write a monitor to implement the disk
scheduler.The monitor should consist of two
procedures. one for a request for and one for
a release from disk access.

(bi Specify how a user process can call the
monitor for disk access. The disk driver
procedures are considered given.

Problem 11.B Write a monitor as a barrier
counter for the synchronization of n concurrent
processes.The barrier counter should be resettable.
and a user process should be specified to call the
monitor when it reaches the barrier. Note that
local and shared variables must be declared and
initialization of local data must be given.
Problem 11.9 Answer the following questions
on decomposition techniques for message-passing
programming on multicomputer nodes:

(ai What is a perfect decomposition? Explain
the advantages and discuss the differ-
ences in program replication techniques on
multicomputers as opposed to program
partitioning on multiprocessors.

(bi Based on data domain, algorithm used, and
flow of control in applications. distinguish the
opportunities for applying domain, control.
and object decomposition techniques in
distributed computing on multicomputers.

Problem 11.10 The N-queens problem (Fig,11.1C|)
was introduced along with die manager-worker
approach to control decomposition in programming

a multicomputer. Suppose N = 8. There are 92
possible solutions to the B-queens problem.

(ai ‘Write a program that searches for a
solution. First run the program on a sequen-
tial computer {such as on a workstation or
even a personal computer). Record the time
required to conduct die sequential search.A
sequential search involves backtracking once
an impossible configuration is exposed. The
backtracking step systematically removes
the current emplacement: of the queens and
then continues with a new emplacement.

{bi Develop a parallel program to run on a
message-passing multicomputer if one is
available. Fora concurrent search for solutions
to the N-queens problem, backtracking is not
necusary because all solutions are equally
pursued.A detected impossible configuration
is simply discarded by the node. Observe
the dynamic: of die concurrent search
activities and record the total execution time.
Compare the measured execution time data
and comment on speedup gain and other per-
for'mance issues.

Problem 11.11 The traveling salesperson problem
is to find the shortest route connecting a set of
cities, visiting each city only once. The difficulty is
that as the number of cities grows. the number of
possible paths connecting them grows exponentially.
ln fact. in - 1)!.i2 paths are possible for n cities. A
parallel program. based on simulated annealing, was
developed by Caltech researchers Felten, Karlin, and
Otto [FeltenB5] for solving the problem for 6-*1 cities
grouped in 4 clusters of 16 each on a multicomputer.

(ai Kallstrom and Thakkar (1988) implemented
the Caltech program in C language on
an iF5Cf1 hypercube computer with 32
nodes. Study this C program for solving
the traveling salesperson problem using a
simulated annealing technique. Describe the
concurrency opportunities in performing the
large number of iterations [such as 5fl,CKlO)
per temperature drop.

Fb.ralleiPrtgron1 Deveiapvnent 1 mutsrnw mll'_'i'm"“'“ - m 5|“

(bl Rerun the code on a modern message-passing
multicomputer. Check the execution time and
performance results and compare them with
those reported by l(allstrom and Thakkar.You
will need to modify the code in order to run
on a different rnadaine.

Problem 11.11 Choose an example program
to demonstrate the concepts of macrotasking.
microtasking. and autotasking on a Cray-like
multiprocessor supercomputer. Perform a tradeoff
study on the relative performance of the three
multitasking schemes based on the example program
execution. Hake reasonable assumptions as needed.
as in Example 11.1.
Problem 11.13 Write a multitasked vectorized
code in Fortran 90 for matrix multiplication using
four processors with a shared memory. Assume
square matrices of order n = 4k. The entire data set
is available fi'om the shared memory.

Problem 11.14 Design a message-passing
program for performing fast Fourier transform (FFT)
over 1l]24 sample points on a 31-node hypercube
computer. Both host and node programs should be
specified, including all communication commands.
initially each node holds 31 sample points without
duplicating dwe data set The results should be sent
to the host for output

Problem 11.15 A typical two-dimensional image
is represented by a rectangular array of pixels
{picture elements). Each pixel [i, j) is represented by
a loggb bit integer corresponding to the gray level
{between 0 and b — 1) at coordinate (I, _l} of a black

-and-white picture. Histagromming is a process to
count the frequency of occurrences of each gray
level. Let histogiifl :b — 1] be the array ofa histogram
of b gray levels.

The following serial code is written for histogram-
mirig on a uniprocessor system:

Var pixel(D:m — 1,0: n -1):
Var histog(D : b — 1): integer:
histog(fl:b -1) = U1
for i = O to m — 1 do

forj= 0ton— 1 do
lIi='¢=>slPi>"=|ii-ii) = |1i='1>siPiX=|li-iiif 1

The time complexity (number of counts] of this
serial program is Ofntril. where mn corresponds to
the image size.

Partition the image. pixel(i, ji for 0 5 i 5 m — 1
and 0 E] E n — 1 into p disjoint segments, where
chsegment has mlp = s rows of the image.

Develop a parallel program which can spawn a set
of p processes to histogram the entire image. The
p concurrent processes share the same histogram
arrayhistog(0 :b— 1).

(a) Use the Doall and Endall statements to
specify a parallel program for counting the
histogram simultaneously on a p-processor
system with shared memory.

(bi What is the potential speedup of the parallel
program over the above serial program!
You can ignore tl'|e image li'D overhead by
assuming the entire image database is in die
main memory.

n» nlccmv Hllliompwim "

Part V
Instruction and System Level

Parallelism

Chapter 12

Instruction Level Parallelism

Chapter 13
Trends in Parallel Systems

—

Summary
The basic concepts of parallel computer systems—theoretical formulations. hardware architecture.and
programming models-—-have been discussed in detail in Parts I through IV of the book. The decades of
l9}'Os and l980s generated a great many innovative ideas in computer ardwitecture. Since then. over the
last couple of decades. the technologies underlying computer architecture—VLSl. storage. interconnects.
and so on—haye seen huge advances. and these have had a huge impact on computer architecture.At the
same time. die range of applications of computer systems has also grown enormously.

Against this background. Chapter I2 discusses the important topic of instruc1.':ion level parallelism (ILP).
which has a crucial bearing on processor design.\M'-: see that the issue of exploitation of ILP is a system
design issue. and we also discuss the limitations which are encountered in exploiting lLP in real-life
applications.

Chapter I 3 discusses recenttrends in parallel computer syste ms—for this. howeve r. it is also necessary
to discuss in brief the technological advances whidw have impacted computer architecture. Some basic
concepts related to parallel algorithms are discussed. and a number of case studies are presented of
processors. systems-on-a-chip.and massively parallel systems.The parallel programming language Chapel
is introduced. as also function libraries which have been developed for writing parallel programs.

Instruction Level Parallelism

INTRDDUCTI DH

1 The period between the l9'I"Os and the 1990s saw agreat many innovative ideas being proposed
in computer architecture. The basic hardware technology o fcomputers had been mastered by

the 1960s, and several companies had produced successfirl commercial products. The time was therefore
right to generate new ideas, to reach performance levels higher than that of the original single-processor
systems. As we have seen, parallelism in its various fbrms has played a central tole in the development of
newerarchitectures.

The carlicr part ofthisbook has presented a comprehensive overview ofthe many architectural innovations
which had been attempted until the early 1990s. Some ofthesc were commercially successful, while many
others were not so fortunate—which is not at all surprising, given the large variety of ideas which were
proposed and the fast-paced advances taking place in the underlying technologies.

In the last two chapters of the book, we take a loolt at some of the recent trends and developments
in computer architecturc—ir|cluding, as appropriate, a brief discussion of advances in the underlying
technologies which have made these developments possible. ln fact, we shall sec that thc recent advances
in computer architecture can be understood only when we also talte a look at the underlying technologies.

Wl"|ut is computer arehitecture?
{aj We define r.-onrprrrer art-lrireerrrre as the arrangement by which the various system building blocks-

processors, functional units, main memory, cache, data path s, and so on—are interconnected and inter-
operated to achieve desired .t_1-'srenr perjforrmnce.

(bj Processors make up the most important part of a computer system. Therelbre, in addition to (aj,
processor desigrr also constitutes a central and very important element of computer architecture.
Various functional elements of a processor must be designed, interconnected and inter-operated to
achieve desired pro;-e.s'.s0r perfisrrrrunce.

.5_‘r-‘stem perjbrmrmee is the ltcy benchmark in the study of computer architecture. A computer system
must solve the real world problem, or support the real world application, for which the user is installing
it. Therefore, in addition to the theoretical peak performance ofthe processor, the design objectives ofany
oomputer architecture must also include other important criteria, which include system performance under

.585 li Advanced Cornpurterfirchiteeture

realistic load conditions, scalability, prioe, usability, and reliability. ln addition, power consumption and
physical size are also often important criteria.

A basic rule of system design is that there .sh0ul'o' be no perfsrmanee borrleneelrs in the system. Typically,
a performance bottleneck arises when one pan of the system—i.c. one of its subsystems—cannot keep
up with the overall throughput requirements of the system. Such a performance bottleneck can occur in a
production syslcrn, a distribution system, or even in traffic systcmlu. [fa performance bottleneck docs occur
in a system—i.c. if one subsystem is not able to keep up with other subsystcms—then the other subsystems
remain idle, waiting for response from the skmwerone.

[n a computer system, the key subsystems are processors, memories, L-"O interfaces, and the data paths
oonnecting them. Within the processors, we have subsystems such as filnctional units, registers, cache
memories, and intemal data buses. Within the computer system as a whole—or within a single prooessor-
designers do not wish to create bottlenecks to system performance.

I»)
8 Example 12.1 Performance bottleneck in a system
ln Fig. ll l we the schematic diagram ofa simple computer system consisting of fourprocessors, a large
shared main memory, and a processor-memory bus.

Shared maln
memory Fm"

pro-oe-ssors

Pro-oa-asor-
memory bus

Fig. 11.1 A drnple shared memory muttlprooessor systern

For the three subsystems, we assume the following performance figures:
(ij Each of the four processors can perform double precision floating point operations at the rate of 500

million per second, i.e. 506 MFL-OPs.
{ii} The shared main memory can teartl-‘write -rlata at the aggregate rate of 1000 million 32-bit wortls per

second.
(iiij The processor-memory bus has the capability of transferring 500 million 32-bit words per second tor"

from main memory.

ill ltt oommcm language, we say that tr r.'hur'.n r'.'r o.nf_v as strong as 1'11: n'euke.i1' flair.

mwermuurnwmassm -—. 5,,
This system exhibits a pcrtbnnanee mismatch between the processors, main memory, and the processor-

memory bu s. The data tran sfer rates supported by the main memory and the sharedprocessor-memory bus do
not meet the aggregate requirements of the tburproccssors in the system.

The system architect must pay earclill attention to all such potential mismatches in system design.
Otherwise, tl1e sustained pcrtbrmanee which the system can deliver can only equal the performance of the
slowest part ofthe system—i.c. the bottleneck.

While this is a simple example, it illustrates the key challenge facing system designers. It is elearthat, in the
above system, ifprocessor pcr_,firni.rmec is improved by, say, 20"?-"ft, we may not see a matching improvement
in .s_rs1t’m pe.rj"ormanee, because the performance bottleneck in the system is the relatively slower processor-
rnemory bus. In this particular case, a better investment for increased system peribrrnanee could be (aj faster
processor-memory bus, and (bj improved eache memory with each processor, i.e. one with better hit rate—
which reduces contention tbr the processor-memory bu s.

In fact, as we shall see, even achieving peak theoretical performance is not the final goal of system design.
The system performance must be maintained for real-life applications, and that too in spite ofthe enormous
diversity in modem applications.

In earlier chapters of the book, we have studied the many ways in which parallelism can be introduced
in a computer system, for higher processing performance. The concept of instruction level parallelism and
superscalar architecture has been introduced in Chapter ti. In this chapter, we take a more detailed look at
instn.|c1i-on level parallelism.

BASIC DESIGN ISSUES

1 As we have seen in Chapter 6, a linear in snruction pipeline is the basic structure which exploits
instruction level parallelism in t.he executing sequence of machine instructions. We have also

discussed in brief how further hardware techniques can be employed with a view to achieve .s1.*per.sr-afar
processor architeeture—i.e. multiple instruction issues in every processor clock cycle. In this chapter, we
shall study these and other related concepts in some more detail.

Instruction pipeline and eache memory [or multi-level cache n'ren'r-ories] hide the memory aecess latencies
of instruction execution. With multiple functional units within the processor, .s'uper.senfnr instruction
csecution rates—greater than one per process-or clock cyclc—can be targeted, using multiple issue pipeline
architecture. The aim is that the enormous processing power made possible by VLSI technology must be
utilized to the full, ideally with each limctional unit producing a result in every clock cycle. For this, the
processor must also have data paths of requisite bandwidth—within the processor, to the memory and IICI
subsystems, and to other processors in a multiprocessor system.

‘With a single processor chip today containing a billion (109) or more transistors, system design is not
possible in the absence ofa target application. For example, is a processor being designed for intensive
scientific number-eninelling, a commercial server, or for desktop applications?

One key design choice which appears in such contexts is the following.
Should the primary design emphasis be on:

{aj exploiting fillly the parallelism present in a single instruction stream, or

lb] supporting multiple instruction streams on the prooessor in multi-core andfor multi-threading mode‘?

Adtwrced Computerfirehiteeture

This design choice is also related to the depth ofthe instruction pipeline. In general, designs which aim to
maximize the exploitation of instruction level parallelism need deeper pipelines; up to a point, such designs
may support highcr clock rates. But, beyond a point, deeper pipelines do not necessarily provide highcr net
throughput, while power consumption rises rapidly with clock rate, as we shall also discuss in Chapter 13.

Let us examine the trade-olTinvolvei:l in this context in a simplified way:
total chip area = number of cores X chip area per core

or
total transistor count = numberofcores >< transistor cotmt per core

Here we have assumed for simplicity that cache and interconnect area—and transistor count—can be
considered proportionately on a per core basis.

At a given time, ‘s-'LSl technology limits the left hand side in the above equation s, while the designer must
select the two factors on the right. Aggressive exploitation of instruction level parallelism, with multiple
functional unitsand more complex control logic, increases the chip area—and trans is tor count—pcr processor
core. Alternatively, ibra difiierent category oftarget applications, the designer may select simpler cores, and
thereby place a larger number ofthem on a single chip.

Clfcourse system design would involve issues which are more complex than these, but a basic design is sue
is seen he-re: For the targeted application and performance, how should the designers divide available chip
resources among processors and, within a single processor, among its various fttnetional elements?

Within a prooessor, a set of instntctions are in various stages of execution at a given time—within the
pipeline stages, functional un its, operation bufiers, reservation stations, and so on. Recall that iimctional units
themselves may also be internally pipelinod. Therefore machine instructions are not in general executed in
the order in which they are stored in memory, and all instructions under execution must be seen as ‘work in
progress‘.

As we shall see, to maintain the work flow oi‘ instructions within the processor, a superscalar prooessor
makes use of lirrmeh prcdr'ction—i.e. the result of a conditional branch instruction is predicted even bcibre
the instnlction executes—so that instntctions from the predicted branch can continue to be processed,“-'ithout
causing pipeline stalls. The strategy works provided fairly good branch prediction accuracy is maintained.

But we shall assume that instnrctions are eonmtitreri in order. Here corriniitring an instntction means that
the instruction is no longer ‘under execution’—tl1e processor state and program state reflect the completion
ofall operations specified in the instruction.

Thus we assume that, at any time, the set of committed instructions correspond with the program order
of instructions and the conditional branches actually taken. Any hardware exceptions generated within
the processor must reflect the prooessor and program state resulting fi'om instructions which have already
committed.

Parallelism which appears explicitly in the source prog ram, which may be dubbed as s'n'rieIre*riIprtrrrl!cIisnr,
is not directly related to instruction level parallelism. Parallelism detected and exploited by the compiler is a
form ofinstnlction level parallelism, because the compiler generates the machine instntctions which result in
parallel execution ofmultiple operations within the processor. We shall discuss in Section 12.5 some ofthe
main issues related to this method ofexploiting instruction level parallelism.

instruction mamas -—. 5,,
Parallelism detected and exploited by processor hardware on firefly, within the instructionswhich are under

execution, is certainly instruction level parallelism. Much ofthe remaining part ofthis chapter discusses the
basic techniques ibr hardware detection and exploitation of such parallelism, as well as some related design
trade-ofi's.

While the student is expected to be familiar with the basic concepts related to instruction pipelines, the
earlier discussion of these topics in Chapterfi will serve as an introduction to the techniques discussed more
fully in this chapter.

Weak memory consistency models,which are discussed elsewhere in the book, are netdiscussed explicitly
in this chapter, since they are relevant mainly in the case of parallel threads of execution distributed over
multiple processors. Similarly——since the discussion in this chapter is primarily in the context ofa single
proccssor——thc issues of shared memory, cache coherence, and message-routing are also not discussed here.
The student may refer to Chapters 5 and ?, respectively, fora discussion ofthesc two topics.

‘With this background, let us start with a statement ofthe basic system design objective which is addressed
in this chapter

FROBLEH DEFINITION

1 Let us now ibcus our attention on the execution of machine instructions from a single
sequential stream. The instructions are stored in main memory in program order, from where

they must be fetched into the processor, decoded, executed, and then committed in program order. In this
context, we must address the problem of detecting and exploiting the parallelism which is implicit within the
instruction stream.

We need a prototype instruction for our processo r. We assume that the processor has a lend-store type of
instnrctien set, which means that all arithmetic and logical operations are carried out on operands which are
present in programmable registers. Operands are transferred between main memory and registers by forrdand
store instructions only.

We assumea three-address instruction fo rmat, as seen on most RI SC processors, so that a typical instnrction
for arithmetic or logical operation has the format:

opcode operand-l operand-2 result

Our aim is to make the discussion independent of any specific instruction set, and tlterefere we shall use
simple and self-explanatory opcodes, as needed.

Data transfer instructions have only two operand:-;—souree and destination registers; fear"! and stare
instnrctions to.-"from main memory specify one operand in the form ofa memory address, using an available
addressing mode. Efiective address for fem’ and store is calculated at the time of instruction execution.

Conditional branch instructions need to be treated as a special category, since each such branch presents
two possible cominuations ofthe instruction stream. Branch decision is made only when the instruction
executes; at that time, if instructions from the branch-not-taken are in the pipeline, they must beflushed. But
pipeline flushes are costly in terms oflost processor clock cycles. The payoff ofhraneh prediction lies in the
fact that correctly predicted branches allow the detection ofparallelism to stretch across two or more basic

EH1 D Admrrced Compurterfirchiteeture

blocks ofthepmgram, without pipeline stalls. It is for this reason that branch prediction becomes an essential
technique in exploiting instnrction level parallelism.

Limits to detecting and exploiting instruction level parallelism are imposed by dependences between
instnlctions. After all, ii'N instructions are completely independent of each other, they can be executed
in parallel on N firnctienal units—ii'N iirnctional units are avaiIablc—and they may even be executed in
arbitrary order.

But in fact deperldences amongst instruetionsareacentral and essential part of program logic.A dependence
specifies that instruction 1;, must wait for instruction lj to complete. Within the instruction pipeline, such a
dependence may create a Fmzrrrrt‘ or smH—i.e. lost processor ckick cycles while lk waits tbr I1- to complete.

For this reason, for a given instruction pipeline design and associated fimctional units, dependences
amongst instnrctions limit the available instruction level parallelism—a.nd therefore it is natural that the
eentral issue in exploiting instnretion level parallelism is related to the correct handlingofsuch dependences.

We have already seen in Chapter 2 that dependences amongst instructions fall into several categories; here
we shall review these basic concepts and introduce some related notation which will pmve usefiil.

Data Dependence:
Assume that instruction lk follows instn.|etion [J in the program. Dam r'li’]Jc'm'l'e’H£'c' between Ii and lk means
that both acoess a common operand. Forthe present discussion, let us assume that the common operand of [J-
and I1, is i11 a programmable register. Since each instruction either reads or writes an operand value, accesses
by l 1- and I 1, to the common register can occur in one of four possible ways:

Read by Ii after read by lj
@ 1"-'1' It tfltrrnlnc 1"-I)‘ It
EYE ll‘? It by It
iltnlebr ltsitentrrrlcbr It

Of these, the first pattern of register access does not in fact; create a dependence, sinoe the two instructions
can read the common value ofthe operand in any order.

The other three patterns of operand access do create dependences amongst instructions. Based on the
tmderlined words shown above, these are known as rend .n_,r‘i'er n'rin: [RAW'] dependence, 'n'rr're qficr read
[WAR] dependence, and ii-rire .n_,fi‘er it-‘rite (WAW) dependence, respectively.

Read afierwrite (RA‘W] is truedata dependence, inthe sense that the registervalue written by instruction lj is
read—i.e. used—by instruction Ik. This is how computations proceed; a value produced in one step is used
Further in a subsequent step. Thereibre RAW dependences must be respected when program instnrctions are
executed. This type of dependence is also known a_s_/‘low depandemre.

‘Write attcr read {WAR} is known as mitt’-n'r=penn'ertee, because in this instance instruction I; should not
overwrite the value in the common register iii] the previous value stored therein has been used by the prior
instnrction IJ- which needs the value. Such dependence can be removed from the exccuting program by simply
assigning another register for the write instruction I1 to write imo. With read and write occurring to two
difiicrent registers, the dependence between instructions is removod. In fact, this is the basis ofthe register
mnmring technique which we shall discuss later in this chapter

I1 JI|r.u| u :tsm.- Lcirelibrollelism ._,_ 5,“
Write aiterwrite-[WAIPI-'1 is kriovm as output dependence, since two instructions are writing to a common

register. Ifthis dependence is violated, then subsequent instructions will a value in the register which
should in tact have been ovcrwritten—i.e. they will see the value written by Ij rather than Ig. This type of
dependence can also be removed from the executing program by assigning another target register tor the
second write instruction, i.e. by register romrrrring.

Sometimes we need to show dependences between instructions using graphical notation. We shall use
small circles to represent instructions, and double line arrows between two circles to denote dependences.
The instruction at the head ofthe arrow is dependent on the instruction at the tail; if necessary, the type of
dependence between instructions may be shown by appropriate notation next to the arrow. A missing arrow
between two instnrctions will m-can explicit absence of dependence.

Single line arrows will be u.sod between instructions when we "wish to denote program order without any
implied dependence or absence of dependence.

Figure 12.2 illustrates this notation.

Ii Ii Ii O Ii Ii

RAW R WAR R WAW R "0 PYQQFQF"
l mi I ml I mi dependence order

it '|t lk O llt lit

Fig. 1 2.2 Dependence sheiwn in graphical notation {Rm In-dlcanes register}

When dependences between multiple instnrctions are thus depicted, the result is a dirccrcri graph
of dependences. A nnrfiz in the graph represents an instnrction, while a directed edge between two nodes
represents a dependence.

Often dependences are thus depicted in a basic block of inst:ructions— i.e. a sequence of instructions with
entry only at the first instruction, and exit only at the last instruction ofthe sequence. in such cases, the graph
of dependences becomes a directed nc_vc!ic graph, and the dependences define a pnrrirri order amongst the
instructions.

Part (a) of Fig. 12.3 shows a basic Heck of six instructions, denoted I | through lg in program order. Entry
to the basic block may be from one ofmultiplc points within the program; continuation aflerthe basic block
would be at one of several points, depending on the outcome of conditional branch instnrction at the end of
the block.

Part (b) of the figure shows a possible pattcm of depcndcnocs as they may exist amongst these six
instnlctions. For simplicity, we have not shown the type of each dependence, e.g. RAW(R3], etc. In the
partial order, we see that several pairs of instn|ctions—sueh as (I|, I3] and (I3, I,,]—are not related by any
dependence. Therefore, amongst each of these pairs, tl'|e instnlctions may be executed in any order, or in
parallel.

Dependenoes amongst instructions are inherent in the instruction stream. For processor design, the
important questions are: Fora given processor architecture, what is the efiectofsuch dependences on prooessor
porforrnanoc? Do those dependences create hazards which necessitate pipeline stalls andfor flushes’? Can
these dependences be removed on rire_,I'ifr using some design technique‘? Can their adverse impact be reduced?

.592 i Admncad Cmnpusterfirchitecture

ll‘ If

la. J

6 '1 '1 '2

<5 '2
(5 '3
C) '4 I5 ls

(5 '5 [I1] partiat order of dependences

<5 =6
,1’ is, [a] program order

Fig. 12.3 A basic block of ix Instructions

Consider -once again the pattern of dependences shown in Fig. 12.3(b}. If the processor is capable of
completing two {ormorc} irtstnictions pcrclock cycle, and ifno pipeline stalls are caused by the dependences
shown, then clearly the six instr1.|ction_s can be completed in three consecutive processor clock cycles.
lnstruction latency, from fetch to commit stage, will ofcourse depend on the depth of the pipeline.

Control Dependence: ln typical application programs, basic blocks tend to be small in length, since
about 15% to 20% instructions in programs are branch and jump instmctions, with indirect jumps and return.-r
from procedure calls also included in the latter category. Because oftypically small sizes ofbasic blocks in
program s, the a.rno |.|nt ofinsrruction level parallelism which can be exploited in a single basic block is limited.

Assume that instruction lj is a conditional branch and that, whether another instruction lk executes or not
depends on the outcome ofthe oonditional branch instruction [J-. In such a ease, we say that there is a comm!
nbpendencze of instruction IL on i11stn.|c.tion ll-.

Let us assume that a processor has instruction pipeline of depth eight, and that the designers target
superscalar performance of four instmctions completed in every clock cycle. Assuming no pipeline stalls,
the number of instructions in the processor at any one timc—in its various pipeline stages and functional
units—would be 4 >< E = 32.

If] 5% to 20% of these instmctions are branches and jump s, then tl'|e execution of subsequent instructions
within the processor would he held up pending the resolution ofconditional branches, procedure returns, and
so on—eausing frequent pipeline stalls.

This simple calculation shows the potential adverse impact of conditional branches on the performance
of a superscalar processor. The key question here is: How can the processor designer mitigate the adverse
impact of such comrol .nbj.1en:1'enees in a program?

"1 .I| \ -n.~.1m- Levclflwutlelism -—. ,,,
Answer: Using some form of brand: rrrrn‘junr;J pre.rfic'ri0rr—i.e. predicting early and correctly [most of

the time] the results ofconditional branches, indirect jump s, and proocdure rctums. The aim is that, for every
correct prediction made, there should be no lost processorclock cycles due to the conditional branch, indirect
jump. or procedure return. For every mis-prediction made, there would be the cost of flushing the pipeline of
instructions from the wrong continuation after the conditional branch orjinnp.

l/l
El Example 12.2 Impact of successful branch prediction

Assume that we have attained 93% accuracy in branch prediction in a prooessor with eight pipeline stages.
Assume also that the mis~prediction penalty is 4 processor clock cycles to flush the instruction pipeline. What
is the performance gain from such a branch prediction strategy’?

Recall that the expected cost of a random variable X is given by Zr‘,-jr,-, where .r,- are possible values of
X, and pi are the respective probabilities. In our case, the probability ofa correct branch is 0.93, and the
corresponding cost is zero; the probability ofa wrong branch is O.'l]'F, and the corresponding cost is 2. Thus
the expected cost ofa conditional branch instruction is 0.07 >< 4 = 0.23 clock cycle i.e. much less than one
clock cycle.

As a primitive form of branch prediction, the processor designer could assumethat a conditional branch is
always taken, and continue processing the instructions which follow at the target address. Let us assume that
this simple strategy works E(l‘.‘rit ofthe time; then the expected cost of a conditional branch is 0.2 >< 4 = 0.8
clock cycles.

Suppose that not even this primitive ibrrn ofbranch prediction is used. Then the pipeline must stall tmtil
the result of every branch condition, and thc target address of every indirect jump and procedure return, is
known; only then can the processor proceed with the correct continuation within the program. lfwe assume
that in this case the pipeline stalls over halfthe total number of stages, then the number of lost clock cycles
is 4 for every conditional branch, indirect jump and procedure return instruction.

Considering that l 5% to ED‘!-"ii ofthe instructions in a program are branches and jumps, the difference in
cost between 0.28 clock cycle a.nd 4 clock cycles per branch instruction is huge, Lnrderlining the importance
ofbranch prediction in a superscalar processor.

Later, in this chapter, we shall study the techniques employed ibr branch prediction.

Resource Dependence: This is possibly the simplest kind ofdependence to understand, since it refers to
a resource constraint causing dependence amongst instructions needing the resource.

L»)
éjd Example12.3 Resource dependence
Considcra simple pipclincti prooessor with only one floating point multiplier, which is not internally pipclined
and takes three processor clock cycles for each multiplication. Assume that several independent floating point
multiply instructions follow each other in thc instruction stream i11 a single basic block under execution.

594 O ridmncad Computerfirchitccture

Clearly, while thepmcessor is executing these multiply instr|.|ction s, it cannot forthat duration get even one
instnrction completed in every clock cycle. Therelbre pipeline stalls are inevitable, caused by the absence of
sufficient floating point multiply capability within the processor. in fact, for the duration ofthese consecutive
multiply operations, the prooessor will only complete one instruction in every three clock cycles.

We have assumed the instructions to be independent of each other, and in a single basic block—i.e. there
are no conditional branches within the sequence. Thus there is no data dependence or control dependence
amongst these instnrctions. What we have here is msorrree rkijitrndenee, i.e. all the instructions depend on
the resource which ha_s not berm provided to the extent it is needed forthc given workload on the prooessor.

We can say that there is an imbalance in this processor between the floating point capability provided and
the workload which is placed on it. Such imbalances ir| system resources usually have adverse peribrmance
impact. Recall that Example lll above and the related discussion illustrated this same point in another
context.

A resorrrce rrfejwndrzrrc-e which results in a pipeline stall can arise for access to any processor resourc-e—
iirnctional unit, data path, register bank, and so onp]. We can certainly say that such resource dependences
will arise if hardware resources provided on the processordo not match the needs of the executing program.

Now that we have seen the various types of dependences which can occur between instructions in an
executing program, the problem ofdetecting and exploiting instruction level parallelism can finally be stated
in the following manner:
Problem Definition Design a superscalar processorto detect and exploit the maximum degree ofparallelism
available in the instruction stream—i.c. execute the instructions in the smallest possible numberofprocessor
clock cyclcs—by handling correctly the data dependences, control dependences and resource dependences
within thc instruction stream.

Before we ean make progress in that direction, however, it is necessary to keep in mind a prototype
processor design on which the problem solution can be attempted.

MODEL OFATYFICAL PROCESSOR

1 We assume a processor with fond-.s'mre instruction set architecture and a set of programmable
registers as seen by the assembly language programmer or tl1e code generator of a compiler.

“Miller these registers are bifiueatcd into separate sets of integer and floating point registers is not ilnportant
lor us at present, nor is the exact ntnnber ofthesc registers.

To support parallel access to instructions and data at the level of the fastest cac he, we assume that L l cache
is divided into instruction cache and data cache, and that this split Ll cache supports single cycle access lor
inst ructions as well as data. Some processors may have an instruction brrjjitirr in place ofL 1 instruction cache;
for the purposes ofthis section, however, the difference between them is not important.

The first three pipeline stages on our prototype processor arejizn-h, rieeonir and is.srre.
Following these are the various functional tmits of the processor, which include integer unittsl, floating

point unit(s). loadlstone unit[s}. and other units as may be needed for a specific design as we shall see when
we discuss specific design techniques.

-‘iiTl1is type ofdep-endenee may also be ealled .'r.r‘.r'r.rcl‘;rrrI.r.i dc'pendcn¢'£, since it is related to the structure ofthe prooessor;
however n=.'.'r0r.rre'¢' dependenc¢.> is the more co-mrnon term.

"1 .I| \ _s.~.m..- Lcvcllibrullelism ._,. 5,,
Let us assume that our superscalar processor is designed lor It instruction issues in every prooessor clock

cycle. Clearly then tliefeteh, rfeeonic and issue pipeline stages, as well as the other elements of the processor,
must all be designed to process Ir instructions in every clock cycle.

On multiple issue pipelines, issue stage is usually separated from decade stage. One reason for thus
increasing a pipeline stage is that it allows the processor to be driven by a fasterclock. Decode stage must be
seen as preparation for instruction issue wl1ieh—by defi|1ition—can occur only ifthc relevant functional unit
in the processor is in a state in which it can accept one more operation for execution. As a result ofthe issue,
the opcration is handed over to the fimctional unit for execution.

Note 12.1

The name of instruction rfceonb stage is somewhat inaccurate, in the sense that the instruction is never
fiilly decoded. [fa 32-bit instruction is li.|lly decoded, for example, the decoder would have some 4 X
109 outputs! This is never done; an immediate constant is never decoded, and memory or HO address
is decoded outside the processor, in the address decoder associated with the memory or l.~'U module.

Register select bits in the instruction are decoded when thq-' are used to access the register bank;
similarly, ALL; function bits can be decoded within the ALU. Therefore register select and ALU
function bits also need not be decoded in the instruction decode stage ofthe prooessor.

Wliat happens in the instruction decode stage of the processor is thatm of
the instruction are decoded. For esample, opcode bits must be decoded to select the functional unit,
and addressing mode bits must be decoded to determine the operations required to calculate cfiectivc
memory address.

The processofissuing instructions to fimctional units also involves instruc-!r'onsehedulinglji. Forexample,
if instruction lj cannot be issued because the required fi.|nctional unit is not free, then it may still be possible
to issue the next instruction IJ-+ |—provided that no dependence between thc two prohibits issuing instruction
lJ'+|.

When instruction scheduling is specified by the compiler in the machine code it generates, we refer to it as
srnrie sc-heduling. in theory, static scheduling should free up the processor hardware lrom the comp lcxities of
instnietion scheduling; in practice, though, things do not quite turn out that way, as we shall see in the next
section.

if the processor comrol logic schedules instruction an the _fi_}r——taking into account inter-instnietion
dependences as well as the state of the fiunctional units—wc refer to it as .r.fm.nmr'c sehe.r.|‘u!ing. Much of the
rest ofthis chapter is devoted to various aspects and techniques ofdynamic scheduling. Ofcourse the basic
aim i11 both types of seheduling—static as well as dynamic—is to maximize the i11stn|ction level parallelism
which is exploited in the executing sequence of instnlctions.

As we have seen, at onc time multiple instructions are in various stages ofcxecution within the processor.
But pmewssor stare and program stare need to be maintained which are consistent with thc program ordcrof
completed instructions. This is important from thc point ofyiew ofprcserving the semantics ofthe program.

Therefore, even with multiple instructions executing in parallel, the processor mu st arrange the results of
completed instructions so that their sequence reflects program order. One way to achieve this is by using a

ill Instruction scheduling as discussed here has some similarity with other types of task or job scheduling systems. It
should he noted, ofoourse. that a typical production system requiring job scheduling does not involve conditional
l:-runcl1es_ i.e. control dependences.

-5% li rldmrrced Cmnpusterfirrchitectum

reomier bufiir, shown in Fig. 12.4, which allows instructions to be commirreu‘ in program order, even if they
execute in a diflerent order; we shall discuss this point in some more detail in Section 12. '1'.

F unctlcmat Functional
unit unit i i _

Branch
Prediction

1‘ Fetch Deco-do Issue I Raff?

tocachei
main mommy

Loao.r'Store Register
unit bank

Fig. 'l 2.4 Processor design vd1:h reorder bulfcr

if instructions are executed on the basis of predicted branches, before the actual branch outcome is
available, we say that the processor performs specuinrii-'e ereeurion. ln such cases, the reorder buffer will
need to be clearod—wholly or partly—if the actual branch result indicates that speculation has occurrod on
the basis ofa mis-prediction.

Functional units in the processor may t:hem.selvcs be internally pipclined; they may also be provided with
reservation smrians, which accept operations by the issue stage ofthe in znruction pipeline. A functional
unit performs an operation when the required operands for it are available in the reservation station. For the
purposes of our discussion, memory imm‘-store uniIr's,l may also be treated as functional tmits, which perform
their finictions with respect to the cacheimernory subsystem.

Figure 12.5 shows a processor design in which fimctional units are provided with resen-nrion smrirzws.
Such designs usually also make use of operrrmifcni-‘arrfing over a common dam bus [CD13], with tags to
identify the source of data on the bus. Such a design also implies regi.srer renaming, which resolves RAW
and W.-KW dependences. Dynamic scheduling of instructions on such a processor is discussed in some more
detail in Sections 12.8 and 12.9.

A branch prediction unit has also been shown in Fig. 12.4 and Fig. 12.5 to implement some form ofa
branch prediction algorithm, as discussed in Section 12.10.

Data paths connecting the various elements within the processor must be provided so that no resource
dependem:es—and consequent pipeline stalls—are created for want of a data path. if Ir instructions are to be
completed in every processor clock cycle, the data paths within the processor must support the required data
transfers in each clock cycle.

t.,m..,.- “imam ._,y 5,,

Functional F mctlonal
unlt unlt

I I I

Reservation Reservation
57316 h stations stations

Preelletlon

Fetch Decode Issue I

to 12Gl‘lBJ'
main memory

Loadffitme Rag later
m It ban k

Fig. 11.5 Froc-ass-or deslgn wlth reservatlon stations on functional unit:

At one extreme, a primitive arrangement would be to provide a single common bus within the processor;
but such a bus would become a scarce and pcrtbrmance limiting resource amongst multiple irtstructiorns
executing in parallel within the processor.

At the other extreme, one can envisage a emnplere gr.n_;Jh of data paths amongst the various processor
elements. In such a sy stem, in each clock cycle, any processorelement can transfer data to any other processor
clement, with no resource dependences caused on that acooum. But unfortunately, for a processor with n
internal elements, such a system requires n — 1 data ports at every element, and is therefore not practical.

Therefore, betwoen the two extremes outlined above, processor designers must aim for an optimum
design of intemal processor data paths, appropriate tbr the given instruction set and the targeted processor
performance. This point will be discussed further in Section 12.6, when we discuss a technique known as
0perand_f0r'n-erding.

AS mentioned HIJOVB, the important question of defining program (or thread} smite and proces.-sor smte
must also be addressed. I f a contest switch, interr1.|pt or exception occurs, the program-"thread state and
processor state must be saved, and then restored at a latertime when the same programfthread resumes. From
the programmer's poim ofview, tl1e state should correspond to a point in the machine language program at
which the previous insrmction has completed execution. but the next one has not started.

in a multiploissue processor, clearly this requires carefi.|l thought—s i11ee, at any time, as many as a couple
of‘ dozen instructions may be in \-arious stages ofexeeution.

Aproeessorofthe type described here is often designed with hardware support t'ormm"!i-threading, which
requires maintaining thread status of multiple threads, and switching between threads; this type ofdcsign is
discussed fi.|rther in Section 12.12.

EFF i _ Admncad Cmnputerfireltiteeture

Note also that, in Fig. 12.4 and Fig. 12.5. we have separated control elements fl-om data flow elements and
functional units in the proeessor—and in fact shown only the latter. Design ofthe control logic needed tbrthc
processor will not be discussed in this chapter in any degree of derail beyond the bricfovcrvicw contained
i11 Note 12.2.

Note 12.1

The processor designer must select the architectural components to be included in the processor—for
example a reornlrr brijirr of B. particular type, a specific method of opernmf_fi'Jrn-trrrfing, a specific
method ofbrmmli rrredicrion, and so on. Thedesignermust also specify li.|lly the algorithms which will
govern the working ofthe selected architectural components. These algorittrms are very similar to the
algorithms we write in higher level programming languages, and are written using similar languages.
These algorithms specify the comrol logic that would be needed for the processor, which would be
finally realized in the form of appropriate digital logic circuits.

Given the complexity of modem systems, the task of translating algorithmic descriptions of
processor functions into digital logic circuits can only be carried out using very sophisticated VLSI
design software. Such software offers a wide range of firnctionality; sirrrrdtrrirm software is used to
verity the correcmcss ofthe selected algorithm; l'0gical design software translates the algorithm into a
dig ital circuit; p.li_i's'icnu" ralrsign sofiware translates the logical circuit design into a physical circuit which
can be built using VLSI, while design vergficafion software verifies that the physical design does not
violate any constraints of the underlying cecuit fabrication technology.

All the architectural elements and control logic which is being described in this chaptercan thus be
translated into a physical design and then realized in ‘s-'LSl. This is how processors and other digital
systems are designed and built today. For our purposes in this chapter, however, it is not necessary to
go into the ktails ofhow the required circuits and control logic are to be realized in VLSI.

We take the view that the architect decides n-'hm is to be designed, and then the circuit designer
designs and realizes the circuit accordingly. ln ottrcr words, our subject matter is restricted to the
functions ofthe architect, and does not extend to circuit design—i.c. to the question oflmw aparticular
function is to be realized in VLSI. We assume that any required control logic which can be clearly
specified can be implemented.

EH COMPILER-DETECTED ||~|s1'nuc1'|o|~| LEVEL PARALLELISM
In the process oftranslating a sequential source program into machine language, the compiler
performs extensive syntactic and semantic analysis ofthe source program. Therefore computer

scientists have considered carefully the question of whether the compiler can uncover the instruction level
parallelism which is implicit in the program. As we shall sec, there are several ways in which the compiler
can contribute to the exploitation ofimplicit instruction level parallelism.

One relatively simple technique which the compiler can employ is lcnown as ll-mp unro-Hing, by which
independent instructions from multiple successive iterations ofa loop can be made to execute in parallel.

r,sm.- uwtm-umtum 5,,
L-"nmHr'ng means that the body ofthe loop is repeated n times for n successive values of the control variable—
so that one iteration of the transformed loop performs foe work ofn iterations of the original loop.

3,13 Example 12.4 Loop unrolling
Consider the following body of a loop in a user program, where all the variables exocpt the loop control
variable i are assumed to be floating point:

D to 55 do
r:,;_ _ _ _

fori-=
= a.; ='-lo.;_ — pt-el,;_,:

Now suppose that machine code is generated by the compiler as though the original program had been
written as:

for 3 = O to 52
\\

cf‘ = a=' *h_.. ._.. .

C.E::"'.: = fl::j""

c:f"—2: = afi-
cij-EZ = ali-

j.
cjsej = a;5ej~bj
C151‘: = aT_5"|‘:*lo:
Q1531 = ajfié-I--“b:

stop 4 do

J

2
3

56: — p*d:5B:;

'~h'j-L1 - p"dT:
_ prd£j:;

-~b'j=2§ - p*dTo—2 :. ._: .

_-bfj-31 - p*d5j-3';

51, - p~a551;;
5a; - p~a§5a;:

Note carefitlly the values of loop variable j in the transformed loop.
The reader may verify, without too much difficulty, that the two program fragments are equivalent, in the

sense that they perfomr the same computation. Ofcourse the oompilcr does not transform one source program
into another—it simply produces machine code corresponding to the second version, with the unroflerfloop.

ln the urrrolled program fragment, the loop contains four independent instances of the original loop
body—indoed this is the meaning ofloqo unrolling. Suppose machine code corresponding to the second
program fragment is executing on a processor. Then clearly if the prooessor has sufficient floating point
arithmetic resources—irrstn.|ctions from the four loop iterations can he in progress in parallel on the various
functional units.

lt is clear that code length ofthe machine language program increases as a result of loop unrolling; this
increase may have an effect on the cache hit ratio. Also, more registers are needed to exploit the instruction
level parallelism within the longer unrolled loop. ln such cases, techniques such as register ta-nmm'ng—
discussed in Section 12. El—can allow greater exploitation ofinstruction level parallelism in the urrrolled loop.

To discover and exploit the parallelism implicit in loops, as seen in Example 12.4, the compiler must
perform the loop enrolling transformation to generate the machine code. Clearly, this strategy makes sense
only if su.flicir:nt hardware resources are provided within thc processor for ewtecuting instr-ut:tion.s in parallel.

Hm --. ' Amwmfmmwdmmmm

ln the simple example above, the loop control variable in the original program goes from ID to 5B—i.c. its
initial and final values are both known at compile time. If, on the other hand, the loop control values are not
lorown at compile time, the compiler must generate code to calculate at run-time the control values for the
unrolled loop.

Note that loop unrolling by the compiler does Qt in itself involve the detection of instruction level
parallelism. But loop unrolling makes it possible for the compiler or the processor hardware to csploit a
greater degree of instnrction level parallelism. ln Example 12.4, since the basic block making up the loop
body becomes longer, it becomes possible for the compiler or prooessor to find a greater degree ofparallelism
amongst the instructions across the unrolled loop iterations.

Can the compiler also do the additional work of actually scheduling machine instructions on the hardware
resources available on the processor? Or must this scheduling be necessarily performed on rtrefly by the
processor control logic?

Wlren the compiler schedules machine instnrctions forexecution on the processo r, the form of scheduling
is known as srrrrie sche.r.fur"ing. As against this, instruction scheduling carried out by the processor hardware
on the is known as oft-'ncrrnr'e .~rcfrcr2‘rrling, which has been introduced in Chapter 6 and will be discussed
further later in this chapter.

lfthe compiler is to schedule mach inc instruction s, then it must perform the requ ired depcndenoc analysis
amongst instructions. This is certainly possible, since the compiler has access to full semantic information
obtained from the original source program.

I»)
g Example 12.5 Dependence across loop iterations
Consider the following loop in a source program, which appears similar to the loop seen in the previous
ex-ample, but has a crucial new dependence built into it:

for i = D to 55 do
cjif = afijsbfif — p*e[i—Lf;

Now the value calculated in the i'":" iteration ofthe loop makes use ofthe value -: Ii — L I calculated in
the previous iteration. This does not mean that the modified loop cannot be unrolled, but only that extra care
should be taken to account for the dependence.

Dependenoes amongst refbrenoes to simple variables, or amongst array elements whose index values are
known at compiletime -[as in the two -osamples seen above), can be analyzed relatively easily at compile time.

But when pointers are used to refer to locations in memory, or when array index values are known only
at run-time, then clearly dependence analysis is not possible at compile time. Therefore processor hardware
must provide support at run-time for dim rrr'arf_y,-'.s'r's—i.e. based on the respective effective addresses, to
detemtine w hethertwo memory accesses for read or write operations refer to the same location.

There is another reason why static scheduling by the compiler must be backed up by dynamic scheduling
by the processor hardware. Cache misses, l~"O interrupts, and hardware exceptions cannot be predicted

em-0,. comes -—.. H,
at compile time. Therefore, apart from alias amilysis, the disruptions caused by such events in statically
scheduled rtmning code mu.st also be handled by the dynamic scheduling ha.rdware in the prooessor.

These arguments bring out a basic point—compiler detected instnlction level parallelism also requires
dynamic scheduling support within the processor. The fact that compiler performs extra work does not really
make the processor hardware much simplerl“.

A further step in the direction ofcompiler detected instruction level parallelism and static scheduling can
be the following:

Suppose each machine instruction specifics multiple operations——to be carried out in parallel within
the prooessor, on multiple functional units. The machine language program produced by the compiler then
consists of such multi-operation instructions, and their scheduling takes imo account all the dependences
amongst instructions.

Recall that conventional machine instntetions speciiy one operation cach—c.g. fond, ants‘, rrmLrip!__r, and
so on. As opposed to this, multi-opcration instn.|ctions would require a larger number of bits to encode.
Theretore processors with this type of instruction word are said to have v+:r__r long ins£r'r.1cr‘r'rm ti-'orr1’("v'Ll"t‘t-’].
A preliminary discussion ofthis concept has been included in Chapter -4 ofthe book.

A little further refinement ofthis concept brings us to the so-ealled t."_?t',l'J.l'i7i1‘i'l"|l'l-‘}'J|f'll"|:I.|"|liE'.|l iristrucrion eortsprtttrr
(EPIC). The EPIC instruction format can be more flexible than the fixed format of multi-operation VLIW
instntction; tbrexample, it may allow the compiler to encode explicitly dependences between operations.

Another possibility is that of having predicttrtrd insrrucr1'0n.~r in the instruction set, whereby an instruction
is executed only if the hardware condition (predicate) specified with it holds tnte. Such instructions would
result in reduced number of conditional branch instntctions in the program, and could thereby lower the
number of pipeline flushes.

The aim behind VLIW and EP [C processor architecture is to assign to the compiler primary responsibility
for the parallel exploitation ofplentifitl hardware resources ofthe processor. In theory, this would simplify
the processor hardware, allowing for increased aggregate proces sor throughput. Thus this app roach would, in
theory, provide a third alternative to the RISC and CISC styles of processor architecture.

In general, however. it is fair to say that VLWV and EPIC concepts have not fulfilled their original promise.
lntel ltanium 64-bit processors make up the mo st well-known processor family ofth is class. Experience with
that processor showed, as was argued briefly above, that processor hardware does not really become simpler
even when the compiler bears primary responsibility for the detection and exploitation of instruction level
parallelism. Events such as imcrrupts and cache misses remain unpredictable, and therefore execution of
operations at run-time cannot follow completely the static scheduling specified in VLIWM EPIC instructions
by the compiler; dynamic scheduling is still needed.

Another practical clitficulty with compiler detected instruction level parallelism is that the source program
may have to be recompiled for a different processor model of the same processor family. The reason is
simple: such a compiler depends not only on the instruction set architecture [ISA] of the processor family,
but also on the hardware resources provided on the specific processor model for which it generates code.

'-‘ll Recall in this context the basic argument for RISC architecture, whereby the instruction set Ls J"l'.‘dl'I£'£'£-l for the sake of
higher processor throughput. A similar trade-ofihetween hardware and soltware complexity do-es not exist when the
compiler performs static sclretiulirrg of instructions on a superscalar processor.

F?» Mtfiruw Hfllrlrmpwrnw
H11 T ridmnced Ccmputcrfirclriteeturc

For highly compute-intensive applications which run on dedicated hardware platforms, this strategy may
well be feasible and it may yield significant pertbrnianee benefits. Such special-pr:|.rpose applications are fine-
tuncd fora given hardware platform, and then run for long periods on the same dedicated plattbrm.

But commonly used programs such as word processors, web browsers, and spreadsheets must nrn without
recompilation on all the processors ofa family. Most users ofsotlware do not have source programs to
recompile, and all the processors ofa family are expected to be instruction set compatible with one another.
Therefore the role of compiler-detected instruction level parallelism is limited in the case of widely rnred
general purpose application programs ofthe type mentioned.

Niiiiiili (JFWERJhlIIJ|Fi)FUIVlHR[)Hfll5

1 We know that a superscalar processor offers opportunities for the detection and exploitation
of instnrction level parallc|ism—i.e. potential parallelism which is present within a single

instruction stream. Exploitation ofsuch parallelism is enhanced by providing multiple functional units and
by other techniques that we shall study. Tr|.|c data dependences between instnrctions must of course be
respected, since they reflect program logic. On the other hand, two independent instructions can be executed
in parallel—or even out ofsequence—ifthat results in better utilization of processor clock cycles.

We now know that pipelinejirlslres caused by conditional branch, indirect jump, and procedure return
instructions lead to degradation in performance, and therefore attempts must be made to minimize them;
similarly pipeline .s'r.nHs caused by data dependences and cache misses also have adverse impact on processor
performance.

Therefore thc strategy should be to minimize the number of pipeline stalls and flushes encountered while
executing an instruction stream. In other words, we must minimize wasted processor clock cycles within the
pipeline and also, if possible, within the various iirnctional units ofthe processor.

In this section, we take a look at a basic technique known as o;Jerond_fom-'arti‘r’ng, which helps in reducing
the impact oftrue data dependences in the instruction str-cam. Considerthe following simple sequence oftwo
instructions in a running program:

Ann R1, R2, as
sn:rca #4, as, as

The result ofthe.-KDD instruction is stored in destination register ,r,n|_i 141, rig, n;_=,
R3, and then shifted right by ibur bits in the second instnrctinn,
with the shifted value being placed in Ft-4. Thus, there is a simple
RAW rfeperidenr-e between the two instructions—the output of the RAW [R3]
first is required as input operand of the second.

In terrrts ofour notation, this RAW dependence appears as shown
in Fig. 12.6, in the form ofa graph with two nodes and one edge. SE1 3.1.5“ y-,1. R3’ M

[n a pipelined processor; ideally the second instnretion should
be executed one stagc—-and therefore one clock cyclc—bchind the
first. However, the diliiculty here is that it takes one clock cycle
to transfer ALU output to destination register R3, and then another clock cycle to transfer the contents of

Fig.12.b RAW dependence between
nsolnsnnerlons

mm Letrelflwullelism -—.. ,0,
register R3 to ALU input for the right shift. Thus a total of two eloek cycles are needed to bring the result
of the first instruction where it is needed for the second instruction. Therefore, as things stand, the second
instruction above cannot be executed just one clock cycle behind the first.

This sequence of data transfers has been illustrated in Fig. ll? fa). In clock cycle T1,, ALU output is
transferred to R3 over an internal data path. ln the next clock cycle Th +1, the content of R3 is transferred to
ALU input for the right shift. When carried out in this order, clearly the two data transfer operations take two
clock cycles.

But note that the required 135-_o transfers ofdata can be achieved in only one clock cycle ifALU output is
sent to both R3 and ALU input in the same eloelt cycle as illustrated in Fig. l2.7 (b). ln general, if X is to
be oopiod to Y, and in the next clock cycle Y is to be copied to Z, then we canjust as well copy X to both Y
and Z in one clock cycle.

if this is done in the above sequence of instructions, the second instruction ean be just one clock cycle
behind the first which is a basic requirement of an instruction pipeline.

ALL! output Tr R3

Tit + 1

ALU Input
la)

ALU output Tk R3

Tk

ALU Input
[bl

Fig. 11'? ‘limo data transfers {a} in sequence and {ti} in parallel

In technical ternrs, this type of an operation within a processor is known as qrJertrnd_forwtn'ding. Basically
this means that, instead of periorming two or more data transiers from a oomrnon source one after the
other, we perform them in parallel. This can be seen as parallelism at the level ofclementary data transfer
operations within the processor. To achieve this aim, the processor hardware must he designed to detect and
exploit on tkefly all such opportunities for saving clock cycles. We shall see later in this chapter one simple
and elegant technique for achieving this aim.

The benefits of sueh a technique are easy to see. Thc wait within a functional unit for its operand becomes
shorter because, as soon as it is available, the operand is scnt in one clock cycle, ovcr the common data bus,
to every destination where it is needed. We saw in the above example that thereby the common data bus
renrainod occupied ior one clock cycle rather than two clock cycles. Since this bus itself is a key hardware
resource, its better utilization in this way certainly co mributes to better processorperformance.

HM i Admrrced Compurterfirchitecture

The above reasoning applies even if there is an intervening instruction between ADD and SHIFTR.
Consider the following sequence of instructions:

son 3;, R2, R3
sun 25, as, at
snzrcs #4, 23, 24

S-HIFTFL must be executed aflerADD, in view ofthe RAW dependence. But there is no such dependence
between SUB and any ofthe other two instructions, which means that SUB can be executed in program order.
or before ADD, or after SHI FTR.

IfSUB is executed in program order, then even without operand forwarding bctwotm ADD and SHIIFTR,
no processor elock cycle is lost, since S1-lI.l-TR does not directly follow ADD. But now suppose SUB is
executed either before ADD, or afier SHIFTR. ln both these cases, SHIFTR directly follows ADD, and
therefore operand forwarding proves useful in saving a processor cycle, as we have seen above.

Figure 12.8 shows the dependence graph of these three
instructions. Since drere is only one dependence in this instanoe
amongst the three instructions, the graph in the figure has three
nodes and only one edge. RAW {R33 5l5'1l'.R51 R51 F*"'

But it-it}-' should SUB be executed in any order other than
program order?

The answer can only be this: to achieve better utilization of mt;t-;-t,-it t.»., R3, ta».
processor clock cycles. For example, if fiar some reason ADD
cannot be executed in a given clock cycle, then thc prooessor may Fig. 11-B Dependence graph of three
well decide to execute SUB before it. i"5"‘"=¢!i¢l'**

Therefore thc processormust make on hllefly decisions such as

AIIII FLL, l-‘LI, Rh

(il transferring ALU output in parallel to both R3 and ALU input, andfor
{iij out ofordcr esecution ofthe instruction SUB.

This implies that the comrol logic of the processor must dctoct any such possibilities and generate
the required control signals. This is in tact what is needed to implement t'{t-'mImit- sehoittiing of machine
instnicfions within the processor.

Of course, to achieve performance speed-up through dynamic scheduling, considerable complexity must
be added to processor control logic—lrut that is a price which must be paid for exploiting instnlction level
parallelism in the sequence of executing instructions; the complexity in achieving superscalar performance
would of course be greater.

Machine instructions of a typical prooessor can be classified into dam Irtmsfer instnictions, nrit!mie1"r'c
and iogie instructions, comptrrison instructions, trtrrrrfer qfcorrtro! instructions, and other miscellaneous
instnictions.

Ofthese, only the second group of instruc1ions—i.e. arithmetic and logic instn|clions—actually alter the
values of their operands. The other groups of instructions involve only transfers ofdata within the processor,
between the processor and main memory, orbctween the prooessor and an l.-"O adapter

smsstmsm -- M,
Arithmetic and logic instructions are basically functions to be computed—either unary iirnctions of

the form _§,-' =_,i'{_Jr], or binary functions ofthe tbrm _§,-' =_,i\'_.r|,r;j. And these computations are carried out by
functional units sueh as nrirhnrt-Ire rrmfiogit-11:1?! (ALU),fl0atingp0r'nt um’! (FPU), and so on. But even to get
any computations done by these Functional units, we noed (ij transferofoperarrds to the inputs of functional
units, and (ii) transferof results back to registers or to the reorder buffer.

From the above arguments, it should be clear that data transfers make up a large proportion ofthe work of
any processor. The need to fully utilize available hardware resources forces designers to pay close attention
to the datatransfers required not only fora single executing instruction, but also across multiple instructions.
ln this context, operand forwarding can be seen as a potentially powerful technique to reduce the number of
clock cycles spent in carrying out the required data transfers within the processor.

In Fig. 12.4 and Fig. 12.5, we have not shown details of the data paths connecting the various elements
within the processor. This is intentional, because the nature and number of data paths, their widths, their
access mechanisms, er eeterrr, must be designed to be consistent with {ij the various hardware resources
provided within the processor; and {iii} the target performance ofthe processor. Details of the data paths
cannot be pinned down at an early stage, when the rest ofthe design is not yet completed.

We have discussed earlier B basic point related 10 any system perfon'nanee: rhere.sh0rr)'r1'be no rreffbrntrrnt-e>
horticner-its in the .st*.s!em. Clearly therefore the system of data paths provided within the processor should
also not become a performance limiting clement. A multiple issue processor targets It _1=- 1 instruction issues
per processor clock cycle. Hence the demands made on each of the elements of the processor—including
cache memories, functional Lmits, and intemal data paths—would be I: times greater.

FIEDRDER BU FFER

— The rmrder huflirr as a processor element was introduced and discussed briefly in Section
1'-3.4. Since instructions cltecute in parallel on multiple firnctional units, the reorder bufter

serves thc firnction of bringing completed instructions back into an order which is consistent with program
order. Note that instructions may eorrr,rJ!ere in an order which is not related to program order, but must be
comrrrirred in program order.

At any time, program s'r‘.rrre and pmeessor s'r‘rn'e arc defined in terms of instructions which have l:|-een
committe4;l—~i.e. their results are reflected in appropriate registers andfor memory locations. The concepts
of program state and processor state are important in supporting context switches and in providing precise
esceptions.

Entries in the reorder buffer are completed instructions, which are gueucd in program order. However,
since instructions do not necessarily complete in program order, we also need a flag with each reorder buffer
entry to indicate whether thc instruction i11 that position has completed.

Figure 12.9 shows a reorder buffer of size eight. Four fields are shown with each entry in the reorder
bufli::r—instruetion identifier, value computed, program-specified destination of the value computed, and a
flag indicating whether the instruction has completed (i.e. the computed value is available).

[n Fig. 12.9, the head ofqueue of instructions is shown at the top, arbitrarily labeled as instr[i]. This is the
instruction which would be committed nest—-if it has completed execution. When this instnrction commits,

HIE F Admrrced Compurterfirchitecture

its result value is copied to its destination, and the instruction is then removed from the reorder buffer. The
nest instnrction to be issued in the issue stage ofthe instruction pipeline then joins the reorder bu.fi'er at its
tail.

Head of queue lnetruetlon wl ll
commit lf lts value ls available

|nstr[|] valuo[l1 dest[l]
|nstr[|+1] valuo{l+1] cloat[l+1]
instr{|+2] vatuo[l-+2} tIlflG‘l[l-+21
instr[|+3] vaJuo{l+3] do-st{l+3}
|nstr[|+4] valuoll +4] dest[l+4]
|nstr[|+5] 1.ralue{l+5] clest[l+5]
lnstr[|+B] va1ue[l+fi] eeat[t+B]
ins-tr[|+T] 'u'aJuo{l+?] clest{l+?]

reacly[|1
roacly[l+1}
reiaclyfl-+2]
roaoy[l+3}
ready[|-Ht}
reacly1|-+5]
reaclyll-H5]
roaoy[l+ T]

Fig. 12.! Entries in a reorder buffer ofslze eight

[fthe instruction at the head ofthe queue has not completed, and the reorder butter is firll, then further
issue of instructions is held up—i.e. the pipeline stalls—because there is no free space in the reorder buffer
throne more entry.

The result value of any other instruct ion lower down in tl1e reorder buffer, say value[i+ ls], can also be used
as an input operand for a subsequent operation—provided ofcourse that the instruction has completed and
therefore its rcsult value is available, as indicated by the corresponding flag ready[i+k]. In this sense, we see
that the technique of operandfortt-'arrfing can be combined with the concept of the reorder bufier.

lt should be noted here that operands at the input latches of functional units, as well as values stored in
the reorderbuffer on behalfof completed but uncommitted instructions, are simply ‘work in progress‘. These
values arc not reflected in the state of the program or the processor, as needed for a context switch or for
exception handling,

We now take a brief look at how the use ofreorder buffer addresses the various types ofdependences in
the program.

{i} Data Dependence: A RAW dependcnce—i.e. tnre data dependcnee—will hold up the execution ofthe
dependent instruction ifthe result value required as its input operand is not available. As suggested above,
operand forwarding can be added to this scheme to speed up the supply ofthe needed input operand as soon
as its value has been computed.

WAR and WAW dependcnces—i.e. anti-dependence and output dependence, respectively—aIso hold up
the execution ofthe dependent instruction and create a possible pipeline stall. We shall see below that the
technique of register remmzfng is needed to avoid the adverse impact ofthesc two types ofdependences.

(ii) Control Depend-en:-B Suppose the in.struction{s] in the reorder buffer belong to a branch in the
program which should it have been taken—i.e. there has been a mis-predicted branch. Clearly then the

emmotmsm -- ,,,,
reorder buffer should be flushed along with other elements of the pipeline. 'l'he-refore the performance impact
ofcontrol dependences in the r|.|nning program is determined by the accuracy ofbranch prediction technique
employed. The reorderbuffer plays no direct role in the handling ofcontrol dependences.

Resource Dependenoes lfan instruction needs a functional unit to execute, but the unit is not free,
then the instruction mu st wait for the unit to become lre1.~clearly no technique in the world can change that.
ln sueh cases, the pnocessor designer ean aim to achieve at least this: if a subsequent instruction needs to use
another firnctional unit which is free, then the subsequent instruction can be executed out ofordcr.

However, the reorder buffer queues and commits instructions in program order. In this sense, therefore,
the technique of using a reorder bufier does not address explicitly the resource dependences existing within
the instruction stream; with multiple firnctional tmits, the processor can still achieve nut ofordcr completion
ofinstruetions.

ln essence, the conceptually simpletcchnique ofreorder buFI'er en sures that if instructions as prog rammed
ean be carried out in pa1allel—i.e. ifthere are no dependences amongst them—then they are carried out
in parallel. But nothing clever is attempted in this technique to resolve dependences. Instruction issue and
oommit are in program order; program state and processor state are co rroctly preserved.

We shall now discuss a clever technique which alleviates tl1e adverse performance effect of WAR and
WAW dependences amongst instructions.

REGISTER RENAMING
- Traditional compilers allocate registers to program variables in such a way as to reduce the

main memory accesses required in the running program. ln programming language C, in fact,
the programmer can even pass a hint to the compiler that a variable be maintained in a processor register.

Traditional compilers and assembly language programmers work with a fairly small number of
programmable registers. The number of programmable registers provided on a processor is determined by
either

(it the need to maintain backward instruction compatibility with other members ofthe processor family,
or

{ii} the need to achieve reasonably compact instruction encoding in binary. With sixteen programmable
registers, lor example, four bits are needed foreach register specified in a machine instruction.

Amongst the instructions in various stages of-e.\recution within the processor, there would be occurrences
of Rs-‘Wt-', WAR and WAW dependenoes on programmable registers. As we have seen, RAW is true data
dependenoe—since a value ‘written by one instmction is used as an input operand by another. But a WAR
or WAW dependence can be avoided ifwe have more registers to work wit.h. We can simply remove sueh a
dependenoe by getting the two instn.|ctions in question to use two diflerent registers.

But we must also assume that the insrruc-firm se! rtrehirccrnre (ISA) of the processor is fi1tod—i.e. we
eannot change it to allow access to a larger number of programmable registers. Rather, our aim here is to
esploretoehniques to detect and exploit instruction level parallelism using a given instruction set architecture.

Hill i Adrwrced Cornpurterfirelritecture

Therefore the only way to make a larger number of registers available to instructions under esecution
within the proces sor is to make the additional regi sters invisibfe to machine language instructions. lnstructions
under ere:-urrhn would use these additional registers, even it" instructions making up the machine language
program stored in memory cannot refer to them.

Let us suppose that we have several such additional registers available, to which machine instructions
of the nrrming program cannot make any direct reference. Ofcoursc these machine instructions do refer to
programmable registers in the processor—and thereby create the WAR and WAVI.-' dependences which we are
now trying to remove.

For example, let us say that the instruction:
rape 2;, 22, as

is followed by the instrr.rct:ion:

rsus as, art, as
Both these instructions are writing to register R5, creating thereby a 11*-|l'|l' l‘~1.~ 113- R5

WAW dcpendcnce—i.e. output dcpendcnce—on register R5. Clearly,
any subsequent instruction should read the value written into R5 by “WW lFi5l
FSUB, and E the value written by FADD. Figure 12.10 shows this
dependence in graphical notation. &'s|.'|s R3 , tr-1, as

With additional registers available tor use as these instructions Hg "Jo WAW. dependence
execute, we have a simple techniqueto remove this output dependence.

Let FSUB write its output value to a register other tl1a.n R5, and let us call that other register X. Then
the instructions which use the value generated by i-‘SUB will refer to X, while the instructions which use
the value generated by FADD will continue to refer to R5. Now. since FADD and FSUB are writing to two
different registers, the output dependence or WAW between them has been removed! ls]

When FSUB conunins, then the value in R5 should be updated by the value in X—i.c. the value computed
by l-‘SUB. Then the physical register X, which is not a program visible register, can be freed up for use in
another such situation.

Note that here we have mrrpped—or renamed R5 to X, for the purpose 01° ato-ring the result of FSLTB_ and
thereby removed the WAW dependence from the instnrction stream. A pipeline stall will now not be created
due to the ‘N.-°t\7t-' dependence.

ln general, let us assume that instruction [j writes a value imo register Ry. At the time of instruction issue,
we map this programmable register R‘, onto a program invisible register Km, so that when instnrction [J-
esecutes, the result is written into X,“ ratherthan Rx. [n this program invisible register Km, the result value is
available to any other instnrction which is truly data dependent on lJ— i.e. which has RAW dependence on lj.

lfany instruction other than l_i is also writing into Rt, then that instanceofR;, will be mapped into some other
program invisible register X“. This renaming resolves the waw dependence between the two instructions
involving R1,. When instruction lj commits, thc value in Xm is copied back into Rk, and the program invisible
register X,“ is freed up for reuse by another in.str|.|crion.

:51 In fact the prooessor may also rename R5 in F.-XDD to another program invisible register, say Y. But ctearly the
argument made here still remains valid.

hmnsmrm -—.. H,
A similar argument applies if lj is reading the value in R1,, and a subsequent instruction is writing into

R1,—i.e. there is a WAR dependence between them.
The technique outlined, which can resolve WAR and W.-KW dependences, is lcnown as register remtrrring.

Both these dependences are caused by a subsequent instruction writing into a register being used by a
previous instruction. Such dependences do not reflect program logic, but rather the use of a limited number
of registers.

L/ct us now consider a simple example of WAR dependenoe, i.e. ofanti-dependence. The case of W.-KW
dependence would be very similar.

Assume that the instructions:

Example 12.6 Register renaming andWAR dependence

Faun RE, R7, R2
FADD R2, R3, R5

are followed later in the program by the instruction:
rsus 2;, 23, 22

Thc first FADD instnrction is writing a value into R2, which tl1e second FADD instruction is using, i.e.
there is true data dependence between these two instructions. Let us assume that, when the first l-‘ADD
instruction executes, R2 is mapped into program invisible register Km.

The latter FSUB instmction is writing another value into R2.
Clearly, the second FADD {and ot.her intervening instructions
before 1~'Sl_JB) should see the value in R2 which is written by the RAW [R23
first FADD --and not the value written by FSUB. Figure 12.11
showsthese two dependences ir| graphical nocstion. '='1"-IJIJ 1'11 1 P~3- R5

':'FilJlIl RE-, RT, E2

With register renaming, it is a simple matter to resolve the
WAR anti-dependence between the second l-‘ADD and 1-‘SUB. WAR [R21

As mentioned, let X“, be the program invisible register to
which R2 has been mapped when the first FADI) executes. This
is then the remapped registerto which the second FADD refers |:;:_ 1111 RAW H-H1 WAR Qmndmfls
for its first data operand.

Let FSUB write its output toaprograro invisible register other than X,,.,, which we denote by X”. lnstnietions
which use the value written by FSUB refer to X“, while instructions which use the value written by the first
FA DD refer to Km.

Thc WAR dependence between the second FADD and FSUE is removed; but thc RAW dependence
between the two FADD instructions is respected via Xm.

When the first FADD commits, the value in X,“ is transferred to R2 and program invisible register X,“
is freed up; likewise, later when FSUB CDl'flI't'!ll5, the value in X“ is transferred to R2 and program invisible
register Xm is freed up.

':‘Sl.'B R1, R], R:

5| ll T ' Advanced Computerfirchitecture

Thus we sec that register renaming removes ‘N.-“LR and W.-‘KW dependences from the instruction stream by
re-mapping programmable registers to a larger pool of program invisible registers. For this, the processor
must have extra registers to handle instructions under execution, but these registers do not appear i11 the
instruction set.

Consider true data dependence, i.e. RAW dependence, between two instructions. Under register renaming,
the write operation and the subsequent read opcration both occur on the same program invisible register. Thus
RAW dependence remai11s intact in the instruction stream—as it should, since it is true data dependenoe. As
seen above, its impact on the pipeline opcration can be reduced by operand forwarding.

Dcpendences are also caused by reads and writes to memory locations. In general, however, whether
two instructions refer to the same memory location can only be lcnov.-n afier the two eiilective addresses are
calculated during execution. For example, the two memory references 2OCI'I][Rl1 and 4i]'I]'l][R3] occurring in
a running program may or may not refer to the same memory location—this cannot be resolved at compile
time.

Resolution of whether two memory references point to the same memory location is ltnovm as alias
rmrtlysis, which must be carried out on the basis of the two efi'ective memory addresses. Ifa Joan‘ and a store
opcration to memory refcrto two different addresses, their order may be interchanged. Such capability can be
built into the load-store ur|it—which in essence operates as another iilnctional unit ofthe processor.

An elegant implementation ofregister renaming and operand fotrwarding in a high performance processor
was seen as early as i11 l9ti7—even before the term register rermnring was coined. This tcchnique—which
has si11cc become well-ltnown as Torrmsuio Is‘ rii'gorit!rm—is described in the next section.

TOMASI-lLO’S ALGORITHM

1 In the I BM 3-fit] family ofcomputer systems of 1960s and 1970s, model 3t"i{3.-"91 was developed
as a high performance system for scientific and engineering applications, which involve

intensive floating point computations. Thc prooessor in system was designed with multiple floating point
units, and it made use ofan innovative algorithm for the efficient use of these units. The algorithm was based
on operand forwarding overacommon data bus, with tags to identity sources ofdata values sentoverthc bus.

The algorithm has since become known as ii’;-rrmsrrio h afgoririmr, afier the name of its chief designerlfi];
what we now understand as register ramming was also an implicit part ofthe original algo rithm.

Recall that, for register renaming, we need a set of program invisible registers to which programmable
registers an: re-mapped. TorrrasuIo‘.s algorithm requires these program invisible registers to be provided with
reservation stations of iimctional units.

Let us assume that the iirnetional units are intemally pipelinecL and can complete onc operation in every
clock cycle. Therefore each filnctional rmit can initiate one operation in every clock cyclc—provid-od of
oourse that a reservation station of the unit is ready with the required input operand value or values. Note that
the exact depth ofthis firnctional unit pipeline docs not concern us for the present.

2°] See .-in e'f_fic'ic‘nt uigrrriihnrjirr crpfri-iring nsrrftipfe an'i‘hnrei‘r'c r.rnr'i’.s. by R. M. Tortmsulo. IBM Journal of Researcli dc
Development I I: I, January I961.-‘i preliminary discussion on Tomnsul-o’s algorithm was included in Cliapter 6.

n.~.1m- lxvelibrollelism ._. H,
Figure 12.12 shows sueh a timetional unit connected to the common data bus, with three reservation

stations provided on it.

funetlonal unlt

opncl-1 It qsnd-2 I2
reservation
statlms

tdfrom oommm data
bus [CDB]

Fig. 12.1! Reservation seatlons pmnlded with a functional unit

The various fields making up a typical reservation station are as follows:
op operation to be carried out by the functional unit
qrind-I &
nprm‘-2 two operand values needed for the operation
If 81 12 two source tags associated with the operands

‘W'l1en the needed operand value or values are available in a reservation station, the fimctional unit can
initiate the required operation in the next clock cycle.

At the time of instruetioli issue, the reservation station is filled out with the operation. eode {op}. If an
operand value is available, for example in a programmable register, it is transferred to the corresponding
source operand field in the reservation station.

However, ifthe operand value is @ available at the time of issue, the corresponding source tag -[I1 and-‘or
£2) is eopi-ed into the reservation station. The source tag identifies the source of the required operand. As soon
as the required operand value is available at its soun:e—which would be typically the output ofa fimetional
unit—the data value is forwarded over the -common data bus, along with the source tag. This value is -copied
into all the reservation station operand slots which have the matching tag.

Thus operand forwarding is achieved here with the use oi" tags. All the destinations which require a data
value receive it in the sameeloelt cycle overthe common data bu s, by matching their stored operand tags with
the source tag sent out over the bus.

I»)
g Example 12.1 Tomasulo's algorithm and RAW dependence
Assume that instruction l1 is to write its rcsult into R4, and that two subsequent instructions 12 and I3 are
to read—i.e. make use of—that result value. Thus instructions I2 and 13 are truly data dependent (R.-‘WI.-’
dependent) on instruction ll. See Fig. 12.13.

$1 I i _ Advanced Cmnputerfirchiteeture

A.ssume that the value in R4 is not available when 12 and H
I3 are issued; the reason eould be, for example, that one ofthe
operands needed for ll is itself not available. Thus we assume RFWIFHI R-l\WlR4l
that ll has not even started executing when I2 and I3 are issued.

When [2 and I3 are salad, they are parked in the reservation '2 '3
stations ofthe appropriate fi.|nctionaI units. Since the required
result value from I1 is not available, these reservation station Hi-11-13 EIEMPIE Bf RAW dEP¢fl'¢|¢fl005
entries of I2 and I3 get source tag corresponding to the output
of I 1 —i.e. output ofthe functional unit which is performing the opcration of ll .

When the result ofll becomes available at its firnctional unit, it is scnt over the common data bus along
with the tag value ofits souree—i.e. output of limctional unit.

At this point, programmable register R4 as well as the reservation stations assigned to I2 and I3 have the
matching source tag—since they are waiting for the result value, which is being computed by l1.

When the tag sent over the common data bus matches the tag in any destination, the data value on the bus
is copied from thc bus into the destination. The copy occurs at the same time into all the destinations which
require that data value. Thus R4 as well as the two reservation stations holding I2 and I3 receive the required
data value, which has been computed by ll , at the same time over the common data bits.

Thus, through the use of source tags and the common data bus, in one clock cycle, three destination
registers receive the value produced by Il—programmable register R4, and the operand registers in the
reservation stations assigned to 12 and I3

Let us assume that, at this point, the second operands of I2 and [3 are already available within their
corresponding reservation stations. Then the operations corresponding to I2 and I3 can begin in parallel
as soon as the result of ll becomes avaiIabIe—since we have assumed here that I2 and I3 execute on two
separate functional units.

It may be noted from Example 12.7 that, in efiiect, programmable registers become rmamed to operand
registers within reservation stations, which are program invisible. As we have seen in the previous section,
such renaming also resolves anti-dependences and output dependences, since the target register of the
dependent instruction is renamed in these cases to a different program invisible register.

I/I
£1 Example 12.8 Combination of RAW andWAR dependence
Let us now consider a combination of RAW and WAR dependences.

A.ssume that instruction 11 is to write its result into R4, a subsequent instructions E is to read that result
value, and a latter subsequent instruction I3 is then to v.-rite its result into R4. Thus instruction I2 is truly
data dependent {RAW dependent] on instnrction I I, but I3 is anti-dependent (WAR dependent} on 12. See
Fig. 12.14.

'1 .I| \ _Irrstmetm t....a...tt.,. ._, m
:1

RAW(R4{|

:2
nswtso

I3

Fig. 1 2.14 Exarnpie of RAW EWAR dependences

As in the previous example, and keeping in mind similar possibilities, let us assume onee again that the
output of ll is not available when I2 and I3 are issued; thus R4 has the source tag value corresponding to the
output of I 1.

When I2 is issued, it is parlted in thc reservation station ofthe appropriate functional unit. Since thc
required rcsult value irom ll is not available, the reservation station entry of I2 also gets the source tag
corresponding to the output of |l—i.e. the same source tag value which has been assigned to register R4,
since they are both awaiting the same result.

The question new is: Can I3 be issued even before II completes and I2 starts execution?
The answer is that, with register renaming—carricd out here using source tags—I3 Q be issued even

before I2 starts execution.
Recall that instruction I2 is RAW dependent on ll , and therefore it has the correct source tag forthc output

of ll. I2 will receive its required input operand as soon as that is available, when that value would also be
oopicd into R4 overthe common data bus. This is exactly what we observed in the previous example.

B1.|t suppose I3 is issued even betbre the output ofll is available. Now R4 should receive the output oi
I3 rather than the output of I1. This is simply because, in register R4, the output ofll is programmed to be
overwritten by the output ofl3.

Thus, when I3 is issued, R4 will receive the source tag value corresponding to the output of I3—i.e. the
fi.|nctional unit which performs the opcration ot'l3. Its previous source tag value eorresponding to the output
of 11 will be overwritten.

When the output of I1 {finally} becomes available, it goes to the input of I2, but log to register R4, since
this register's source tag now refers to I3. When the output ofl3 becomes available, it goes correctly to R4
because ofthe matching source tag.

For simplicity of discussion, we have not tracked here the outputs of I2 and I3. But the student can
verify easily that the two data transfers described above are consistent with the specified sequence of three
instructions and the specified dependences.

g : Example 12.9 Scheduling across multiple iterations
Consider now the original iterative program loop discussed i11 Example 12.4.

Par I J11!!!‘ l'mrJI||r_.u|i¢\
GI4 i Admrrced Compirterfirehiteeture

Let us assume that,without any unrolling by the compiler, this loop executes on a proeessorwh ich provides
branch prediction and implements Tomasulo‘s algorithm. if instn.|ctions from successive loop iterations are
available in the processor at one time—b-ecause of suooessful branch pt-ediction{s)—and if floating point
unitr~'. are available, then instructions from successive iterations can esecute at onetime, in parallel.

But if instructions from multiple iterations are thus executing in parallel within the proccssor—at one
time—then the net efi'-ect ofthesc hardware techniques in the processor is the same as that ofan unrolled loop.
ln other words, the processor hardware achieves on iLl‘I€fl_P what otherwise would require unrolling assistance
from the compiler!

Even the dependence shown in Example 12.5 across successive loop iterations is handled in a natural
way by branch prediction and Tomasulo's algorithm. Basically this dependence across loop iterations
becomes RAW dependence between instructions, and is handled in a natural way by source tags and operand
forwarding.

This example brings ourclearly how a particular method ofexploiting parallelism—Ioop rmrofling, in this
ease—can be implemented eitherby the compiler or, equivalently, by clever hardware techniques employed
within the processor.

Example 12.9 illustratesthe combined power ofsophist icated hardware techniques for dynamic scheduling
and branch prediction. With such effieient techniques becoming possible in hardware, the importance of
oompilcr-detected parallelism (Section 12. 5] diminishes somewhat in comparison.

lrl
éllj Example 12.10 Calculation of processor clock cycles
bet u s eon sider the number ofc lock cycles it takes to execute the following sequenoe ofmach ine instruction s.
We shall count clock cycles starting from the last cloeli: cycleoi'ins-truetion l , so that the answer is independent
of the depth oi'ir1struction pipeline.

1 LEAD ml.‘-:m—a , R11]
"' 1-‘SUE R1‘ , R1] , R1]
_ STU-E rr1orr|—a , R1]

FAD-D R-1] , R3 , R‘-'
STCIRE mc:m—h , R"-‘_;1J!=_,ul~

We shall assume that (rt) one instruction is issued pecr clock cycle, (b) floating point operations take two
clock cyc lcs each to execute, and [cl memory operations take one clock cycle each when there is L1 cache hit.

lfwe add the number of clock cycles noeded lbr each instruction, we get the total as l+2+]+2+l = 7.
However, ifno operand forwarding is provided, t11e RAW dependences on registers R-'1 and R7 will cost three
additional clock cycles {recall Fig. 12.7], fora total of 10 clock cycles ibr the given sequence of instnictions.

With operand lb rwarding—wh ich is built into Tornasulo‘s algo rithm—one clock cycle is saved on account
ofeach RAW dependence—i.e. between (ii instrticfions 1 and Z, { ii] instructions 2 and 3, and {iii instructions
4 and 5.

Thus the total number ofclock cycles required, counting from the last clock cycle of instruction 1, is 7.
With the assumptions as made here, there is no further scope to schedule these instructions in parallel.

'1 .I| \ -n.~.1m- Levellibroilelism -—. M
In To masulo‘s algorithm, use ofthe common data bus and operand forwarding based on source tags results

in rferenrrrifized comm! of the multiple instructions in execution. In the 1960s and 1970s, Control Data
Corporation developed supercomputers CDC 6600 and CDC "F600 with a r.-en!rah':a'! technique to exploit
insmiction level parallelism.

In these supercomputers, the processor had a centralized st-orebmrd which maintained the status oi
functional units and executing instructions (see Chapter 6). Based on this status, processor control logic
governed the issue and execution of instructions. One part ofthe scoreboard maintained the status of every
in struction under exec ution, while another part maintained the status ofevery functional unit. The scoreboard
itselfwas updated at every clock cycle of the processor, as execution progressed.

3 _
BRANCH PREDICTION

The importance of branch prediction for multiple issue prooessor performance has already
been discussed in Section 12.3. About 15% to Ill‘?/ii of instructions in a typical program are

branch and jump instructions, including procedure returns. Therefore—ifhardware resources are to be f|.|lly
utilized in a superscalar processor—the processor must start working on instructions beyond a branch,
even before the branch instr1.|ction itself has completed. This is only possible through some fotrm ofbranch
prediction.

What can be the logical basis for branch preclietion? To understand this, we consider first the reasoning
which is involved ifone wishes to predict the result ofa tossed coin.

Note 12.3 Predicting the outicorrlc ofa tossed coin

Can one predict the rcsult of a single eoin toss‘?
lfwe have prior lcnowledge—gained somehow—that the eoin is unbiased, then the answer is aclear

NO, in the sense that both possible outcomes hear! and rnii are equally probable. The only possible
prediction one can make in this case is that the coin will come Lip either header mi'!—i.e. a prediction
which is of no practical value!

But how can we come to haveIiknowledge that aooin is unbiased? Logieally, the only knowledge
we can have about a eoin is obtained through observations ofo utcomes in successive tosses. Therefore,
the more realistic situation we must address is that we have no prior knowledge about the coin being
either unbiased or biased. Having received a coin, any inference we make about it—i.e. whether it is
biased ornot—can only be on the basis of observations of outcomes of successive tosses ofthe coin.

In such a situation ofno prior knowledge, assume that a eoin comes up heed in its first TWO 1055135.
Then simple conditional probability theory predicts that the third toss ofthe coin has a higher probability
ofcoming up hondthan ofcoming up mil‘.

This is a straightforward example of Bayesian reasoning using conditional probabilities, named
after Rev. Thomas Bayes [l ?U2—l'l'6l]. French Mathematician Laplace [l'l'4'9—1B2'l'] later addressed
this and related questions and derived a formula to calculate the respective conditional probabilitiesm.

ill For a detailed discussion, with applications, the reader may retier to the hook .=lm'.f:'c:'rn’ Ini’¢'H:'_|;enee.' A Modem Ap-
pmat-ii, by Russell and Norvig, Pearson Education.

.sis li xmmm Compuwrfinmflcdrm

Like tossed coins, outcomes of conditional branches in computer programs also have __i-'es and no
answen-:— i.e. a branch is either taken or not taken. But outcomes of conditional branches are in
fact biased—because there is strong correlation between fa) successive branches taken at the same
eonditional branch instruction in a program, and 1' b) branches taken at two different conditional branch
instructions in the same program.

This is how programs behave, i.e. such correlation is an essential property ofreal-life program s. And
such correlation provides the logical basis for branch prediction. The issue for processor designers is
how to discover and utilize this correlation on t!iefl_v—w'ithout incurring prohibitive overhead in the
process.

Abasic branch prediction technique uses a so-called In-'0-hit pncdiemr. A two-bit counter is maintained for
every eonditional branch instn.|ction in the program. The two-bit counter has four possible states; these four
states and the possible transitions between these states are shown in Fig. 12.15.

Dtyos t

1’ \'\- _\

1" is,. t
I \\

I‘, \

flyes

s. ,1‘,
\ I'~ rs 1

'\ tr~.\ ‘X
-Ir‘ ,1

|n 513195 0 2. 1: Branch inknn Solid lino: Correct oieoication.
In 5131.91; 2 3. 3 Brannn notation Broken lino: incorrect prediction

Fig.12.15 Stare n~ansl'rien dog:-am ofl-bit branch predictor‘-'1

Wlien the counter state is O or 1, the respective branch is predicted as token; when the cotmter state is 2
or 3, the branch is predicted as not token. When the conditional branch instn.|etion is executed and the actual
branch outcome is known, the state of the respective two-bit counter is changed as shown in the figure using
solid a.nd broken line arrows.

‘W'l1en two successive predict ions come out wrong, the prediction is changed from fJ.|"flYi£'.fi taken to brnrieh
nor token, and vice versri. ln Fig. 12. 14, state transitions made on mis-predictions are shown using broken line
arrows, while solid line arrows show state transitions made on predictions which come out right.

i-fl Note that Fig. I2. I4 is a slightly redrawn version ofthe state transition diagram shown earlier in Fig. 6. I9 (bl.

f'r .I| \ _nsm.- stresses ._.. H,
This scheme uses a two -bit counter for every conditional branch, and there are many conditional branches

in the program. CIvcralL therefore, this branch prediction logic needs a few kilobytes or more offast memory.
One possible organization for tl1is branch prediction memory is in the form of an array which is indexed
by low order bits of the instruction address. If twelve low order hits are used to define the array index, for
csample, then the numberof entries in the array is 4096M.

To be effective, branch prediction should be carried out as early as possible in the instruction pipeline.
As soon as a eonditional branch instruction is decoded, branch prediction logic should predict whether the
branch is taken. Acoordingly, the next instruction address should be taken eitheras the branch target address
(i.e. branch is taken], or the sequentially next address in the program (i.e. branch is not taken).

Can branch prediction be carried out even betbre the instruction is deeoded——i.e. at the instruction fetch
stage? YB5, ifa so-ealled brrmr.-it target bnfer is provided which hasa history ofrecently executed eonditional
branches. The branch target buffer is organized as an associative memory accessed by the instruction address;
this memory provides quick access to the prediction and the target instruction address needed.

In some programs, whether a conditional branch is taken or not taken correlates betterwith otherconditional
branches in the program—ra1l1er than with the earlier history of outcomes of the same eonditional branch.
Accordingly, r-ormlnterl pnafir-mrs can be designed, which generate a branch prediction based on whether
other conditional branches in the program were taken or not taken.

Branch prediction based on the earlier history of the same branch is known as fOC‘flf prerfietrion, while
prediction based on the history ofother branches in the program is known as glohrrlrtrttfiefionlt tournament
prerfietor uses [i] a global predictor, (ii) a local predictor, and {iiij a s'el'eetnr which selects one of the two
predictors for prediction at a given branch instr|.|ction. The selector uses a two-bit counter per conditional
branch—as in Fig. 12. l 4—to choose between the global and local predictors for the branch. Two successive
mis-predictions cause a switch from the local predictor to the global predictor, and t-fee wrsa; the aim is to
infer which predictorwo rks better for the particular branch.

The common element in all these cases is that branch prediction relies on the correlation detected between
branches taken or not taken in the running program—end for this, an efficient hardware implementation of
the required prediction logic is required.

Con sidcrations outlined here apply also to j1:n1p;Jrr'rfietrIon,which is applicable in indiroctjumps, computed
go to statements (used in FCIRTRAN], and switch statements (used in C and C++). Procedure returns can
also benefit from a form ofjump prediction. The reason is that the address associated with a procedure return
is obtained from the rtmtime procedure stack in main memory; therefore a correct prediction of the return
address can save memory access and a few proccssorclock cycles.

lt is also possible to design the branch prediction logic to utilize information gleaned froma prior exeerrfion
profile or execution trace of the program. lfthe same program is going to run on dedicatod hardware for
years—.say for an application such as weather forecasting—then such special effort put into speeding up the
program on that dodicated hardware can pay very good dividend over the life of the application. Suppose
the execution trace informs us that a particular branch is taken 95% of the time, for example. Then it is a
good idea to ‘prcdict‘ the particular branch as always taken—ir| this case, we are assured that 95% of the
predictions made will be correct!

ial Clearly, iftwo eonditional branch instr|1etion.s happen to have the same low order bits, then their predictions will be-
come ‘interrningled’. But the probability of two ore more sueh inst ruetions being in execution at the same time would
be quite lcsv.

FM Mtfiruw H'l"I'ncl'q||;1:lI¢-\'
‘I B - '

A.s we discussed ir| Section 12.3, under any branch prediction scheme, a mis-predicted branch means that
subsequent instructions must be flushed from the pipeline. It should of course be noted here that thc actual
result ofaconditional branch irtstruction—as against its E_flcte_d result—isonly known when the instruction
completes execution.

rldmnced Computerfirehitecture

Speculative Execution lnstntctions executed on the basis ofa predicted branch, betbre the actual branch
result is known, are said to involve .speen!otr'\-'e execution.

lfa branch prediction tums out to be correct, the corresponding speculatively executed instnletions must
be committed. lfthe prediction tums out to be wrong, the effects of corresponding speculative operations
carried out within the processor must be cleaned up, and instructions from another branch of the program
must instead be cxecutod.

As we have seen in Example 12.2, the strategy results in net performance gain if branch predictions are
made with suflieicntly high accuracy. The performance benefit of branch prediction can only be gained if
prediction is followed by speculative execution.

A conventional processor fetches ccne instr|.|ction alter another—i.e. it does not look ahead into the
forthcoming instr|.|ction stream more than one instruction at a time. To support a deeper and wider—i.e.
multiple issue—instructi-on pipeline, it is necessary for branch prediction and dynamic scheduling logic to
look further out into the lbrthcoming instruction stream. ln other words, more ofthe likely future instructions
need to be examined i11 support of multiple issue scheduling and branch prediction.

Instruction wirtdott-'—or simply it-'rno'ow—is the special memory provided upstream of the lbtch unit in the
processor to thus look ahead into the forthcoming instntction stream. Forthe targeted processor performance,
the prooessor designers must integrate and balance the hardware techniques of branch prediction, dynamic
scheduling, speculative execution, internal data paths, functional unitrc and an instruction window of
appropriate size.

LIMITATIONS m EXFLOITING msrnucrtou
LEVEL PARALLELISM
l"nere is no sueh thing rtsjiee l'unen."—an American proverb.

Technology is about trade-ofi's—and therefore it will come as no surprise to the st|.|dent to learn that there
are practical limits on the amount ofinstruction level parallelism which can be exploited in a single executing
instntction stream. In this section we shall try to identity in broad terms someofthe main limiting factorslml.

Consider as an example a multiple issue processor which targets four instnrction issues per clock cycle,
and has eight stages in tl1e instntction pipeline. Clearly, in this processor at onetime as many as thirty two
instructions may be in different stages of lirtch, decode, issue, execute, write result, commit, and so on—and
each stage in the processor must handle tbur instructions in every clock cycle.

Assuming that 15% of the executing instructions are branches and jumps, the pmcessor would handle
at one time four to five such instructions—i.c. multiple predicted branches would be executing at one time.

1"" The interested student rnay read L:'mr't.-r o,f'l'rr.'rtrrr-t'tr'rnt-1'-r.' tel PrtmHelr'.s"nr, by ow. Wall, Research Report ens, starts rtt
Research l_.-rboratory, Digital Equipment Corporation, l\love1nber I993. Note I24 below Ls a brie-f.s|.untna1'y ofthis
technical report.

'1 .I| \ _s,.~.m..- levelfln-ulielism ._. H,
Similarly, multiple loads and stores would be in progress at one time. Also, dynamic scheduling would
require a iairly large instnrction window, to maintain the issue rate at the targeted four instructions per clock
cycle.

Consider the instn.|ction window. In structions in thcwindow must be checked for dependences, to support
out of order issue. This requires associative memory and its control logic, which means an overhead in
chip area and power consumption; such overhead would increase with window size. Similarly, any form
of checking amongst executing instructions—e.g. checking addresses of main memory references, for alias
analys is—would involve overhead which increases with issue multiplicity Ir. In turn, such increased overhead
in aggressive pursuit of instruction level parallelism would adversely impact processor clock speed which is
achievable, for a given VLSI technology.

Also, with greater issue multiplicity Ir, there would be higher probability of less than it instructions being
issued in some clock cycles. The reason for this can be simply that a filnctional unit is not available, -or
that tr1.|e RAW dependences amongst instnlctions hold up instruction issue. This would result in missing
the target performance of the processor in acl1|al applications, in temrs of issue multiplicity k. Let us say
processor A has It = ti but it is only 60°»-it utilized on average in actual application s; processor B, with the same
instnrcfion set but with I: = -4, might have faster clock rate and also highcr average utilization, thus giving
better performance than A on actual application s.

The increased overhead also necessitates a largernumbcrofstagcs in the instruction pipeline, so as to limit
the total delay per stage and thereby achieve faster clock cycle; but a longer pipeline results in highercost oi
flushing the pipeline. Thus the aggregate p-erforrnance impact of increased overhead finally places limits on
what is achievable in practice with aggressively superscalar, VLIW and EPIC fl.I1;‘l'llIL‘Cl'LlIC.lH'l

Basically, the increased overhead required within the processor implies that:
(ij To support highcr multiplicity ofinstruction issue, the amount ofoontrol logic required in theprocessor

increases disproportionately, and
{ii} For higher throughput, the processor must also operate at a high clock rate.

But these two design goals are often at odds, ibrtechnical reasons ofcircuit design, and also because there
are practical limits on the amount of power the chip earl dissipate.

Power consumption ofa chip is roughly proportional to N><_,r", where N isthe number ofdevices on the chip,
andfis the clock rate. The number of devices on the chip is largely determined by the fabrication technology
being used, and power consumption must be held within the limits ofthe heat dissipation possible.

Therefore the question for processor designers is: For a targeted processor performance, how best to
select and utilize the various chip resources available, within the broad desigrr eorrsrrnfnrs ofthe given circuit
technology?

The student may recall that this was the introductory theme ofthis chapter{'S-ection 12.1 1, and should note
that such design trade-offs are shaping processor design today. To achieve their goals, processor designers
make use ofextensive sofiware simulations of the processor, using various benchmark programs within the
target range ofapplication s. The designers‘ own experience and insights supplement the simulation results in
the process ofgenerating solutions to the actual problems ofprocessor design.

:1“ In this C1Dl"ll'l£!CllZOl'l, see aLso the discussion in the latter part 0|‘ Section l2.5.

War MIGIIILH Hf" I_1M‘KI|l[1rI|f\
Gill i ' Adtwrced Cemputerfiirchitecture

Emergence of hardware support for multi-threading and of multi-core chips, which we shall discuss in
the next section, is due in part to the practical limits which have been encountered in exploiting the irnplicrt
parallelism within a single instruction stream.

lll]

Note 12.4 Wall’: Study on Instruction Level Parnllelimr
In this section, we have discussed theprimary factor limiting the amount ofinstruction level parallelism
which can be exploited in a sequence of executing instnictions.

The report by D. W. Wall cited above was the result of a landmark empirical investigation into the
amount of instruction level parallelism present in real-lite programs. Any detailed discussion on the
subject would benefit from a study of this report, and accordingly this note presents a brief summary
of the report.

With reference to the overall design space which is available to the process-ordesigncr, Wall's report
says:

Morcoter, this space is mriiri-dimcnsiontri, bccrnise ptrrtrfleilism om1i_vsis consists ofan ct-'er-growing
boofi-' of conipicrrierirtrrj-' rochn iques. The]JtT_'|-‘rI_I):,lr of one choice depcnd.s srmngfi-' on its context in the
other choices rnnrte The purpose ofthis sruriv is to etpfore that rrniiri-oimensioritr! space, ono’pmi-‘iris
some irisigiir oborir the imporrrmcc ofriiffenrnr recim iqrics in rfifjfisrcnr corirerts.

The report was based on analysis ofthe instruction level parallelism present in 13 real-life programs;
the number of combinations of processor features tried out during the analysis—i.e. "points‘ in the
processor design spaee—was more than 350.

Ofthe eighteen programs analyzed, twelve were from the standard SPEC92 benchmark suite, three
were common utility programs, and three were engineering applications. The programs were compiled
into machine language for the MIPS R3000 processor. Table 12.1 presents some information about
these programs.

The technique employed in analyzing instruction level parallelism in these programs is lcnou-n as
oroci'e-driven rr'or-c-lJo.sco'.simrii'orii'Jn. For this, a complete trace ofthe program instructions executed
is obtained from a previous run; the trace includes data addresses, results ofbranches and jumps, and
so on. A scheduling algorithm is then used to pack these instructions, as tightly as possible, into a
sequence ofprocessor cycles.

As mentioned above, the simulation of processor performance was carried out at more than 350
different points in the space of possible processor configurations. These points differed from each
other in the type of parallelism detection techniques used. At each such processor configuration point,
an amt-it-1'11 built into the simulator provided the scheduling decision, one by onc, for each executed
instruction. In other words, for a given processor configuration, the simulator had fiinctionality built
into it to determine the earliest possflile schedule for each executed instruction ofthe program.

For each program, the final schedule of instructions generated by the simulator showed how the
program would execute on a processor having the given configuration, as defined by the techniques
used to exploit instruction level parallelism. The degree of parallelism obtained was then calculated
from the simulation result.

lntite world ot'a11eient(}1~eeoe,ai1oraeit-was a power which could predict future events; one well-kiiown anti presum-
ably reliable oracle was at the temple of Delphi.

am Lcuclibrollclism .-—..
Forexample, suppose one ofthe programs listed in Table l2.l executed thirty million instructions,

as seen from its execution trace. Suppose further that, for a given processor configuration, these
instructions could be paclred into six million processor cycles. Then the average degree of parallelism
obtained for this program, for this particular processor eonfigtrration, would be 3W6 = S.

Techniques Explored The range of techniques which was explored in tl'|e study to detect and exploit
instruction level parallelism is summarized briefly below:

Register renrrnring—witl'| (a) infinite number of registers as renaming targets, (b) finite number of
registers, and -[c) no register renaming.

Aiirrs rmrr{vsir—\sith {aj perfect alias analysis, {bl two intermediate levels of alias analysis, and
(cj no alias analysis.

Branch preo'ie1ion—with fa) perfect branch prediction, (b) three hardware-based branch prediction
schemes, (c) three profile-based branch prediction schemes, and (d) no branch prediction. Hardware
predictors used a combination of local and global tables, with difi'ercnt total table sizes. Some branch
fanout limits were also applied.

lnoireer junip prerfietion—with (a) perfect prediction, (bl intermediate level of prediction, and
{cl no indirectjump prediction.

ll5"indot1-'.s'i:e~——for some of the processor models, difierent window sizes from an upper limit of 2043
instructions down to 4 instn.|c.tions were used.

C_FC'f£' width, i.e. the maximum number ofinstructions which can be issued in one cycle—-[:a) 64,
(b) 128, and -[c] bounded only by window size. Note that, from a practical point ofvicw, cycle widths
ofboth 6-'1 and 128 are on the high side.

Loteneies ofprocessor operorions—five different latency models were used, specifying latencies [in
number ofclock cycles) for various processor operations.

Loop rrnroHing—was carried out in some ofthe programs.
Mispreoietion penoitt-'—values of ll to ltl clock cycles were used.

Conclusions Reached ‘W111 13 programs and more than 350 processor configurations, it should come
as no surprise to the student that Wall's research generated copious results. These results are presented
systematically in the full report, which is available on the web. For our purposes, we summarize below
the main conclusions ofthe report.

For the overall degree of parallelism found, the report says:
Using nontrit-'i.nI but enrnsnrfft-‘ lrno wn teenn iques, ‘Ht’ eonsisrenti_1-' got porolfefism between 4 and I O

for most of the progronrs in our rest suite. i-iretorirrrbfe or nerrrfy ve-:'to.rr':.niJIe pmgnnnrs went omen
higher.

Branch prediction and speculative execution is identified as the major contributor in the exploitation
of instruction level parallelism:

.S'peeu)'otive oreerrtioln driver: by good branch prediction is critical‘ to one exploitation ofmore than
rnoo'e.st amounts of instruction-fevei paroi'l'el'ism. {Ine stnrt with the Perfect model‘ and remove brrrnen
preoietion, the nreoiion ptnrrrHei'is'm ,rJl'1.1rnrnets_,r"ronr 3|'1 ti no 2.3

Perfect mode! in the above excerpt reicrs to a processor which performs perfect branch prediction,
jump prediction, register renaming, and alias analysis. The student will appreciate readily that this is an
ideal which is impossible to achieve in practice.

ill

. -622 '3 ' rid~\orrcedCornpr11er.5|.rcl|ritectu|c

OveralL Wall's study reports good results for the degree of parallelism; but the report also goes on
to say that the results are based on ‘rather optinristie ossnnrptions’. lli the actual study, this meant: (i)
as many copies of functional units as needed, {ii} a perfect memory system with no cache misses, -[iii]
no penalty for missed predictions, and (iv) no speed penalty ofthe overhead for aggressive pursuit of
instruction level parallelism.

Cleariy no real hardware prooessor can satisfy sueh ideal assumptions. Alter listing some more
factors which lead to optimistic results. the report concludes:

Any one oftnetre cons iderrrtions conl'o' reo'uce the expected_rJqt-'ojf,'fofan in.s'trnetio.n -prlrrtliel rnaen ine
he rt tit inn’: together the}-' could eiim inote it mnuileteft-1

The broad conclusion of Wall's research study thereibre certainly seems to support the proverb
quoted at the start ofthis section.

[n Chapter 13, we shall review recent advances in technology which have had a major impact on
processor design, and we shall also look at some specific commercial products introduced in recent
years. We shall sec that the basic techniques and trade-ofls discussed in this chapter are reflected, in one
fonrr or another, in the processors and systems-on-a-chip introduced in recent years.

Tobie 12.1 Pmgr-elm: lneltrded ln ‘Noll? study

Mrrme of'pro-gmm Function performed N-r'r. o,l"irr.rtrrre'tirr-n.-r arec'rrter.i'
flrniHion.-r J

sed Stream editor L416-

egnep File search I312

}1'£IlDC Compiler-ooinpiler 30.29

1'l'iCll'0'l'l0'I'l'tC ‘liming vcrifief 'i'l.2'i
Grr PCB router I4-'l.44

Eco Recursive tree comparison 2139

Espresso
Fintl pass GNU C compiler
Boolean function mhiirntaer

2Q.'.i'5
I 34.43

Li Lisp interpreter 26314

Farm» *r;_aaaa asst-at saaaaa i4Lr'.‘2'? '
Do-due l-lydroeode simulation 2 B442

Tomeatv Wictortne h generation 3lIll .62

hydroid
ti mes

simulation so:
Compress Lentpel-Ziv file compression 88.17
Gra Ray tracing 2lll2

swm2 56
alvinn

Shit llow enter s lmulat ion
Neural network training

3Dl .4-O

333.9?

mcll_jsp2 Molecular dynamics model 393.0?

'1 Jls=,.m- lavclflwulletism -- ,,,

THREAD LEVEL HERALLELISM

1 We have already seen that dependences amongst machine instructions limit the amount ot
instruction level parallelism which is available to be exploited within the processor. The

dependences may be true data dependences {RAW}, control dependences introduced by conditional branch
instructions, or resource dependeneesl '31.

One way to reduce the burden of dependences is to combine—with hardware support within the
processor—in.structions from multiple independent threads ofexecution. Such hardware support for multi-
threading would provide the processorwith a pool of i1'|str|.|ctions, in various stages ofcxecution, which have
a relatively smaller number of dependences amongst them, since the threads are ind-ependent ofone another.

Let us consider once again the processor with instruction pipeline of depth eight, and with targeted
superscalar performance of four instmctiorts complemd in every clock cycle (see Section 12.11]. Now
suppose that these instructions come from four independent threads of execution. Then, on average, the
number of instructions in the processor at any onetimef would be 4 >< B.-"4 = 8.

With t1'|e threads being independent ofone another, there is a smaller total number of data dependences
amongst the instructions in the processor. Further, with control dependences also being separated into four
threads, less aggressive branch prediction is needed.

Another major bcsnefit ofsueh hardware-supported |:nu.lti-threading is that pipeline stalls arcvcry cflbetively
utilized. lf one thread runs into a pipeline stall—for access to main memory, say—then another thread makes
use oftl1e corresponding processor clock cycles, which would otherwise be wasted. Thus hardware support
formulti-threading becomes an important latency hiding toehnique.

To provide support for multi-tl'|readi ng, the processor mu st be designed to switch between threads—eitl'|er
on the occurrence of a pipeline stall, or in a round robin manner. As in the case ofthe operating system
switching between running processes, in this case the hardware context ofa thread w1'thin the processormust
be preserved.

But in this case what exactly is thc meaning of the cantor! ofa rhnmfi
Basically, thread contest includes the fi.|ll set of registers {programmable registers and those used in

register renaming], PC , stack pointer, relevant memory map information, protection bits, interrupt control
bits, etc. For N-way multi-threading support, the processor must store at onetime the thread contests offs‘
executing threads. When the processor switchers, say, from thread A to thread B, control logic ensures that
execution of subsequent instruction{s) occurs with reference to the context ofthread B.

Note that thread contexts need not be saved and later restored. As long as the processor t;;g;_g;g_.5;s within
itself multiple thread contexts, all that is required is that the processor be able to switch betwoen thread
contexts from onc clock cycle to the next.

As we saw in the previous section, there are limits on the amount ofinstruction level parallelism which can
be extracted from a single stream of csecuting instn.|ctiorts—i.e. a single thread. But, with steady advances in
VLSI technology, the aggregate amount of functionality that can be built into a single chip has been growing
steadily.

-H" As dtscussod abort-"e, we assutne that WAR and W:'t‘W dc-p-cruienoes can be ham.tted using some term of register
rcrunnittg.

FM Mtfiruw H'Illr'nm;|unn1'
514 T ' Admrrcad Cctmputerfirchitcctura

Therefore hardware support for multi-threading—as well as the provision ofmultiplc processoreores on a
single chip—can both be seen as natural consequences oftl1c steady advances in VLSI technology. Both these
developments address the needs of important segments ofmodem computer applications and workloads.

Depending on the specific strategy adopted for switching betwoen threads, hardware support for multi-
thrcadirrg may be classified as one of the following:

{ii Coarse-grain rnriiri-threading refers to switching between threads only on the occurrence of a major
pipeline stall—whieh may be caused by, say, access to main memory, with latencies ofthe order ofa
hundred processor clock cycles.

{ii} Fim:-grain inrriri-threading refers to switching betwoen threads on the occurrence of any pipeline
stall, which may be caused by, say, Ll cache miss. But this term would also apply to designs in which
processor clock cycles are regularly being shared amongst exccuting threads, even in the absence ofa
pipeline stall.

[iii] Sinwfrwieoris" nwfri-threading refers to machine instructions from two {or more] threads being
in parallel in each processor clock cycle. This would correspond to a multiple-issue processor where
the multiple instructions issucd in a clock cycle come from an equal number of independent execution
threads.

With increasing power of‘s-'LSl technology, the development ofmulti-core s1rsrcrri.s-aim:-drip -[|SoCsj was
also inevitable, since there are practical limits to the number of threads a single processor core can support.
Eaeh core on the Sun UltraSpa.rc T2, for example, supports eight-way fine-grain mulfi-tl:treadir1g, and the
chip has eight such cores. Multi-core chips promise higher net processing performance per watt of power
consumption.

St-'sreni.s-(Jr:-a~efn}J are examples of fasc irrating design trade-offs and tl'|c technical issues which have been
discussed in this chapter Clf course, we have discussed here only the basic design issues and techniques. For
any actual task ofprocessordesign, it is necessary to make many design choices and trade-ofi's, validate the
design using simulations, and then finally complete the design in detail tn the level of logic circuits.

Over the last couple of decades, enormous advances have taken place in various arois of computer
technology; these advances have had a major impact on processor and system design. ln the next chapter,
we shall discuss in some detail these advances and their impact on processor and system design. We shall
also study in brief several commercial products, as case studies in how actual processors and systems are
designed.

3*i Summary

Processor design—or the choice of a processor from amongst several alterrrarivcs—is the central
element of computer system design. Since system design can only be carried out with specific target
application loads in mind. it follows that processor design should also be tailored for target application
loads-.To satisfy the overall systom perfo rmanee criteria. various elements of the system must be balanced
in terms of their perFormaocc—i.e. no element of the system should become a performance bottleneck.

lrrstruction Level Parallelism ""*"G"""”m“""""'"" -' i 62

One of the main processor design trade-offs faced in this context is this: Should the processor be
designed to squeeze the maximum possible parallelism from a single thrd.orshould processor hardware
support multiple independent thrds. with less aggressive exploitation of instruction level parallelism
within each thread? In this chapter. we studied the various standard techniques for exploiting instruction
level parallelism. and also discussed some of the related design issues and trade-offs.

Dependences amongst instructions make up the main constraint in the exploitation of instruction
level paralle|ism.Therefore, in its essence.tJ1e problem here can be defined as: executing a given sequence
of machine instructions in the smallest possible number of processor clock cycles. while respecting
the true dependences whid'1 exist amongst the instructions. To study possible solutions. we looked at
two possible prototype processors: one provided with a reorder buffer. and the other with reservation
stations associated with its various functional units.

In theory. compiler-detected instruction level parallelism should simplify greatly the issues to be
addressed by processor hardware.This is because. in theory. the compiler would do the difficult work of
dependence analysis and instruction scheduling. Processor hardware would then be ‘dumb and fast'—it
would simply execute ata high speed the machine instructions which specify parallel operations. However.
many types of runtime events—such as interrupts and cache misses—-cannot be predicted at compile
time. Processor hardware must therefore provide for dynamic scheduling to exploit instruction level
parallelism. limiting the value of what the compiler alone can achieve.

Operand forwarding is a hardware technique to transfer a required operand to multiple destinations
in parallel. in one clock cycle. over the common data bus—thus avoiding sequential transfers over multiple
clock cycl5.To achieve this, it is necessary that processor hardware should dynamically detect and
exploit such potential parallelism in data t.ransfers.The benefits lie in reduced wait time in functional units.
and better utilization of the common data bus.which is an important hardware resource.

A reorder buffer is a simple mechanism to commit instruc1:ions in program order. even if their
corresponding operations complete out of order within the processor. Wiflwin the reorder buffer.
instructions are queued in program order with four typical fields for each insi:ruction—inst|'uct.ion
idemnifier. value computed, program-specified destination of the value computed. and a flag indicating
whether the instruction has completed.This simple technique ensures that program state and processor
state are cor rectly prese rved. but does not rsolve WAR and WAW dependences within the instr uctions.

Register renaming is a clever technique to resolveWAR and WAW dependents within the instruction
strm. This is done by re-mapping source and target programmable registers of executing machine
instructions to a larger set of program-invisible registers; thereby the second instruction of a WAR
or WAW dependence does not write to the same register which is used by the first instruction.The
renaming is done dynamically, without any performance penalty in clock cycles.

Tomasulo's algorithm was developed originally for the IBM 3i59;‘91 processor. which was designed
for intensive scientific and engineering applications. Opel-and forwarding is achieved using source tags.
which are also sent on the common data bus along with t.he operand value. Use of ruervation stations
wild": functional units provides an effective register renaming mechanism whidw resolvesWAR and WAW
dependences.

About 15% to 20% of instructions in a typical machine language program are branch and jump
instructions.Therefore for any pipelined processor—but especially for a superscalar processor—branch

rh- li|lrG-me Hiiiompwm a
fill i .=\di-roirrced Compute: Architecture

prediction and speculative execution are critical to achieving targeted performance. A simple tvvo-bit
counter for every branch instruction can serve as a basis for branch prediction: using a combination of
local and global branch prediction. more elaborate schema can be devised.

Limitations in explo itinggreater degree of instruction level parallelismarise from the increased overhead
in the required control logic.The limitations n1ay apply to achievable clock rates. power consumption.
or the actual processor utilization achieved while running application programs.Thread-level parallelism
allows procfisor resources to be shared amongst multiple independent threads executing at one time.
For the target application. processor dsigners must choose the right combination of instruction level
parallelism. thread-level parallelism. and multiple processor cores on a chip.

&Exercises
Problem 12.1 Define in brief the meaning of
computer architecture; within dwe scope of that
meaning.explain in briefdwe role of processor design.

Problem 12.2
(a]- When can we say that a computer system is

bofdnced with respect to its performance?
{b} In a particular computer system. the designers

suspect d'1at the reodfivrite bandwidth of the
main memory has become dwe performance
bottleneck. Describe in brief the type of
test program you would need to run on
the system. and the type of measurements
you would need to make. to verify whedwer
main memory bandwidth is indeed the
performance botdeneclc You may make
additional assumptions about the system if
you can justify the assumptions.

Problem 12.3 Recall that. in the example system
shown in Fig. 121. the bandwidth of the shared
processor-memory bus is a performance bottleneck.
Fesume now that this bandwidth is increased by
a factor of six. Discuss in brief the likely effect of
dais increase on system performance. After this
dwange is made. is there a likelihood dwat some odwer
subsystem becomes the performance botdeneck!

Problem 12.4 Explain in brief some of the basic
design issues and trade-offs faced in processor
design. and the role of‘v'LSl technology selected for
building the processor.

Problem 12.5 Explain in brief the significance of
{i} processorstote. (ii) program stote.and {iii} committing
an executed instruction.

Problem 12.6
(a} Explain in brief. with one example each. the

various types of dependences which must
be considered in the process of exploiting
instruction level parallelism.

(b) Define in brief the problem of exploiting
instruction level parallelism in a sirgle
sequence of executing instructions.

Problem 12.7 Widi static instruction scheduling
by dwe compiler. die processor designer does not
need to provide for dynamic scheduling in hardware.
ls this statement true or false? justify your answer
in brief.

Problem 12.1! Describe in brief the structure of
the reorder buffer. and the functions which it can
and cannot perform in die process of exploiting
instruction level parallelism.

P] | '.............-i....i..... -- ,2,

Jiocru-on so I : 1

,'1|I.‘:|I)Jhi

E.

E-‘ocruw-en so 2: L

,"lJ2:l,\Jf\-_‘]

5

5»-.?r:r|J'r.?n so 3 : L
2

3
Q
l“._|

E

Note for Eirercisu P to ‘f5
The following three sequences of machine instructions are to be used for Exercises 9 to 15. Note
that instructions other than LOAD and STORE have three operands each;from left to right they are.
respectively source 1. source 2 and de.stinatlon.'#' sign indicates an immediate operand.

LEAD
LEAD
LEAD
FADE

FSU3
¢"'|'\I"i 7o-ERE

LEAD

FADD
-PI“!-'1 -.v|J.._l?i'_.

FADE
STERE
LEAD

LEAD
FADD
-r\I-In ivQ-ERe
FADE
STERE
LEAD

Assume that (a) one instruction is issued per clock cycle. {b} no resource constraints limit instruction
level parallelism. (c) floating point operations take two clock cycles each to execute. and [d) loodfsmre
memory operations take one clock qrcle ach when there is L1 cadwe hit.

mnm—a,
mem—b,
mem—c,
R2. RL
as, n_
mem—a,

mem—a,
22. 2;
mom—a,
#1, R3,
mom-d.
mem—o,

mom-a.
2;.
mot1—b ,
#1, R3,
men-d,
men-Q,

. RL
,..-1.-

, R-

F-5.4

R1

R2
R3

R1

RL

R1
R2

R2
R2

RL

R2
R2

R2
R2

Problem 12.9 Draw dependence graphs of the
above sequences of machine instructions. marking
on them the type of data dependences. with the
rspective registers involved.

Problem 12.10 Assume that the procmsor has
no provision for register renaming and operand
forwarding. and that all memory references are
Satisfied from L1 cache. Determine the number of
clook cycls it takes to execute the above sequences
of instructions. counting from the last clock cycle of
instruction 1.

Problem 12.11 Now assume that register
renaming is implemented to resolveWAR andWAW
dependences. Determine the number of clock
cycles it takes to execute the above sequences of
instructions. counting from the last clock cycle of
instruction 1.

Problem 12.12 Comment on the scope for
operand forwarding within the sequences of
instructions.Assume that the loodism-re unit can also
take part in operand forwarding.

TM rilnffirmrl-' Hflllfmmro-rm
628 i ndmirrced Computer Architecture

Problem 12.13 Assume that. in addition to
register renaming. operand forwarding is also
implemented as discussed in Exercise 12. Determine
the number of clock cycles it takes to execute the
above sequences of instructions. counting from the
last clock cycle of instruction 1.

Problem 12.14 Consider your answers to
Exercises 10.11 and 13 above. Explain in brief how
these answers would be affected ifan L1 cache miss
occurs in instruction 1.which takes five clock cycles
to satisfy from L2 cache.

Problem 12.15 \Nith reference to Exercise
13. describe in brief how Tomasulo's algorithm
would implement register renaming and operand
forwvarding.

Problem 12.16 Explain in brief the meaning of
olios analysis as applied to runtime memoryaddresses.

Problem 12.17 A particular processor makes
use ofa 2-bit predictor for each branch. Based on a
program execution trace. the actual branch behavior
at a particular conditional branch instruction is
found to be as follows:

T T T bl T T T bl
(——i.—!~ (——i.—!-k irmttv k rune.»

HereT stands for branch taken. and N stands for
branch not taken. ln other words. the actual branch
behavior forms a repeating sequence. such that the
branch is taken k times (T). then not taken once (N).

‘With the 2-bit branch predictor, find fraction of
correct branch predictions made ifk =1..k = 2. k= 5
and it = 50

Problem 12.11! Discuss in brief the difference
between ltrcoland global branch prediction strategies.
and how a two-bit selector may be used per branch
to select between the two.

Problem 12.19
(a) Wall's study on instruction level parallelism is

based on oracle-driven iroce-bosed simulation.
Explain in brief what is meant by this type of
simulation.

(b) Wall's study of instruction level parallelism
makes certain ‘optimistic’ assumptions about
processor hardware.\Nhat are thse assump-
tions? Against each of these assumptions.
list the corresponding ‘realistic‘ assumption
which we should make. keeping in view the
characteristics of real processors.

Problem 12.20 Discuss in brief the basic trade-off
in processor design between errqaloiting instruction
level parallelism in a single executing thrd. and
providing hardware support for multiple threads.

Problem 12.21 Describe in brief what is mean
by dwe context ofa threod, and what are the typical
operations involved in switching between threads.

Problem 12.22 Describe in brief the different
strategies which can be considered for switching
between threads in a processor which provides
hardvwre support for multi-threading.

Trends in Parallel Systems
in the rlierdwapters of this book. we have studied the many architectural concepts which had been
proposed and tried out until the early 1993s. In Chapter 12.we studied in some detail the basic issues
related to instruction level parallelism {ILP}. and the various techniques which have been developed to
exploit ILP in the running program.

We shall now use that knowledge as a foundation to understand subsequent developments in computer
architecture. in the light of the technological advances which have taken place over the last two decades.
Of course this fairly brief chapter about the recent advances cannot possibly be errlrousth-'e—but we do
hope that it is representotirre enough to bring out the recent trends in computer architecture.

Over the last two decades. the hardware technologies that provide the building blocks of computer
architecture have advanced almost beyond recognition. ln Section 13.1.we shall take a brieflook at these
developments in technology. so as to understand the driving forces behind the recent developments
in computer arr:hitecture.'rNe feel that the recent innovatiors and advances in computer architecture
cannot be studied in isolation of these technological factors.

ln Section 13.2. we review in brief the types of parallelism which may be prfient in a program. and
discuss the concept of efficient and work-efficient parallel :~1lgorithms.The concept of work-efficiency
enables us to determine whether a given parallel algorithm has efficiency wI'rlcl1 is comparable to that
of another known algorithm for the same problem.We also introduce the concept of stream processing.
which can provide very high performance for certain specialized data-parallel applications.

ln Section 13.3. we tale a look at case studies of some recently introduced commercial processors
and systems. which incorporate innovative daigns based on the latest advances in technology and
architectural concepts. ln Section 13.4. we discuss current trends in parallel program development
languages and techniques.

BRIEF OVERVIEW OFTECHNOLOGY

1 In clcctronics, ‘v-‘LS1, mass storagc, and communication tcchnologics, trcmcndous advances
have taken placc ovcr thc last two dccadcs, which havc shaped thc rcsulting advances in

pnrccssor and systcm architccturc. In this section, wc takc a hricf ovctvicw ofthcsc basic tcchnological
advances, so as to prcparc thc ground for casc studies of some of thc rcccntly announced processors and
systems. In sub-scctions 13.1.] through 13.1.4, rcspcctivcly, wc discuss scmiconductor technology, display
technology, storage technology. and intcrconncct and nctwork technology.

J11 Ind!I||[1rI|f\ _

Gill if fidvuncod Cumpumrilrrlfltedlrm

1 3.1.1 Sernieunduet:orTeel'|nolegy
Over the last several decades, steady advances in very forge scale irrregrarion (\-'LSlj technology have led
to a steady csponential-rate growth in the number oftransistors which can be fabricated on a single chip.
Present day technology allows well over a billion transistors to be fabricated on a single chip. Advances in
VLSI technology have had a major impact on computer system architecture, giving rise to possibilities sueh
as mulri-core ehaj:Js and s_}-‘steam;-n-n-chip.

The basic parameter which dcterm inesthe sizeofa transistor on a chip isthe minimum line wih'rh supported
by the fabrication technology—i.e. the width ofthe smallest feature which can be fabricated on the chip.

With better and better processing technology, line widths produeible using VLSI fabrication technology
have been shrinking steadily. Sub-micron technologies became possible by the early 1990s, i.e. line widths
of under a micron, which is 1000 nanometers [nm]. Less than two decades later, we now have line widths
fires nm, 45 nm, and even 32 nm, enabling the production ofchips with over a billion transistors on them.

Gordon Moore was one of the founders of lntel Corporation, which is today the world leader in
semiconductor technology and the largest manufacturer of semiconductor devices. Based on his intimate
knowledge of VLSI design and fabrication technologies, Moore formulated rm enzpirrienf Fm-.' in the mid-
l9ElDs which states that: The number qfrran.~:r'.¢tors it-'1: id: can befirhricztred on rt single chip .n'hu!Jfes every
In-0 ye.nrs.

One way to understand the logic behind Moore's law is as thllows:

(it ‘When a company embarks on developing ‘the next generation‘ ofchip technology, it typically aims
for doubling ofthe device density on the chip. Since the area occupied by a d-In-'ice on the chip is
proportional to the square of line width, the design target for the line width must he about H‘-."2 of the
line width currently achieved. This approximate ratio explains the line widths of‘90 nm, 65 nm, 45 nm
etc. of c1.uTent technologies.

{ii} The time period mentioned in Moore's law—t'wo years—equals roughly the design and development
cycle associated with the newer fabrication technology needed.

Faster clocks also become possible with improved technology; however, beyond a point, the power
consumption ofthe chip risesdispropertionately last with clock speeds. Also, a faster proccssorclock requires
an increased number of stages in processor pipelines. But there is a limit beyond which the number of such
stages cannot be increased, because each additional pipeline stage introduces its own overhead.

ln recent years, processor clock speeds have reached as much as 4 gigahertz, but it is seen that processor
performance does not scale with clock speed s. Cine reason behind this is that the relative oo st ofa cache miss
is greater at higher processor speed s.

ln view of factors such as these, there has been a relative leveling eff ir| processor clock speeds in recent
years, while greater attention is given to how best to design the chip to utilize the enormous number of
transistors on it. Apart from the exploitation of ILP discussed in Chapter 12. multi-core processors, systems-
on-a-chip, stream processors, and larger two-level on-chip cache memories are other examples of resulting
arehitoetu ral developments.

rs» Mam-w stilt-...¢-,.w..¢. '
' _ 63 lTrends in Parallel Systems

An important consequence of high density chip designs and taster processor clocks is the following:
Qfilcitip interconnect delays play a major role in dctermining system perfomtance. The approximate speed

ofan electronic signal ovcra wire ir| a computer system is 20 centimeters -[cm] pernanosecond. lfan off-chip
connection has a length of 11".! em, for esample, the associated delay is 0.5 ns, which is as much as halfofa
clock cycle ofa 1 gigahertz clock, orone fiull cycle ofa 2 gigahertz clock.

Given that a large number of transistors can be fabricated on a chip, it tbllows that huge pertbmtanee
benefits can be derived by integrating system functions on n chip, even if it is not possible to continue to
push clock speeds higher. Another outcome ofthese technological factors is that system performance is more
easily enhanced by employing multiple processors, than by pushing a single processor to its technological
performance limits.

ln the case studies which we shall consider later in this chapter, we shall see how different manufacturers
have designed innovative high performance systems, keeping in mind tl1c basic constraints of the underlying
technology. We shall also see that today the most pots-erlill computer systems in the world—sueh as Cray XT
and IBM Blue Genem—are based on thc concept ofmass?1-'e{v prrraflcf _pmeess'ing.

Another important etfectofmodem VL Sl techno logy on computer arehitect|.|re ensues from the economics
ofchip design.

Design costs associated with modern high performance processors are very high, which means that larger
production quantities are needed to justify these costs. Therefore computer system architects today are more
likely to make use of commercially available processors which are in volume produetion—i.e. commodity
proccssors—while relying on innovations in srsrerrz design to deliver higher performance. [n fact massively
parallel systems have been developed precisely to csploit the enormous amount of aggregate processing
power which can be provided through the use ofa large number ofhigh-performance commodity proeessors
operating in parallel.

In the case studies presented in Section 13.3, we shall sec that advances in VLSI technology—which have
been touched upon very briefly here - have had a major impact not only on processor designs but also on
overall system architecture.

Semiconductor Memories Dynamic random access memory {DR.AM'j, which provides the bulk of main
memory in computer systems today, is also subject to Moore's law, i.e. doubling of transistor count on a
single chip every two years. This means that a single memory chip today can store hundreds of megabytes of
memory, and co mputer systems today are provided with main memories which are three orders of magnitude
larger than in the early 1990s.

However, over the years, memory speed increases have not kept up with processor speed increases.
Processor speeds have been increasing at a rate ofover 50% per year, whereas memory speeds have been
increasing at a rate of less than 10% per year.

Typical prooessor clock periods in the early 1990s were ofthe order of 25 nanosecond s, and memory cycle
times ofthe order ofltlfi nanoseconds. Today these two numbers would be ofthe order of 1 nanosecond
and 51] nanoseconds, respectively, which shows that, reinrtve m pmee.s.ror speeds, main memory speeds are
slower today. In such :1 system -unless something is done about it the processor would see fifiy idle clock
cycles for every memory access on a cache miss, which is clearly not acceptable.

ill Allthc product numbers and names used 'u1thLs chapter are rcgLstered tradernarks ofthe respective corporations turned.

FM Melirului Hl'Ilr' nr" w :1 .I||r_.u| u

G32 ii fidvunced Cemputeriirrlriteehne

This means that the cost ofa cache miss, counted in terms ofnumber ofprocessor cycles lost, is greater
today than it was in the early 1990s. To put in another way, cache miss rate would have greater impact on
processor throughput today than it did earl icr.

ln terms ofcomputer system performance, this means that designers t-oday have to rely on more innovative
memerj-1 inr‘em:j_t-' hiding techniques. We have already seen that multi-level caches, out-of-order instruction
execution, and hardware multi-threading are some ofthe latency hiding techniques available to the system
designer.

Even with various latency-hiding techniques, the memory sub-system must be capable of storing a.nd
delivering data at the required rates. Double data rate [DDR] devices, wider data paths, interleaving, and
integrated L3 eache are some of the techniques employed for this purpose. High performance systems also
employ memories with error correcting codes 1'ECC) to protect against random, one-off errors.

13.1 .2 Display Technology
Graphics display technology has madehuge strides sineethe mid-1990s—whcn LCD displays were virtually
unknown, and high resolution CRT displays were only available on expensive workstation s. [n terms ofeach
ofthe following performance features, graphics displays have made huge advanees over the last couple of
decades:

- pixel density,
- rangeofeelers,
- eonlmst,
- refresh rate, and
- viewing angle {applicable to LCD displays).

With the help ofspeeialized graphics controllers and high data rate interconnects, modern systems support
animated graphics ofamazing quality.

These developments have opened up the vast and entirely new area of multimedia applications, including
animated graphics and sophisticated gaming—applications which were not possible a couple of decades
earlier. Sophisticated image processing is also now made possible by utilizing the same processing and
display capabilities.

At the same time, graphical interfaces have changed the ways in which users interact with the application
programs. Compared to the earlier days of DOS and UNIX command lines, user interaction with the computer
has been transtbrmed with the help ofwirldows, pointing devices and imaginative graphics.

Graphics controllers implement ftmctions of the graphfe.s' rendering pr'peHm’s, which require repeated
eemputations on sequences of integer er floating point operands. These numerical operands represent the 2D
or 3D image which is being displayed, and the numerical operations carried out on them represent common
graphics operations such as projection, clipping, scaling, rotation, and so on.

Computer graphics and image proecssing are highly specialized subjects, and it is not possible to delve
into these subjects at this stage. But the processing and data transfer requirements ofdynamic graphics do
have a bearing on computer architecture, as tl'|e following example will illustrate.

Trends in Parallel 5;-stems ' i ‘$3

319
Corr-zidera display of 10l".I'I] >< 1201] pixels, with 24 bits ofeolor information per pixel, i.e. 8 bits for each ofdie
three primary colors; assume that the display has to be refreshed 61"} times per second for animated graphic s.

Then the aggregate data transfer requirements to the display can be calculated as:

Example 13.1 Graphics display: processing requirements

lfliifl X1200 >< Z4 X 61] bits-‘second = 216 MBi‘s.

In a graphics system, all the subsystcrns—main memory, processor, graphics processor, as well as all the
data paths —must support the required data rates.

For each pixel, display intensifies of the three colors must be calculated. Let us assume this requires a
hundred arithmetic operations per second on average, which may be integer or floating point operations,
depending on system design. This figun: is used here for an order-of-magnitude calculation; a more precise
calculation requires details of thc rendering process, and there would be potential parallelism in these
operations.

Then the graphics processing power needed in this system is ofthe orderof:

lflilfl >< IZOD X lfifl operation!-Jseeond = 120 million operations per second.

Note that this processing power must in general be provided using the appropriate hardware technology,
e.g. a pipelined graphics processing unit ('GPU'j.

In a graphics or image processing system, all graphics data points are put through essentially the same
sequence ofarithmetic operations. Because ofthis, graphics proecssing has given rise to variants of SIMD
architecture.

One sueh variant is today provided even on PCs ofmodest cost in the form of screaming SI.~‘|dD extension
to the lntel x86 instruction set (SSE, see Section 13.3.5). As another example of the impact of graphics
and image processing on system architecture, we shall study the concept of srream processing {see
Section 132.4).

Requirements ofgraphies proces sing have a major impact on the rest ofthe system design also, in terms of
the storage, proecssing, networking, and L"D capability required. Multirncdia traffic forcns a major component
ofall Internet traflic, while the design of sophisticated video game consoles must also take into account the
aggregate graphics processing requirements.

13.1.3 StorageTeehr|ology
Since the early 1990s, mass storage technology has witnessed technology innovations resulting in steady
advances in the following respects:

* greater storage densities,
- smaller form factors,
- lower power consumption, and
* reduced costs.

rt» Meliruu-t Htilr N‘f'lll1|1lf\ '
634i ' Advuriced campumstamaum

Another significant technology irtnovatien has been the develflpmertt offlesh memrlrier, which are non-
volatile solid state mass-storage devices.

As in the case of senticondue-tor devices, magnetic disks have also benefited from steady improvements
in materials, processing and manufacturing technology. In addition, there have been breakthrough_s—such
as the use ofgiant magneto-resistive {GMRI efiect, which has helped shrink the size ofthe read.-‘write heads.
Today', magnetic disk drives are available in 3.5" form factor with capacity 1 TB (1 Terabyte, i.e. IO“ MB].

In addition, storage systems sueh as redundant ¢rrm_t-' of independent rfisks if RAI D) have been developed
to make available on computer systems huge amounts of online disk storage, wherein a large number of
physical drives appear as one logical storage unit. In a RAID storage system, the drives built imo the array
can provide the advantages of faster data access, error recovery, andior fault tolerance.

To the operating system, a RAID storage 1.n'|it appears esactly as one logical disk. The multiple physical
disks in a RAID storage system may provide a combination of:

(ij Dam srrr]rJr'rtg—i.e. the data to be stored is distributed across multiple disks, so that it can be read or
written in parallel across the disks, resulting i11 taster performance.

{ii} Date mr'rmring——aIl the data to be storod on one drive m.ay be mirrored on another, so thatoperations
continue uninterrupted even after a single disk failure.

[iii] Parr'tv—for every Hf L; 2 physical data disks, an extra physical disk may be used to store parity
information calculated for the m data disks; in case ofany parity violation detected, the system is in a
position to provide error recovery.

These strategies can be combined. Foresamplc, one can have aredundant pairofstriped disks, ora striped
pair of redundant disks. Standards have been developed defining the various RAID configurations which are
used to meet specific system objectives.

RAID features cart be implemented in hardware, in which case the operating system views a RAID system
just as it views any other disk drive. Altemativcly, RAID features can also be implemented in sofiware, in
which ease they make up the lower layer of the disk space management software.

However. even in the midst of rapid technological advances, one fact has remained unchanged over
the years: Applications of computer systems invariably grow to stress and stretch the limits of available
technology. We have already seen this to be true in the case of semiconductor and graphics technologies.

In the case ofmagnetic disk drives, the story is no different. Over the years, the data storage requirements
of applications have grown exponentially. A large component of this storage is today c__\-tl'Jer.space—i.e.
millions ofgigabytes of information made available to users around the world through the world wide web.
In actual fact this cybcr-space resides on thousands of.§t'rt-erfiirnts, each ofwhich contains a large number
ofdisk drives; this data is made available on the web through vreb servers‘.

Magneticdisk storage hastraditionallyprovided farhigher storage densities than non-volatile semiconductor
EEPROJI-ill] storage. I-Iowever, in recent years, storage densities of semieonductor_,fir:r_si1 mem0rr'es'—a form
of EEPRDM—have increased significantly, leading to their increased use with compact and mobile devices,
where they offer a better alternative to magnetic disks. Unlike the original EEPROM devices, flash memories
provide access to stored data on a block-wise basis.

Being semiconductor devices, such merrrories also benefit from tl'te steady technology improvements
summarized in Moore's law. The availability of high-density non-volatile semiconductor memories means
that so-called solid strife n‘rr've.s' are now available, which can be used in place of magnetic disk drives. These

ii] Electrically erasable programmable read-only memory.

Trends in Porellal Systems ' i ‘:5

drives offer the advantages ofhigher throughput, lower latency, lower energy consumption, robustness and
durability. It is likely that, in the coming years, solid state drives may replace some of the rotating magnetic
disks as secondary storage devices.

13.1.4 Interconnect and Het:workTeehno|ogies
Within a computer system, the processor-memory and inter-processor interconnects, as also the data paths
to network and device controllers, must sustain the data traffic rates needed for a given aggregate system
performance. Latcneies associated with the data paths also play a role in determining achievable system
performance.

Modern supercomputers, data centers and server farms rely on high pertbrmance and high availability
computing infrastructure in which imerconnccts play the crucial role. An interconnect within a computer
system may span a single chip, a circuit module {or board), a single rack consisting of many circuit boards,
or multiple racks spanning a distance ofa few meters or few tens of meters. Thus an interconnect may be a
nemorir on tr cirflrr {NoC 1, a .s__vsrenr or-en network [SAN], or something intermediate. Beyond the range of a
system area network, a local area network (LAN) or a wr'r1'e oron nem-‘ark {WAN} is needed to interconnect
systems irtto larger systems.

Within a system, with a larger number of processors being connected, there has been a shifl from
performance-limiting shansrt‘ me.n'ia interconnects—e.g. shared processor-memory bus—towards packet-
based svt-'r'reFt-err’ mcdris interconnects, which make use of point-to-point links and routers. Such systems
support highcr aggregate bandwidths, and protocols forthem are specially designed with low overheads and
latencies.

H1yperTran:j:-art An example ofa high performance interconnect which has been developed to meet such
system requirements is HyperTransport (_HT)m—-a point-to-point interconnect technology which is packet-
based, scalable, and has low latency. HT Technology Consortium, consisting of several major hardware
vendors, published the first version of this standard in 200] , while the latest version 3.1 has been published
in 2009.

A uselirl feature of HT is that the command.-‘address-"data path width can be selected by the system designer
to be 2, 4, 8, 16 or 32 bitsm. The latest version of HT supports a maximurn clock speed of 3.2 GHz and
aggregate data trans fer rates ofup to 5] .2 GB.-"s. The HT link can be directly provided on the processor:-‘core,
without requiring a separate interface device. The packet-oriented data transfer protocol is designed for low
overhead and provides fast l.~"O interrupt processing, error retries and virtual channel support.

For achieving the high sssitching speeds needed, HT relics on the underlying physical layer based on the
Low Voltage Diflercntial Signaling 1' LVDS} standardm, which ofiers advantages of low power consumption,
higher speed, and the immunity to noise and interference which characterizes differential signaling.

Basic circuit theory tells us that a capacitive load can respond instantaneously to a step change in current,
but not to a step change in voltage. The el"Tective load in system interconneet.s—within a chip, or between
chips on a circuit board—is capacitive, and therefore a currcrtt-driven signaling scheme cart support faster
data rates.

in See htrpi."."v.'n'n'.1'rs=;x'rrrun.spvirf.0r].;
'3] PCI Express also provides a similar design option. Sec bclow.
ii‘ See tr-:o.s t’)wnr.-ris .rn-mar, 4*‘ edition, published by National Semiconductor, 20-as.

_ _ PM‘ MIGIELH HI" l'm'rIq|r_.\.I|n*\ ‘I _

GIG i $dvnncodCumputcrArr.lIitcct|.rnr

Consider the basic circuit shown in Fig. 13.] , in which adigital signal—i.e. a step change in current—is
being communicated by the driver to the receiver. Clearly, the direction of current through the pair ofwires
(known as eurrem’ loop) depends on whether transistors A & D or B & C are tumed on.

A B “eurrentlootf

—| E 1 i— ' .
'\

3.5rnA * “--
ctrrmt ® "P"
sunoe 1DD£! I

 .

‘___-

P€

Driver Reoalver

Hg. 1 1.1 Low voltage dlifermdal signaling {L5/DIS}

Across the 100 E2 terminating resistance, the 3.5 mA current source generates a voltage drop AV of
350 ml-F, given that any common mode vo ltage gets rejected in the differential arrangement. Data is recovered
at the receiver fi"om the sequence of changes in the polarity ofthis voltage.

PC] and PC] Expmulfii Peripherni' Component Inreremmeer (PClj local bus standard was developed by
lntel in the early 1990s ior the relatively higher performance PCs then cmerging—which were using, for
example, Intel's own Pentium processors. The standard provides tor device adaptors as [C chips on the
motherboard, oras add-on cards in separate slots.

The original 32-bit version of PCI ran at 33.33 MHz clock speed, to deliver net data transfer rate of 133
MBi"s. Later versions of PCI utilized >< 2 and >< 4 clock frequencies with proportionately faster data rates. The
standard was extended for 3.3 volt operation, in addition to the original 5 volt definition, and a 64 hit version
was also defined.

The PCI local bus can have a number oi'devicc.'s connectod to it which can operate as bus masters. ln
case ofmultiplc requests, a has mbirerr grants control to a single master; a pair ofreq|.|e_st.-"grant signals are
provided for this purpose. The bus also includes address-cum-data lines and interrupt lines. Data transfer is
carried out via Iransot-rions—ir1 which an address phase is followed by data phase; read or write operations
take place with respcet to either memory address spaoe or a separate l.-"0 address spaoe.

PCI has prov.-ed to be immensely successful, and has been introduoed in several variants and form factors.
lt continues to be widely used in PCs, even afier the enhanced a11d higher speed PCI Express standard was
introduced in 2604.

PCI Express was introduced as acollaborative cifort by lntel and othercomputervendors in 2004. In spite
ofits similarity oi" name witl'| PCI, it represents a radically difierent approach to system interconnects. PCI

3'] See blip-.-.-".-‘ti-ti-t|.:p¢-i.ti,_i;.arm:

Trends in Parallel Systems _ i ‘B7

Express relies on serial, point-to-point links with message-based protocol implemented at the transaction
layer. As a whole, a PCI Express based interconnect operates a set of independent and parallel point-to-point
links, rather than the sharod parallel bus of PCI. High speed graphics and storage devices which cannot use
PCI are candidates forthe use ofPCl Express.

Over each pair of wires making up a single unidirectional link, current mode signaling is used to achieve
data rate ofE5t'1 MBi‘sec in PCI Express vl .x, SDI] MB.|"see in v2.x and l GB-‘sec in v3.x. A pair of links ma.ke
a bidirectional hme, and multiple (2, 4, E, 12, I6 or 32) lanes can be configured together to achieve higher
data rates, depending on the data transfer speed requirements ofa device. Data carried over multiple lanes is
striped, in the sense that in one transaction successive lanes carry successive bytes ofdata.

All data and oontrol signals such as interrupts are sent as J'fl-E'SSflg£“S over the lanctsj, rather than by using
dedicated signal lines as in earlier systems {_ir|eluding PC I). The message based protocol uses CRC for error
detection, and lower level ACKINAK packets to signal message receipt or non-receipt (e.g. due to time-
out]; flow control for outstanding messages is provided at the transaction layer. Compared to PCI Express,
HyperTrartsport (di scussed above] uses a lighter, lower- latency message protocol.

As important as interconnect technology within a system is the local area and wide area networking
technology which allows computer systems to communicate at high rates, even though they may be located
halfway around the world.

Today computer systemsaro und the world are networked together in a way that could not even be imagined
in themid-1990s. Users have become accustomed to transferring huge amounts ofdata across the world at the
press ofa key, and most commercially important applications ofco mputer systems rely on the availability of
reliable, high bandwidth networks delivering services across much ofthe world.

When any type of data—numerical data, text, pictures, sound or vidco—is transferred between two or
more computer systems, the quality of the underlying computer network is crucial in determining tl1e overall
system peribnnance. Performance ofa network link between computers isjudged in terms of the bandwidth
available, latency, and error rates. Ofcourse errors can occasionally occur on links, and for this the network
links provide ibr some ibrm oferror recovery. Performance of a network connecting two end-to-end systems
can also bejudged using essentially the same criteria.

Dver the last decade, use of optieal fiber technology has brought about a revolution in oommunication
networks spanning the world. Achievable bandwidths have been rising, while costs have been coming down
and the overall network reach has been increasing steadily. This has brought about a revolution in the type
and range of applications which are being deployed and used routinely—applications which did not exist
even a decade ago.

Gigubit Ethernet and Cluster Computing Ethemet, originally developed by Xerox Corporation, is the
most widely deployed Local Area Network [LAN] around the world [EEE Ethernet standard covers bottom
Layers 1 and 2 of the seven-layer ISO protocol. The original standard, based on CSMAICD technology,
provided a speed of 10 Mbps; later Fast Ethemet with 100 Mbps speed became available. All along, Ethernet
has proved to be an inexpensive, reliable, scalable and easily upgradeable LAN technology, leading to its
huge adoption rate for local area networks and campus networks.

As processing power grows in the servers and user computers connected to a LAN, and as applications
sueh as multimedia applications demand more bandwidth, the total traffic demands made on Io-cal area
networks also increase.

_ J11 IntKI||[1rI|f\ _

G33 E Advanced ComputerArrlI.i'teetlw|:

In the late 19905, IEEE defined the I000 Mbps Ethemet standard known as Gigabit Ethemet first
for fiber optic cables, and later over CAT-5 copper cables. Initially, it was envisaged to be used For network
backbone, in the data center, and amongst the various traffic aggregation points in the network. But today
it can also be provided on a user PC or workstation. The technology is defined by relevant parts of IEEE
Standard RG13.

The copper cable version of Gigsbit Ethernet uses four pairs of standard Cat-5 cables, and explicit flow
control amongst switches and adaptors, rather than C SMA.-"C D. Copper cables can be used over shorter
distances, up to lfll] m. Optical fiber cables can be us-ed for longer distances, up to a few kilometers.

When multimedia applications share the same network as data intensive applications, the issueofnetwork
Qurrlirv ofScrvicc (QoS)m for each application bocomcs important; this can be seen from the following
argument

(ij A streaming video session needs timely delivery ofdata to avoidjitter, but it can tolerate occasional
data errors.

{ii} On the otl'|cr hand, ibr transfer of financial data, for example, absolute integrity is the prime concern,
while some delay in delivery may be acceptable.

Thus different applications make different demands on the network for the required QoS; Gigabit Ethernet
has been defined with the required support for the Q05 ooncepts to be implemented over it. lt should also
be noted that, aflerfiigabit Ethernet, newer 10 Gigabit Ethemet technology has also now become available.

Availability of low-cost personal computers, high speed interconnects [such as lnliniBand and Gigabit
Ethemet), and the use ofthe robust message-passing model to support concurrent processing have given rise
to the popular and powerful C-luster Corrunrrirrg concept.

A cluster computer offers a low-cost altemative to supercomputers for obtaining higher processing
power by interconnecting a large number of processing nodes. Technically, in terms of Flynn's original
classification, Cluster Computing must be classified as Hilifllflfe’ instruction-.srmnm, mul'ri;Jl'e data-.s'rrcorn
(_MlMD} arehitectu re, since each computer executes its own program. However, for agiven application, ifthe
same program is running over all the computers in the cluster, the processing is in sirrgfeprogrrini, rriulripfc
dam-.s£reom -[SPMD) mode.

The basic objective ofernploying a computing cluster may be high ;x'rj,r"orrr.I.reree, hig}: nvm'IolJr'fr't_v {i.e.
ability to continue operating afler a failure], or a combination of the two. High availability is made possible
by providing redundancy in the system.

For example, a two-computer cluster, with both running the same database server, will provide higher
availability than a single computer running the database server. On the other hand, ibr faster response to
database queries, the database must be partitioned between the two interconnected computers running in
parallel.

Partitioning and redundancy are two independent strategics—eithcr or both may be adopted, depending
on cost-benefit analysis. In the above example, if redundancy and partitioning are both needed, a total of at
least four computers must be clustered.

ill For a detailed discussion of this and related oonoepts, see tor example Compute-r i'lr'r.'l‘u'o.ri'.t, by Andrew Tanenbaum,
tiourth edition, Pearson Education.

Trends in Parallel System: _ i gay

For scientific and engineering applications, clusters of thousands of inexpensive computers have been
built. However, programming them for a range of applications, and achieving peak theoretical performance,
both remain challenges for the designer.

Beyond the cluster, Internet is now a world-wide phcnorrrcnon that is changing the world. Web-based
applications, repositories of knowledge, and social networking have resulted in the creation of the vast
e__vberspnee. With the use ofthe message-passing model, a network application runs correctly even though
the respective clients and servers may be distributed around thc world, although ofcourse thc response time
seen by the user is dependent on the quality ofthe network links being used.

The message-passing model works equally well even amongst the multiple processors making up a single
high performance computing system, being in this sense quite robust with respect to relative prooessor and
communication speeds. Thus, with high performance interconnect and network teehnologies,newermodcls
of parallel and distributed applications have evolved, enabling the enormous range of applications we see
today.

Note 13.1
At this point, it is interesting to take a briefbackward look at the kind of systems which were in use
about fifteen years ago. Even this brief backward look makes clear the huge advances which have taken
plaoe in computer technology in the intervening period.

In the mid-19902;, the proeessors used in popular PCs were lntel 80386, S0486 and eompatjbles,
running at clock speeds of at most a couple of hundred megahertz. Mierosofi Windows 3.] ran
optionally on top ofgood old DOS.

The popular word processing soi'hI.-"are of those days was WordStar, and the commonly |.rscd
spreadsheet software was Lotus I23, which had replaced Visifiale-. Microsoft Dffiee was not yet
available. While UNIX“-"as in fairly common use, LINL"Xhad not yet made its appearance.

LCD displays were not yet widely available, and there were no laptop PCs available as products.
Spread ofthe lntemct was very limited, and it was mostly used through UNIX-based programs such as
userier and_,ri;J. The worldwide web was virtually unknown at the time, bci ng in its stage ofiniancy, and
therefore there were no web-based applications. Object-oriented programming with C++ was slowly
gaining ground, while JAVA had not yet been introduced.

In tl'|e mid-1990s, there were no multimedia applications, no easy downloads of music orvideo files,
and video games were oflimited capability. The common local area network was based on 10 Mhps
Ethemet, with Novell Netwarem providing basic file storage and sharing services over the LAN.

From this brief sununary, the amazingly rapid advances in computer technology over the last fifteen
years become quite evident. In Sections 13. 1.1 to 13.1 .4, we have tried to identify some ofthe drivers
of these advances.

EH |=onr-rs o|= PARAILELISM
We review in this section the main forms ofparallclism which can be provided in a parallel
precessing system, relying on a basic division ofparallelism betwoen SIr1l{1'1r!‘flf]Jt'lT'flffc’fiS!fl—

iilfsrt e.n't_v product from N-well which was hugely suooessltrt in the market. For their more recent products, see Imp.-.-t
u.-u.-u.:nuveii.cvmr.

rm-Mel; ta um - 'J11 Em-ltqrrarlitlt _

G40 ii fidvnnced Cemputcrlrrrlvitedtrm

i.e. algorithm lcvel parallelism—and instruction i'et't'f,rx1rai'ie!isrrr. This and some related points are discussed
in Section 13.2.1.

The concepts of it-'OhliI, work-e_ficl'cncy and eflicienr parallel r:r.r'gon'.ti:m are usciirl in parallel algorithm
analysis and design, as is Brent's theorem. These ideas are discussed in Section 13.2.3. A simple parallel
computation is pr-tsented earlier, in Section 13.2.2, to provide a basis for the discussion of Section 13.2.3.

Srrerrnr pm:-cssing is a form of parallelism which emerges from a consideration of the type ofproccssing
involved in graphics, image processing, and signal processing. This form of parallel processing, which has
some features in common with both SIMD and data flow models, has been discussed in Section 13.2.4.

13.2.1 Structural Parallelism versus Instruction Level Parallelism
ln the previous few sections, we have taken a broad overview of the major advances which have taken
plaoe—over the last couple of docades—in processor, memory, storage, graphics, interconnect and network
technologies. These advances have had a major impact not only on computer system architecture, but also
on the kind of applications that are possible and are being demanded. Conversely, the growth in range of
applications has also had an impact on how computer systems are designed and built.

ln the study of high performance computer architecture, there is an important difference between
theoretic-of peak txrrjornirmetr ofthe system and the actual perjliarmnnec nehiet-‘er! in practice. This diifcrencc
is often quite significant; for example, the performance achieved in practice, for solving a real-world problem
on a highly parallel system, may be only 15‘?-it of the theoretical peak pcribrmance ofthe system.

This kind ofa mismatch is not sccn in other types ofcnginecring products; ibr example, ifa new model
ofa car is designed, and its actual performance in practice is only 25% ofthcorctical peak performance, the
design will bcjudged a failure.

The basic reason ibr this type ofperformance mismatch in the case of highly parallel computer systems
is the vast range ofapplications which are run on the systems. There are many pos siblc application domains
of such systen:|s—such as scientific computations, engineering design and simulations, commercial and web
applications, multimedia, games and virtual reality systems, signal processing, cryptography, and others.

Further, even Within a given domain, there is a vast variety in the oomputational requirements of specific
applications. The hard fact remains that, even for a single application in agiven domain, it is a huge technical
challenge to match its computational requirements to system hardware, and thereby achieve application
performance approaching theoretical peak system peribrmance.

ln the earlier years of computer systems, the aim was to write programs which were provably correct—
in the sense that they satisfied the specifications and were free from programming en-ors. For application
programs running on a highly parallel system, we have an additional and important objcctive—that the
programs make efiicient use of all the computational resources available on the system.

ln view of these facts, in utilizing high performance computer systems today, the technical challenge is
to design applications with the most appropriate models ofparallclism, so as to achieve the best possible
performance.

The application is the final determinant of system architecture, in the sense that the architecture must
necessarily serve the computing needs of the application. The application justifies the architecture. But, in

Trends in Parallel Systems
re» Meemw rrrrtr-...=-mm. '

- — 64 I

tact, application requirements grow and evolve taster than system architecture, and therefore the challenge of
matching growing application needs to evolving system architecture seems to be a never-ending one.

A few questions arise naturally in this contest:

(1')

(Z)

(3)

As

Does the structure of the application have inherent, built-in parallelism in it‘?
For systems such as a web server or a transaction pmeessing system, a large number of individual
requests are processed almost independently oi" each other, and therefore parallelism can be exploited
in the form ofmulti-threading. An independent thread can be created to process each service request or
transaction. To support a large numberoftlireads in parallel, the system must employ a proportionally
larger numberofproccssons, with multi-threading support within each prooessor.

For darn pamHel' applications such as graphics rendering, or computation-intensive scientific and
engineering applications, the SIMD or SPMD type model ofparallclism may be more natural. Stream
processing, discussed below, is also a variant of this type of parallelism. In some cases, parallelism is
best exploited in the form ofvectorprocessing.

For any of such applications, the application designer and programmerfsj must explicitly design
and develop the parallel program, using appropriate features provided in the programming language
and the available function libraries. Such parallelism may be named .srrrrerrrra1 _1Jr:rmHelr'.sm in the
application, which can only be exploited by the application designer and programmer-[st provided the
system architecture has the necessary support for it.

Advances in parallel programming language design aim to enhance the power and expressivity
of parallel programming—so as to facilitate the efiicient realization of structural parallelism in an
algorithm. The student is referred to Section 13.4.1, which descrdaes the newly introduced parallel
programming language Chapel.
Can the compiler discover all the parallelism latent in the users program‘?
The compiler ermnm discover the structural parallelism in an application, ofthe type mentioned under
{'1} above. But, at the level ofa single block ofinstnletions, oraeross two ormorebloclrs, the compiler
may be able to discover potential parallelism and exploit it ifthe underlying processor architecture
makes that possible. In addition, by techniques sueh as t-'eemrrl'r'rrg and 1nnprin_fibIding, the compiler
may be able to bring out and exploit more ofthe latent parallelism in a program.

These points have been discussed in earlier chapters. In terms of instruction level parallelism.
oompiler-detection has its limitations, as we diseusseid in Chapter l2.

Carl the processor discover all the parallelism latent in the nmniltg program?
Clearly the process-or cannot discover st1'uctu.ral parallelism in a prograrn, because such parallelism is
not evident in the machine language version ofthe program. However, for exploiting parallelism in a
block oi" irtstructiorts, or across two or more blocks, this would be the alternative to (El to exploit the
parallelism present in an instmetion stream, as we have studied in Chapter I2.

we have soen above, VLSI technology has provided the system designer with an abundance of
hardware capabilities. Moore's law can be seen as one expression of the steady growth being achieved in
‘v'LSl capabilities. So now the obvious question lacing the computer system architect is this:

ow Mcliruw umr rd’ am-r '1 .I;|(It

G41 ii iidvnncod Compumrirdfltcdlrm

For a given range ofapplications, and given the steady growth in VLSI capabilities, what should be the
trade-oF" in processor and system design between supporting structural parallelism and iusnruetiori level
parallelism‘?

The same question can also be posed in a slightly different way:
Suppose the designers of a new processor chip know that, with art improved VLSI process, they will

have twice as many transistors in the next version ofthe chip. The designers must then resolvc—at system
lr;3fl—thc auntie-offi betwoen multiple cores, on-chip cache, functional units, pipeline stages, and aggressive
exploitation oflLP. Clearly these system level trade-ofiis cannot be resolved without a clear picture of the
target applications ofthe processor which is under design.

ln recent years, there has been a shift in system design away from instruction level parallelism and
towards support for structural parallelism. The basic driver behind the shift is simple: no aeliiet-‘e mrrximum
perjlbrutnueefor n git-‘en .s_t-stem cost. Development of multi-core architectures is a clear result of this sh ilt, as
is hardware multi-threading, and tire provision ofsophistieated, high-speed system interconnects.

.r\not,her important benefit of parallel arehiteettue is the potential to provide reriunriiucy to enhance the
_f.nult IrJlr.'t‘rmer.’ ofa system. For a system which must provide 24 X 7 availability, an important benefit of
having multiple processors, memories, and storage devices is that the system can cominue to perform even
in the presence ofan occasional failure. As against liigh perjlbrninnee, this system charaeteri stic is known as
liigli .riv¢rilnlJilit_v.

As we have seen in earlier chapters, SIMD architecture and vector processing aim to exploit darn level
parallelism [DLP] in an application. Over the last two decades, processor designers have explored and
developed every possible technique to exploit instruction levelpnrnllelisui (ILP) in programs, to the point
where scope for further progress in that direction seems to be limited.

In this scenario, the recent shill towards multi-core chips and hardware multithreading results in two types
of important performance benefits:

-[1] lvlulti-core chips and hardware multithrrsiding can exploit a broader range of structural parallelism in
applications. The processor cores in a multi-core chip operate in a shared memory mode. However,
message-passing, which works independently of physical locations of processes or threads, also
provides a natural software model to exploit the structural parallelism present in an application.

-[2] A multi-core system with hardware multithreading also supports the natural parallelism which is
always present between two or more irrrieperrrient programs running on a system. Even two or more
operating systems can share a common hardware platform, in effect providing multiple \-rrtuul
mm,rJutirrgens-ironments to users. Such t-'irtur.=li:r2tir1rr makes it possible for the system to support more
complex and composite workloads, resulting in better system utilization and return on investment.

We shall now take a look at a simple sp-er:-ifie parallel computation, and then continue further with the
discussion ofparallcl algorithms.

13.1.1 A Simple Parallel Computation
To visualize clearly the role ofparallcl processing in algorithms, we now consider a simple example. The
computation here is a double-integration ofa function oftwo variables over a roctangular region of the X-1"
plane. The double integration is evaluated numerically using a simple parallel algorithm.

.T.re|rdsir|-Porelleli)-stems i- £43

39
A continuous function f{'X,l’) of two variables X and 1r’ defines a volume in the tlrree-dimensional space
created by the three axes X, 1" and Z =flX, 1”]. This volume is determinecl by the integral:

Example 13.2 Numerical integration over two variables

Frrfllat Xrtfix P P
I I _ _f{.X,l").d7t er

l"mi;|-| Xrttnr

where the appropriate limits on X and 1" have been taken as Xmin,Ai:|ra:\r,]"min and l"ma.\r, respectively.
When such an integral is to be evaluated on a computer, the axes X and Fcan be divided into intervals of

length :1. Xand Al’, respectively, and the integral is replaced by the following summation:

EEf(X,l') :1-.XAl'

The function _flX,Y') must be evaluated at an appropriate point, for example mid-point, within each area
element of size AXr1\l'. Figure 13.2 illustrates graphically the double integration in questiorr.

The numberof intervals along X and 1" axes is, respectively:

X — X ' Y . — l’ 'N-‘K: (max mm) andNY= (_ mas mm)
AX Al’

Since the product .-1‘lX.».1l' is constant, it can be taken outofthe summations. Function valuesflk’, l'j need to
be evaluated at various points within the grid which is formed on the X- l’ plane by sets oforthogonal parallel
lines drawn, respectively, at intervals of.d1" and AX. These grid lines define strips parallel to X and 1r’ axes,
with N-,- strips being parallel to X axis, and It-"X strips being parallel to 1" asis.

Thu s, when represented as a computation, the volume integral reduces to a summation. Since the integral
in question is adouhle integral over.-‘i’ and l’, the summation is also a double summation, with appropriate
limits.

rum

One ___ ‘ .____ as
volune "-~___
element "-.,_

X

\
ll \.:\\ I‘\

\

I
I

1'
I

I'
I
I .-

I

‘I

__.-
J-1'
I

Fig. 13.1 Double integration off{X. Y) over recmngular region of X-Yplane

_ _ rm‘ I Ifllli lm'rIq|r_.\.I|n*\ _

G41Ii fidvnnced Compumrflrrlritecllrre

With a sequential algorithm, the summation requires N_-,,-Pv'-,- evaluations oi'j(X, 1"] and the same number of
addition steps, i.e. computation time is proportional to .*\1';,;.*\1'-,,-.

One possible parallclized version ofthis algorithm is shown belmspj:

1. For each ofthe .“\"_-,; >< .“\"\,- area elements, in parallel, calculate the value of the firnction f{.!£',]"] at the
mid-point ofthe arm element.

2, For each oi'."r'Y rows, in tgallel, calculate the summation oi'_,t{X,]"j at the .'v'_,, points along the row;
denote this summation as the respective row mtef; this is the inner summation.

3. Calculate the Sum offiw row totals found in step 2; this is the outer summation.
4. Multiply the sum ofstep 3 by dc-'{'.'1Y.

Note that ."i"_\; >< N»; processors are working in parallel in step 1. We shall discuss in Example 13.3 below
the number ofprocessors working in parallel in steps 2 and 3.

Note also that step 2 should not start until all proeessors have completed step 1, and similarly step 3
should not start tmtil all the processors involved have completed step 2. As we have seen earlier; this type of
synchronization between proeessors—orprocesses—is known as barrier .s__vrrc‘hroni.mrion.

We know that the addition of N numbers on a single processor takes N-1 addition steps. On multiple
processors operating in parallel, we can perform the same addition of N numbers in n more time-effieient
manner, as the following esample illustrates.

39
Let us consider the addition oi'N = 8 numbers on -‘ll proeessors. Assurne that the numbers an, a, , . . ., as are
distributed on eight processors pg, p|, . .., pa.

Example 13.3 Addition using parallel proeessors

Step 1: Do :%+a4 —>a{,,a|+ a5 —>a|,a; +a,fi—>a3,a3 +a-,.—>a_1
Note that here, when we say an. + a, —> a0, what is meant is that the operand a4 is made available from
processor p4 to processor pt-1,, using some mechanism of interprocessor communication. Clperand a0 is already
present in processor pg, and thereibre the result ofaddition is also then available in prooessor pt}.

Step 2: Do in parallel: a‘-,+ a3 —> 3,3, a| + a3 —> a|

Step3: ,-1,:-,+a|—->a¢-,

We see that four additions take place in parallel in step 1, two additions in step E, and a single addition irl
step 3. Barrier synchronization is needed between steps.

Sum ofthe eight numbers is available in aq. after three time steps, and the degree ofpnrrrlfefism is -4, since
that is the maximum number of parallel operations we carried out, which was in step l. Let us assume that, in
general, N= 2]" for some integer lc, i.e. N is a power ofl. The student can easily verify that:

:9] The parallel algorithm is shown here only as an illustration. Better dtseussion of parallel algorithms can be found in
relevant books; see, for example Fr.rnr.l‘unren!ai.'r Q,f'Seq'r.rentr'a1 r.rnJPamHei.4lgm1'rhnrs by Kemtetlt Herman and Jerome
Paul.

l'h1'Ml.'I;Ifl\lI' HI" l'n¢r.q|r_.u||rs 5
T.re|rdsir|-Porelilaliystems i- £45

(i) In the above example. at the end of three time steps. variable an in processor p‘, does indoed have the
sum ofthe eight operands originally given to us.

(ii) In general, for N = 21‘ values to be added, the number of time steps required will be k = log_s.’\".

3 3 3 3 3?

s.T
.—"* _- _»T

""_"‘_"or

‘i’lb.
"'ion _T

. Step1~» ~\1a1~1!a\
lilil SW2

‘ Step 3

Fig. 13.3 lneerproeessor oonrmunleaclon in the dvreeseeps ofthe aigofid-an of Example 13.1. wl1:hN = B

Figure 13.3 illustrates the pattcm of communication between proeessors irl the three steps of the above
algorit hm. Note also that thistype ofparallelism can be applied to any a.s'sr1cr'nrive operation over N operands.
For cxamp le, in the same way as addition was performed above, we cotdd perform the mar operation to find
the largest of N operands, or multiplication to find their product.

To apply the basic concept of Example 13.3 to the double integration discussed in Example 13.2, let us
assume for simplicity that we have a square grid over which the double integration is to be performed, i.e.
."'d_i¢ = ."r"y = N. Then, for the steps ofthe parallel algorithm of Example 132, we can conclude that:

Function Evaluation: For the evaluation of_,r‘{X,1'j at each grid element, we use Fire processors, and the time
taken is independent of N.

Ron-'Totals: With M2 processors used for each row, the N row totals can be calculated in parallel in log-fl."
time steps.

Final Sum: The final sum is calculated using ML’ processors in log3."v' time steps.

Thus we sec that, overall, with Iv‘: processors, the computation of double integration is performed in time
O{_loggN'j. In the next section, we shall discuss the issue ofwhether the parallel algorithm can be considered
optimal with respect to the corresponding sequential algorithm tor the same computation.

Figure 13.4 presents another depiction ofthe inter-process-or communication of Example 13.3. Wes-ce that
communication occurs in the pattem ofabinary tree, with the addition—or any other nssoeinrir-‘e operation-
tak ing place at every internal node.

_ .
G45Ii illdvunced Cumputerrlrrlnitqrcllrre

Step 3

H H

tel!“ Iellellel “filial e

Step 2

Step1

Fig. 13.-I Another depletion ofthe ln1:erp=rocessu* cmmrntmlcatlon In the three seeps ofthe algodthrn of
Example 13.3. Hm N = B

‘When sueh an nperatien is earri-ed nut nn a multiproeessnr system, it is knnwn as a reduce or reduction
nperatinn. It involves addition in the above ewe, but the ennecpt is mnre general, because any associative
nperatinn may be used as a basis tbrreduetinn.

1 3.2.3 Parallel Algorithms
As we know, the complexity of a sequential algoritltrn to solve a problem is defined in tenns ofthe asymptotic
running time efthe algmithrn ml aprnblem instance nfsize n. This enmplexity is shnwn in ‘big Oh‘ or ‘curler’
nntatien, e.g. O{r{n]); this means that, fer all values of n I’ n0, the running time of 1:he algerithm gmws as
irrfn l, lbr some eon stants Hg and ii".

When a number of proeessers work in parallel on a computation, we need to define the concept of the
work ;Je:jf'Jrnier! by the algorithm. This necessarily depends -rm the number nf proeessors used and the
emrespnnding running time nfthe algorithm.

Fnr aprnblem instance nfsize n, assume that an alga rithm uses p[n'j prneessnrs in parallel and has running
time in O[!(n)]. Then the w0rk;x'rf0rmedby the algnrithm nn a pmblem instance of size n is defined as u-{:1}
= 0(,»(n1r{_n)1l'°1.

In fact the actual number of prueessnts used during the exeeutinn ofa parallel algnrithm cult-en varies. ln
the summation of Example 13.3, we saw that the number -nfpmeessors used decreases from n.-'2 ts: n.-‘4, n.-'8,
and st: -nn. But we e-rm sider the maximum nurnberctfpmeessnrs used at any step during the parallel Cl\'tCCl.|llCI'l'l,
which is n.~‘2 in that example.

I-ml lié:rkp¢~r_,f¢)nned by the parallel algorithm can aL=:o be referred to as the emu‘ oftlte algorithm; see the bdokcited ah-awe.

Par MIGIITLH Hf" l'mrJI||r_.u|i¢\
Trends in Parallel Systems i £47

Now consider two diflerent parallel algorithms, say l and ll, for solving a given problem. ln solving a
problem instance of size rt, let these two algorithms perform work ti-'|-['rtj = Cl['p|(rt)r|{rt]j, and it-'u{rt] = CI(_,rJ11(rt]
r“{rt)), respectively.

We say that algorithm l is mtrk-e_fir'erlenr with respect to algorithm ll if ‘H-'|[_!'I] is in O(tt-'“-[rt]'j, i.e. n'l{rt] is of
the orderof it-'|l(rt). Basically this means that, from the point of view ofworlt: performed, parallel algorithm l
is comparable, within a constant multiplier, to parallel algorithm ll.

A deterministic sequential algorithm is oonsidered efiicient is its running time tfrtl is a polynomial in rt;
bubble sort, for example, has n.|nning time in For some problems, c.g. traveling salesperson or CNF
satisfiahility, no effieient i.e. polynomial running time algorithm is known and it is eonjecturecl, but not
proven, that none exists.

In a similar way, we need to define the concept of an e_fi9ct'enr parallel algorithm. Keeping in mind the
parallel summation—or in general, reductiort—of rt elements, which we discussed in Example 13.3, we
define an eflieient parallel algorithm as follows:

A parallel algorithm is said to be efiicietn‘ if, for solving a problem ofsize rt, it satisfies the following two
conditions:

(ii The number of proeessors p-['tt'j used is in Ofrtaj, for some constant rt, i.e. the number of processors
required is polynomial in rt, and

-[ii] The running time ofthe algorithm tin] is in (_'.l(logbrt], for some constant It, i.e. the running time ofthe
algorithm is ;xt.{t-fogrtrttitntic in rt.

Note that the numerical integration algorithm of Examples 13.2 and 13.3 qualifies as an efficient parallel
algorithm, with rt = land it = l.

We can now go a step further and define an eprtmml parallel algorithm:
An oprintrt! parallel algorithm is defined as one which is work-eflicient with respect to the best possible

sequential algorithm for solving the problem.
Consider finding the sum of rt elements using rt.-"2 processors in logrt steps, as discussed in Example 13.3.

Clearly the work done is O(_rtlogrt], and therclbre this parallel computation is gg work efficient with respect
to the plain O[rt] sequential algorithm for summation. In tact this argument applies to any reduction operation
carried out using an algorithm similar to that of Example 13.3.

5?)
Consider Example 1.5, parallel multiplication of two rt >< rt matrices. The first version of the algorifllm us-es
rt3 processors and takes Oflogrtj time. Work done p{rt} I (rt) is thus O['rt3logrtl, and therefore this algorithm is
rte! work efficient with respect to the simple three—nested-loop sequential algorithtn which runs in O(rt3) time.

A modified version ofthe parallel algorithm is also presented in Example 1.5, wltich uses rtjflogrt processors
and r|.|ns in Clflogrtl time. Since the productp{rt] I-[rt] is now in Ofrtj), the modified algorithm is work effieiecnt
with respect to the O(rt3 1 sequential algorithm.

Example 13.4

rt» Mcliruw trrttr-...¢-,.a,t.¢. '
G43 i fidvuriced Computerirrlfltcdlrm

Note that Strasscn‘s sequential algorithm multiplies two rt >< rt matrices in ooF*"1 time, and in theory even
more cffieitrnt algorithms exist for rnatrix multiplication. Therefore even the modified parallel algorithm of
Example 1.5 cannot be considered optimal.

The student may recall that, for the second version of the algorithtn in Example 1.5, the number of
processors used is reduced by a factor of logrt, i.e. from n3 to rt3.-“logrt. We may say that, in the second version
oftl'|e algorithm, rt}.-‘logrt processors simulate the work of rtj processors which are used in the first version.

ln gencraL we can say that q-(rt) =1 pfrt] processors can simulate one time step ofp{rt] parallel processors
in O(p{rtjt'q|'(rt]) time steps. Basically, each of the qt{_rt] processors can simulate the computation ot',rt{rtj.-"t;|t(rt]
processors, by executing instructions from that many instruction strcan1.s in around-robin manner. Forthis,
we must make the reasonable assumption that the ‘context-switching‘ time during the simulation, from one
instruction stream to the next, is oonstant, i.e. independent ofrt.

Using the argument ofthis type ofsimulation, we see that onc time step ofp(rt] processors translates into
O(;t{rt}.-"r,t(rtj) time steps ofthe q\(rtj <1 p-[rt] processors. Thus the running time of the algorithm on the reduced
q{'rt] number of processors increases by a ti1ctorot'Cl(_,rJt['rt).|‘q'~(rt]), giving us the theorem known as:

Brent’: Th-eoremm] For a given problem, suppose that there exists a parallel algorithm which solves a
problem instance of size rt using pfrtj proeessors in time Ofrfrtlj. Further, suppose that we have q\[_rt) <2 p(_rtj
processors available to solve the problem. Then the problem can be solved in time Cl('p(rtlr{rt)t‘q{rt)].

ln simple language, the simulation argument shows that, what we ‘ save‘ in terms ofnumbcr of proeessors
used, is spent on proportionately longer running time. Note that the two versions ofthe parallel algorithm, on
pfrtl and q(rt] processors respectively, are work-efiicicnt witli respect to each otlter.

Amdahl‘s law {sec Chapter 3) divides the computational requirements of an algorithm between the
part which is parallelizablc, and the rest which is not parallclizablc—i.e. which must necessarily r|.|n as a
sequential program. For the concept of work done, we have considered the largest number of processors
used in parallel during the running of the algorithm. Therefore the point made irt Amdahl‘s law has no direct
bearing on Brent's theorem; both the theorems make valid statements about parallel algorithms.

To obtain the maximum possible time efiiciency from a high performance processor or computer system,
clearly thc parallelism in the application must be discovered and then mapped onto the underlying hardware
on which the application is to n.|n.

ln the previous section, we have socn a simple example of a parallel algorithm. Now, we can go a little
further by posing questions such as the following:

* ‘What is the H3111“: of parallelism -data pnrollefisrn or cortrmi'poroHeI£sm?
- Is the data parallelism in the algorithm amenable to stream processing, or is it more consistent with the

SPMD mode of processing?
- In case of control parallelism, is itfirte groirt or coarse grorrt parallelism?

When we design and implement a parallel algoritttrn, clearly the program has explicit parallelism built
into it. In Section 13.2.1, we have dubbed such parallelism as .s'rrtterttr.nl' ;xtroHe)'t'.s'm. For such programs,

=1" See The p(.rrr.rHe'.|' evr.r.tr.rr.rt‘r'rm of'generr.rt' arithmetic" e.rprr:.s.w'o-n.s, by Richard Brent, Jfluttlal Of the ACM, vol. Z1,
no. 2, I974. Ofoourse l3re1tt’s theorem is not a recent development in computer architecture. However, because of its
relesonce in the design and perliortnance of parallel atgoritltms_ it has been included in tltLs chapter.

rm MIGIELH HI" r'mr:q|r_.t-on _
Trends in Poroliei Systems i- £49

the programming |anguage—arrd.-‘or the supporting library of fi.|nctions—must allow program design using
explicit parallel constructs. The source-level parallel program must then be mapped onto the hardware by the
compiler and the library firnctiotrs, and then supported by the rtrrrtirrte environment.

C lcarly, the programming language, fi.|nction libraries, mnrime environment and the underlying hardware
must all support the parallel cortstmcts used. Some ofthe most demanding applications ofhigh performance
computer systems today are designed and implemented by intelligent exploitation of stnretural parallelism.

Appliditions designed to exploit hardware HIuHiIfirt'rlrfiHgU:l—CiIhCT grain or emrrse grrrin—should
also be considered as examples of siirutrerurrri prrrrrllelisnr. t'i»!ufri;Jie insrrnerion nrrrlripfe darn (M[MD]
parallelism, and the more restricted single pmgrrrrn rnrrfri;-ale drrm {SPMD] parallelism, both fall into this
category, as does the recently introduced concept ofstrerrnr processing.

We have discussed in the previous chapter (ii insrrrrerr}-In let-wet’ prrrrtfieiism {ILP}, exploited by the
processor hardware while executing instructions, and (iii compiler-detected parallelism, which is r'm_p!r'er'r in
the application program. Clearly none ofthesc forms ofparallclism are involved at the stage of design ofa
parallel algorithm.

To clarify thispoirrt,wc have shown in Fig. 13.5 the three typical stages in the preecssofwriting, compiling
and executing a parallel program. From this diagram, we see that:

(ii Structural parallelism enters into program design at the very first stage in program design and
development, and it needs support from both the underlying stages. Ii‘ we view program design in
a mp don-‘n manner, then this form of parallelism is introduced and exploited at the highest level of
abstraction in program design.

(ii) Com]:-iler-discovered parallelism is discovered in the second stage, and it needs support from the
underlying hardware. This form ofparallclism focuses on a bloclr ofinstnretiotrs, or it may have scope
spanning across two or more bloclrs.

(iii) Processor-discovered parallelism {ILP} is irtdep-endent of the first two stages; it is discovered and
exploited on-rireflt-' by the processor hardware; it relies on discovering independence between the
multiple instructions of the program which occupy the fetch buffer and instruction pipeline at one
time.

Ap-piication program writtrn In a
higher iovol language

Cornpiior, function libraries and
runtime environment

Pro-oossorisi on which an-pi ieaion
mns

Fig. 13.5 Stages in wt-icing. cornpfling and running an appiicacion

I-]‘“T]te word time-ad here may reter to a].I'n'.N;‘-r=.'.'i‘.‘Y as defined hytite (15. To urnie-rstand ltarciware support tor multithreading,
the distinction between thread andpn0ce'.'i'.'r is not c-rue ial. The concept of hardware oontext applies to both i.e. regLs-
ters, PC, flags, etc. Here we ssstxrne that the OS takes care ofthe differences, ifany, between a rbrecrci and a prrwr-xx.

_ .
G50Ii $dvunced'Comfautcrrlrrr.lIttccii|.rr\r

5'9
Presented below is a sequential version ofthe program of Example 13.2, which can easily be compiled and
run on a conventional sing le-processor sy stem. Note that Step 2 has a nested imp stmcture, which takes care
of the .'v'_,,- >< ."v'Y grid in the X- Yplane.

Example 13.5

1. Initia;izo SUM to zero
2. For I going from 1 to Am

For J going from L to LE
Calculate the value of the function
f[X[Ij+ AXf2,Y[Jj+ AYIZJ and add it to SUM.

3. Multiply SUM by AXAY.

ls it possible that a compiler could parallelize this program‘? The general aim is that, for a system with 5",,
processors, a parallelizing compiler will produce code which will carry out the above computation in time
proportional to Pv'x X ."~"3¢.-"t'\"p; here Pr’? need not in general be related to t'\"_~; or .'\1'\.- , except that it is less than or
equal to ."v'_\; >< N»,-.

if the compiler generated code satisfies this conrlition, then the parallelized version of the algorithm is
work-efficient with respect to the sequential version.

ln this particular program, since loop iterations are independent of each other, we may concede that this
program can thus be parallelized.

ln the general case, however, this is certainly a non -triv ial task, and no compiler can extract the maximum
degreeofparallclism from an arbitrary sequential program. Chapter 10 ofthis book discusses several relevant
techniques. On some systems, forexample npenMP {sec Section 13.4.2], the programmer cart pass a ‘hint’ to
the compiler when a loop is to be parallelized, and the compiler can then do the ncod ful.

Parallel programming lang1|agcs—for example, the newly developed Chapel {sec Section 13.4.1‘)-
provide explicit parallel program structures. Therefore in such eases thejob ofthe eornpilerdocs not involve
defection of parallelism, but only efiicient code generation for the target parallel hardware platform.

SIMD and MIMD forms of parallelism have been discussed quite extensively in the carlicr chapters of
this book. Over the last decade and a half, with newer technology being available and greater demands being
made on systems, a new tbrrn ofparallclism has been put to use on a wide scale in applications, which has
been dubbed singfe progmm nrrrlrijrnle rrfnm {SPMD 1.

Parallelism in this case can take the form of one independerir thread ofexeerrrian per task. rogues‘! or
rrrrnracrimr so beproeessen‘. Unlike in t11c traditional SIMD model, there is no lock-step synchronization here
between the multiple threads, and there need not be one-to-one relationship between threads and processors.
We may even assume here that the threads execute the same reentrant code. Therefore the SPMD model
of parallelism has the advantages of simplicity of implementation and easy scalability, and the model has
achieved wide-spread use forcommercial and server-based applications.

rs» Mam-w rrrrit-...¢-,.a,..¢. '
' _ 65!Trends in Parallel Systems

5-‘m'¢rm processing is another form ofparallclism, proposed and developed in recent years, which has some
characteristics of SIMD as well as data flow proecssing. This is a forrn of data parallelism which relies on
high level of data locality and regularity in the proecssing of stream data, and can yield huge performance
benefits, as we shall see in some more detail in Section I3-2.4.

Each of the forms of parallelism has its advantages and difiieulties. With the background we have gained
thus far, in Section 13.3 we shall look at a few case studicsofreccnt developments in processor and system
architecture, and in program development toolsand techniques. Some ofthesc case studies are in continuation
ofthe systems studied in earlier chapters, while others are new entrants.

The important point hears repetition that the technological advances outlined briefly earlier in this chapter
have had a very important bearing on the developments in computer hardware and sofiware technologies.
As the supporting technologies advanoe Further, we shall no doubt see further innovations in computer
architecture and techno logy as well.

1 3.1.4 Stream Processing
For animated 3D graphics, multimedia, image and signal process ing applications, very high processing power
is needod—and data is processed mostly in the form ofdrrrrr firearms. Sometimes animated graphics includes
the simulation of game pk}-'s'ies', i.e. simulation of multiple objects in the scene behaving under modeled
physical laws. Other applications where stream processing can be useful include 3G mobiles, set-top boxes,
biological computations, cryptography, and database queries.

All data elements in a data stream go through the same processing stages. For example, the 3D graphical
model of a car may be made up of hundreds ofthousands of line elements or polygons, which must be
processed through the so-called remiering pipeh'm= to display the car on the system display screen. For
animated graphics, a certain number of picture frames must be processed and displayed per second, a.nd in
general each frame must be processed through the same rendering pipeline.

These huge demands made on processing capability are fora single application—e.g. graphics proces sing,
including game physics. To cater to these highly specialized needs, graphics processing units (GPUs_) have
been developed over the years, to relieve the main general-purpose processor-[s] in the system of graphics
processing load. The GPU operates in parallel with other processor orprocessors in the system.

With advances in VLSI technology, GPUs have also grown in processing power. Several research groups
and commercial producers ofGPUs have therefore sought to apply the vastly increased processing power of
GPUs to more general computing. This has led to the emergence of srreanr processing, which combines high
proecssing power, energy efficiency and programmability by exploiting the key prrnperties ofdampar¢rHeIis'm
and (firm ioeniiifv which characterize data streams.

Stream processing can be seen as a new va.ria.t1lofSlMD, in which strearns ofdata flow amongst pmcessing
irernefs; in this sense, stream processing involves also some features of data flow processing. The pmeessing
kerneis are basically software functions being executed on GPU processor cores. Multiple copies ofa kernel
execute in parallel on multiple cores—thus giving SIMD characterto this form ofprocessing.

The basic concept is illustrated in Fig. 13.6, with four kcrrrels operating on one data stream. Multiple
such sets of ltcmels will in general execute in parallel in a stream processor, to achieve proportionately
higher parallel proecssing power. With sixteen such sets operating in parallel, for example, the total number

_ _ PM‘ MIGIELH Hf" t'm'rIq|r_.\.I|n*\ ‘I _

G52 i fidvnnced ComputerI|rr.ir.i'teot|.rnr

of processor cores employed will be 64, with each of the four kemel ftmctions executing in sixteen cores in
parallel. Note that the number of data streams being processed in parallel will be sixteen.

A so-called ioeai register file is provided with each cnrc to maintain copies of working variables for
the single execution thread (or task) running in -each core. There is no multi-threading provided in each
core, but it is possible to exploit [LP to some extent within each core. Data locality plays a key role in the
design of a stream proecssing a1gorithm;strearn processing is a form of slnretturil parallelism, as defined in
Section 132.1.

Rome! ttomol Komol Kernel
function 1 function 2 function 3 function 4

l, '\‘ "3 1' 1'
_-
r

--
if

J’

I
’r‘

.4 \ '\ \
-.

\-

\- '\
\

1-
‘-t

\|___‘-‘ii. .- \-‘Ki Ir -‘Fill; ‘ _ ' ‘ _ I. ’_|___'

"'——- _____ _:*- onodata - ' ' ' ‘ "
stream

Fig. 1 3.6 Four processing kernels operating on a ihm stream

The properties of drrm pnrniielfsnr and dam i'oeai'ir_v govern the design of stream processors, since they
permit ofiieictrt USE of the ltflndwidth to IIIol't1oI'y—without the use ofhuge and expensive cache hierarchies.
Recall that cache hierarchies are designed to support any random pattern of accesses to main memory,
whereas memory accesses made for data streams are in a highly regular pattem.

Researchers at Stanford University designed the IMAGINE stream processor, which achieved tens of
Gfio-ps performartoe for certain graphics applications—with aggregate power dissipation less than lll] watts.
MERRIMAC is the name of another research project at Stanford aimed at a larger computing platform using
stream architecture and advanced interconnection networks. This research project had goals ofachicving a
high ratio of computation to communication, very high performance. compact size, high energy effieiency,
reliability, simple system management, and sealabilitylm.

Nvidia Corporationlm has long held a leading position in industry as a producer of graphics processing
units. As GPUs grew in processing power, Nvidia developed more general-purpose processors based on
their graphics expertise. They also defined a hartdwarefsofttvare platform named Compute Unified Device
:ir£“.fiff€CIIi!'£’ (CUDAJ for general purpose program development using GPUs and standard programming
languages. Nvidia named this concept GPU CompriIfng—i.e. GPUs applied to general purpose computing.

From around 20136, Nvidia have developed several multi-core, multi-threaded genera!-pzirpos'e GPL-‘s
(also called GPGPUs), which were named GeForcc, Quadro and Tesla. With substantial improvements,
Nvidia have now announced theiradvanccd Fermi architecture forGPU Computing.

The first Fermi based GPLI from Nvidia has over 3.6 billion transistors and 512 cores. Each core
executes a floating point or integer instruction per clock. The 512 cores are organized in 16 so-ealled stream
rrrui'IijJrocr’s's'ors (Shils) of 32 cores each. L2 eache is shared between the 16 SMs. The GPU chip provides six

in} 506 itftp.".-".-‘Inre-rr'inrr:c'..sfa:r,Fir:rf.c*rf:r and itftp.'.~".-"c'Ir'¢.r..'rIr.rrrfi1-rt.i_t'afr.r
l“1See hftp.'.-".-"u.'rr'M.:n t'r'd:'r;r.er'mr

Trends iri-F-nrelleliystems M ‘S3

64-bit memory interfaces, tor a total 384-bit memory interface, supporting up to a total firs GB of memory.
A host interface connects the GPU to the CPU via PCI-Express, while tl1e GigaThread unit on the GPU
sched|.|les grrnrrps afrhrearis amongst the Slvls.

A schematic diagram ofthe Fermi chip is shown i11 Fig. 13.7. Apart from the 32 cores, each SM is also
provided with 16 lnrinikrc-rerrnirs, and tour independent special function units (S FUs] to compute sine, cosine,
reciprocal, and square root function s. The cores themselves are very basic, with one ALU and one FPU each.

Compared to earlier GPLF:-; developed by Nvidia, Fermi ofi'ers improved memory access and double-
precision floating point performance, ECG support, (limited) eache hierarchy, more shared memory amongst
Sl'v‘ls, fastercontext switching, fasteratomic operations and instruction scheduli11g, and the use ofpredication
to reduce branch penalty. Threads are grouped into larger units—known as warps, blocks, grids—for the
purpose of scheduling.

Most ofthe area in the Fermi chip is taken up by actual processing clements—i.e. FPUs,ALUs, and SFUs.
This is unlike more conventional processors, in which huge cache memories occupy a greater proportion
ofchip area. This basic difi‘erence accounts for the higher processing perfonnance and energy eliieieney of
stream processors.

D D
S-M SM SM SM SM SM SM S-M SM

Ni D
SM: Streaming
muitiproeessor, with

i L2 cache i 32 cores. SFUe,
ioadfstre units,
dispatcher, local

*1‘-T '3' register fiie, 1_1 G3Cl'iG
D164-bit DRAM
interface

NI: Network interface

GT: G-iga Thread

SMSMS-MSMS-MSMSMSMSM
D D

F3g.13.'I Bio<i:lr.d§grar'nofFerrr|iGF'i.J

‘When we compare stream processing with other available technologies for achieving specialized and
power eflieient processing, the foiiowing broad picture emerges:

(i) Application specific ICs (ASlCs} have comparable performance and are power efficient, but they
involve longer design cycles and design costs, and are less flexible.

-[iii Field-programmable gate arrays [FPGAsj are less energy e"fl"ieient_. and do not allow applications to be
programmed in higher level languages.

rs» Mtflruw rrrrir ..r rm-r '1 qrr \

G54 ii ridvnnced Cumpumrirrhitcoisrm

With these advantages going for them, it is quite likely that we shall see more specialized applications of
stream processors in the coming years.

CASE STU DIES
-

13.3.1 Cray Line of Computer Systems
The name of Seymour Craylw is well-krrown in computer industry and academia for his path-breaking
innovations in supercomputer architecture, including innovative packaging and cooling technologies. The
design ofearlicr Cray vector supercomputers has been described ir| this book {see Chapter 8].

ln the next line of products, Cray computer systems combined multiprocessing with vector processing.
Cray X-MP, the first so-called nrrrfrigrroemsor srrpcreomprrrer, has been described earlier in this book. lts
more powerful successor C ray Y-MP was also a hugely successfi.|l multiprocessor supercomputer.

ln the category of massively parallel processing [MPP] systems, Cray came out with T3D and then its
more powerful successor T3E, both of which used a 3-D torus topology. The increasing costs of‘s-'LSl
processor design had by then led computer system architects to opt for proven processor designs ofother
manufacturers. T3D and T3E both employed difierent versions ofthe 64-bit DEC Alpha proecssorsl '6].

Sub sequcntly, Cray introduced the XT series of so-called .s'em'ri1Eu"r.'Linrr.t .s'rrpert-orrrprrrr'r.s. This is currently
Cray's top-of-the-line massively parallel supercomputer, and further technical details of the system are
provided later in this section.

Cray XMT supercomputer, announced in 2006, is a descendcnt ofthe Tera.-‘MTA massive multi-threading
concepts. The system uses Cray‘s own SUD MHZ, 64-bit Thrcadstorm processors, each ofwhich can support
128 threads. With as many as SD00 processors, the XMT system can deliver over one million concurrent
processing threads; total shared memory on the system, at up to S GB per node, can be up to 64 terabytes. The
system is designed to provide the very high levels of multi-threading performance needed for applications
such as data analysis, data mining, predictive analytics, and pattern matching. The system interconnect used
is Cray‘s proprietary Seafitartechnlogy, which is also used in the XTS and XT6 supercomputers {see below].
Scalar processing, I.-"CI and service functions are provided by AMD Opteron-based nodes.

Cray CXI is a lower-end supercomputer from the company which is less expensive and easier to deploy.
lt makes use of lntel Xcon processors in a cluster architecture.

'-Isl Stymfltli‘ Cl“£iy [1925-1996] is ltI1r'JWi‘i HS Ihcfirihcr q,f'.rrrpert'rJnr|rru!r'rrg, and is close I0 being it legend in this tieid. Tire
following statement attributed to him should be of interest to any student ofeoinputer architecture: An_i-one can burrs
rr_,fr'r.sr CPL". The rrr'c.ir r'.r to .ir.rrr'fr.|' u_fir.r.r ._1'.si-r.'r:r.
Seymour Cray was the chief designer oi‘ CDC ri-|5i)i], the first commercial supercomputer ever built, at Control Dara
Corporation. This was followed by CDC 7600, before Cray fotuided his first company Cray Research, which built
Cray I and Cray 2. That first company has since undergone several corporate takeovers and makeovers, and is pres-
ently established as Cray, Inc. See hrrp.-.-firn-icr-rqi-.wnr.

iml DEC stood originally for Digital Equipment Corporation, of Maynard, Massschusctics, which was at one time the
worlds second largest computer company. ii was taken over by Compaq, zmci at a later stage that company became
part oi‘ IIP. See Itrip:.-‘I-"ri.'ri'u.Lhp.r.'rrrrr.

Trends in Poreilei Systems ' ‘Z £55

ln modem computer systems, powcrconsumpt ion and packagingplay akcy role in system design. Packaging
determines not only the length that signals have to travel, but also the aggregate cooling requirements ofthe
system. Since the days of Cray 1, C-my computer systems have been justifiahly well-known for technical
innovations in system architecture, packaging and cooling.

A recent initiative in the Cray line of systems is the concept of .nti:rpn't-v: e0mp:riIing—the idea being to
adapt .t‘1.fI_'|-'fJJ"i7d parallel processing computer system to each application through innovative software. The
word fiybrrkf here refers to a system which combines the elements of vector processing, parallel processing,
and multi-threading.

Since ScymourCray developed the earliest supercomputers, almost ibrty years ago, we can diseem in the
history of successive Cray products the broad direction in which computer technology and architecture have
moved since those early days.

Cray XT Supercomputers The major current ranges of Cray supe1computers—at present capable of
reaching petallops pert‘orrnance—arc in the XT series, and in particular XT5 and the recently announced
XT6. XT5 supercomputers have reached sustained petaflops performance; one particular XT5 system at Oak
Ridge National Laboratory in the US {nicknamed ‘Jaguar’ 1, is e|.|rrently rated as the world's most powerful
supercomputer. That particular system uses sis-core AMD Clpteron processors, with a total ofover 224,060
processing cores in the system, and can reach peak performance of over two petaflops.

The brief description given below is specific to XTS, but it also serves to introduce Cray's present
supercomputer technology. Thc main goals of this technology are high computing performance with
scalability and prograrnmability. At the same time, advanced packaging, eflicient cooling, and low power
consumption have all along been characteristic features of Cray products; the OS platform employed is
Linux-based. XTS is based on AMD Optcmn processors {quad-core or sis-core} in a ED toms network which
is built using Cray's proprietary Sea?-tar interconnect.

Each disklcss compute .l'i'~l'.7II'f£’ in the network is made up of two Opteron processors, which have a shared
25.6 GB.-"sec data path to shared local memory; the local memory is 16 GB or 32 GB DDM memory provided
with ECC. Each processing core has 64K Ll instn.|ction cache, 64K L1 data cache, and 512 KB L2 cache,
and in addition the processor chip provides 6 MB shared L3 cache.

The proprietary SeaStar high-bandwidth interconnect is based on HyperTransport physical links. Each
SeaStar ASIC (application specific IC-‘j chip is provided with four 12-bit wide network links to the tour
neighbouring SeaStar chips in the 2D toms, and one link to the node itself. Each inter-node link, provided
with specially-designed link-level software, has peak bi-directional bandwidth of 9.6 GBi"s and sustained
bandwidth in excess of 6 GB.-‘ls. Dimension order routing and, for reduced latency, virmtrl cur-rfirough are
used within the built-in high-speed routers. The chip also has a dircct memory access (DM.-M engine, a
communication-cum-management processor, and a service port.

As seen in Fig. 13.8, the 2D torus network in the system can be configured with the required combination
of compute nodes, I.-‘CI node{ s], network nod-o(sj, login oode{;s] and system node~['s). Storage arrays are
connected to I/‘D nodes, being scalable with the number of [IO nodes provided; the file system manages
striping offile operations across the storage arrays. The network node[s) provide Gigabit Ethernet, 10 Gigabit
Ethernet, Fibre Channel [F11], and lnfir1iBand connections.

G55 i Advanced Computer Iirclritechnc

K“ K“ K“
(CH T CN GN CN D

I I I I

CH -‘i SN "'i LN IION

CH: Computer No-do
SN: System Noclo
LN: Logln no-do

HON: Ii‘-D node
NN: Netvtork no-do

Fig. 1 3.8 Schematic of1D torus new-rorlt in Cray XT5

For its XT supercomputers, C ray has developed its own Linux -based C.r'.tr_v Lr'n1i.\'Erit-imnmerir{CLEj. The
US kemel operating at compute nodes can be configured for different workloads. For custom applications in
which perfomtance and scalability are ofprimary importance, the compute nodes cart be run in a lightweight
kemel mode, i.e. with a very thin CIS layer intervening between the custom application and haniware.
When mnning standard applications, for which compatibility may be more important, the compute nodes
can be configtrrod with a compatible Li.nu.it layer, which provides the OS services needed for application
compatibility. A single-root file system is maintained across all nodes, which can he inter-operated with other
files systems such as NFS.

Program development software supported includes Fortran 90, Fortran 95, C, C-H-__ MPI 2, Cray‘!-; shared
memory software SHMEM, Openh-‘IF {used within a single compute node], and high-peribrmance math
libraries. Other supporting software provided on the system includes performance analysis tools which assist
in achieving better resource utilization and load-balance. Application programs developed ibr XT can be
based entirely on MPI, with each core in the compute nodes rturning an MPI task; alternatively, OpernMP
can be used within compute nodes and MPI across compute nodes.

Other critical supporting hardware and software features provided on the sy stem include system monitoring,
fault identification and recovery, checkpoint and restart. system interconnect management. system status
displays for the administrator, redundant power supplies and voltage regulator modules, and redundant data
paths to the system RAID.

Trends in Pomllcl System: _ i is-y

At the 2009 Supercomputing Conference, in November 3009, Cray announcod its high-end XTG
supercomputer system, which employs cight- and twelve-core AMD Clpteron processors to provide highcr
processing pcrformancethan XT5; each compute node in XTG can be provided with 32 GB or 64 GB ofECC
DDR3 local memory. ln future systems, XT6 can be upgraded to 12- and lo-core Clpteron processors.

Both XT5 and XT6 supercomputers are also available irl fi.|lly-compatible midrange versions XT5m and
XT6m respectively.

13.3.1 FhWer'PC Architecture, IBM Flower? it Blue Gene

Pa\verPC Architecture The first articulation and implcmcntation of the concept of reduced instruction sct
computing {'RlSC] is believed to have been by a team led by .lDl‘ItI Cocke at 1BM1'", the resulting processor
being known as IBM 801 processor. This processor latcr evolved into IBM's Power processor architecture.

In the early 1990s, IBM, Apple and Motorolamj used the Power architecture as a basis to define the
PowcrPC architecture, with the letters PC denoting rrcrjforrrurm-c cornprrfing. PowerPC has a simpler
instruction set architecture than the earlier Power archimcture; in this sense PowerP-C architect|.|rc is more in
the spirit of RISC and facilitates high performance implementations.

PowerPC prooessor architecture has been designed for a very broad range of applications—from low cost
applications, such as embedded applications, to very high performance systems with multiple processors.
Any designer and builder ofa specific PowcrPC compliant processor must therefore select the target range of
applications. About a dozen companies currently produce processors in this family, IBM being one of them.

PowerPC architecture includes oompatiblc 33-bit and -64-bit operating modes. Functional partitioning
within the processor makes it suitable for providing superscalar capability; the design aims at maximizing
proecssing throughput rather than clock speed.

There are by now dozens ofp rocessors in the PowerPC architecture family; these processors are designed
for various different applications—~as embedded processors, in game consoles, in servers and mainframes, in
high p-crfonnancc computing systems, and others. As a spocifio example, we shall take a brief look below at
the ambitious Power? processor currently under development at IBM.

IBM Power? Pmccuor IBM Power? is a high performance server processor under development which—
when it is released in Ztll-[)—is likely to be the most powerful processor in the large PowerPC family. The
processor is designed using 45 nm VLSI technology, and has about 1.2 billion transistors on a chip area which
is slightly underfi cmg. The design clock speed ofthe processor is slightly over -‘ll GI-Iz.

Power? is planned as a multi-core processor with -ll-, 6-, and B-core versions. Each core supports 4-way
simultaneous multithreading [SMT]. A system will in general consist of multiple circuit boards, each ofthcm
with multiple processor sockets.

As we have discussod above, bandwidth becomes a critical requirement in supporting multi-core, multi-
socket and multiprocessor systems. To address this requirement, each Power? processor has a pair of
4-channel DDR3 controllers, to sustain 100 gigabytes per second ofmemory bandwidth. The large 32 MB
L3 cache uses so-called embedded DRAM technology for reducod chip area and power consumption.

L] Tl See .lr1‘l§rJ'.'.-‘I-‘|»l.'lt|.'1t|.:ill1nr.c0nr. The interested reader truly soc The E-w.|'m‘r'0n of'RI5(' 'lZ'c.irn0-Ir‘:-g\= at IBM‘, by J. Cooke and
‘st Marlcstcin. LB-M Journal ofllcscarch and Development 34{']):4 I I, I990.

513] See ll:Il'p.'.~f-’n'n'nL,rr£JHte':0r;{. For the purpose of this brief case study, we tool it Ls not essential to dtscuss in detail the
differences between Power and Po\vcrPC instruction sets.

rt».-Mcfirn-w Hlllr ..t- our '1 qt; \

G53 ii Advanced Computerirrhitedsrm

To support superscalar operations, each Power? core has twelve firnctional units: two integer unitzs, fbtn'
double precision floating point units, two loadfstorc units, and onc each of decimal floating point tmit, vector
unit, branch unit, and condition register unit. The decimal floating-point unit addresses the needs of typical
main frame applications.

Within the processor, afler the decode stage, instructions are dispatched and tracked in bundles which
occupy six time slots ofthe processor clock. The idea behind this feature is that the hardware bookkeeping
which is required for tracking instmctions during their execution is thereby simplified.
IBM Blue Gene IBM Blue Gene refers to a series of massively parallel supercomputers being designed
and built mainly by IBM, but with active support from the US Government and academia. Blue Genet"L, the
first in this series of supercomputers, has already been delivered at a few sites and has been in operation.
One key targeted application ofthis supercomputer is in carrying out hiomolocular simulations to study, for
example, the folding patterns ofprotein molecules, which have a bearing on their firnction.

Targeted peak performance ofthis supercomputer is thcperqflop region, i.e. 10' 5 floating point itistrttctions
per second Since per processor performance is in the range of gigaflops, it is clear that petaflop range
performance can only be achieved with a large number of processors operating in parallel.

A computation node in the massively parallel system has two cores of PowcrPC 440, with shared on-
chip L3 cache. lnter-processor connection network has a basic 3D torus topology, but two other networks
are also provided—one for global communication and another for barrier synchronization. Each core in the
system runs very lightweight Linus OS with a singleprocess. Processors can be partitioned amongst multiple
applications, with the additional benefit of improved fault isolation. It is noteworthy that standard Linus
applications such as MySQL have been run sucoessiillly on the system.

A single Blue Gene.-"L cabinet houses up to H724 computation nodes, while thc system can host a maximum
offi5,53t‘i (i.e. 2'5] computation nodes. Processor clock speed is Tflfl Ml-1z—kept glativgly Iggy to r Eeglgcgi
power consumption. Power consumption is an important issue in such MPP systems, since a reduction in
power consumption allows denser packaging, and also reduces overall power and cooling demands.

The design of Blue Gene has been recognized for its many technical innovations, and the supercomputer
series is likely to provide several landmarks in the develop ment ofhigh performance co mp uter systems. After
Blue GeneIL, subsequent and more powerfiul supercomputers in the Blue Gene series are designated with
letters P and Q. An esplicit design aim is to achieve higher computing performance per it-mr, and thereby
allow systems to be built with larger numbers ofprocessors operating in parallel.

1 3.3.3 Tilerah TILEG4 System
‘v'LSl technology today allows the design and fabrication ofchips with over a billion transistors. 5:t-'srerrr-mr-
rt-chip {SoC] is now a reality, but the question is how to divide the on-chip resources amongst the iirnctional
blocks and the vital interconnects, which extend both within the chip and to external memories and interfaces.
We may say that tl1e basic question is how best to architect a system. To understand better the design trade-
ofi's involved, we now look at an innovative new architecture ofa system-on-a-chip.

Tilera Corporationl '9] is co-founded by MIT Professor DrAnant Agarwal, who is considered a pioneer in
developing the system architecture exemplified in TILE64. Earlier, Dr Agarwal was closely associated with

ii Q] See fl!rp.'.-‘I-"tt'u.'u.:l‘r'lcra.com

Trends in Parallel 5)-stem: _ i ‘SQ

thc.-Mcwifi: project at MIT, a scalablc multiprocessor syst-cm based on cac-he co.Fn'rt'nr‘ nor?-rrniffbrm merrimfi-'
access {ccNUM.-fit] dcsign, making usc ofsinglc chip processors.

TILE64 is a 64-corc processor for cmbotlclcd applications, it| which cach chip consists of a regular
S >< B grid offifes. Typical cmbcdclcd applications ior which TILE64 is well-suit-cd arc thosc which are vcr}-'
highly computation-intcn sivc, such as nctwork routcrs, cnctyptiottfdccrj.-'ption, vidoo applicatiotts, and signal
processing.

As sccn in Fig. 13.9, each rife on thc TILE64 chip has its own gcncral purposc prooessor com, L2 cachc,
and a non-blocking mcsh router to providc for communication with othcr tilcs on thc chip, and for ofi'-chip
data traflic with main memory, IEO devices and networks. The name given by Tilera to this on-chip mesh
interconnect is iMcsh.

TILEG4 is iiibricatcd using 9DnmVLSl tcchnology, and n.|ns at spccds ofup to 900 Ml-Iz.

_ - — - “ ' _ ' _ H _ _ d F -

/1 _ one 'tiIe'
I

Mash co-mentions G If
to neigboring __r
tiles __,___--'

\
\

N it
'\ it

\‘“\
\ "1

\ "I-.
X‘ "“~~‘ Legends:

'\\

it,‘ ,1 P: proeessors
‘~-.__ j C: 64KB L2 cache

“--__ ’ R: Mash router
-_ -

I__ I
h ‘ — _ __ I-.,.___-__,. I-.__ ,.

* -_ _ _ I-'

Fig. 1 1.9 -One tile in 1:heT|LEi5-4 system-on-a-chip

Thc prooessor core in cach tilc is a relatively simplc RI SC-stylc processor which do-cs not, for cxantplc,
provide for out-of-order cxccution of instructions. Each processor core has thrcc functional units: two 32-bit
intcgcr AL Us and a load-store unit. Thc design emphasis in TILE64 is not so much on thc processor, but on
thc iM-csh-hascd system-on-a-chip architccturc, cachc managcntcnt, support for high data tatcs nrquircd to
main memory, and othcr critical clcmcnts which impact s_}m‘cm ;J¢=rjfrJr'na1m-e.

On an L2 cachc miss, thc processorchccks thc othcr on -chip L2 cachcs rm thc n-ccdcd data, hcfotc making
a slowcr acccss to main memory. In this scnsc, thc comhincd L2 cachc mcmotics ofthc 6-'1 processors can hc
vicwcd as flotming an L3 cachc.

According to Tilcra Cotporation, “iMcsh ptovidcs cach tilc with mon: than a tctabit ofhanclwidth, ctcating
a more efiicient distributed architecture and eliminating the on-chip data congestion”. In fact ilvlcsh consists
offive independent eemmtuti-cation structures, which provide fer. respectively:

' Commlmieation between user pruocsscs.|"tl'ircads rmming on tiles
' Con1n1u:|:|.icatio|1 with 1/O devious

_ _ .- I.‘ IBM‘ n¢r.q|r_.u|»rs

GHI Ii rlldvnnced Cumputerflrdfltirctlrre

* Oonnnunication with off-chip main memory
* TiIe=to-tile cache transfers
* Low latency interconnect for streaming data

‘ ‘ ' DRAM,
|_AN, and
HO

J"

n555555c 55555555 55555555 5555555: 5555555: 55555555 5555555: 35555555

I’
I

I
IaI

I

IL
JI

r
1

IJ

oomn,
um, at-is 5*‘ "ms-
no - -. shown

without
Wleeh

' Interfaces

es. _ , __ --",lnterfae

Fig. 13.10 TILEG4 sysoem-on-a~chdp

Figure 13. I'D depicts the architecture ofthis 64-core system-on-a chip.

13.3.4 Sun UltraSparcT2 Processor
Starting from around the mid-1980s, the concept oi'ren'ueer1' insrrrrerian set computing (RISCI began to be
more wikly known, following the work done by David Patterson at the University o1°C-alifomia, Berkeley,
and John Henncsscy at Stanford University. The work done at Berkeley led subsequently to the development
of the Spare processor by Sun Micm_systemslmJ in the late 1930s.

The basic idea ofRlSC is that, with a nsrfrreerfinstruction set, a processorean in fact perform more useful
work per second. The two key elements of processor architecture which make this possible are the instruction
pipeline and the cache memory [which in today's processors may be organized at L1, L2 and L3 levels].

The original Spare processor is a 32-hit FLISC processor with load-store architecture, relatively simple
addressing modes, and register-to-register arithmetic.-"logic machine instructions in three-address forrrtat.
Separate registers are provided for integer and floating point operands. Ofthe 32 integer registers, some play
a special role in passing arguments during i'i.|nction calls from the calling to the called i'i.|nction.

UltraSpare is the 6-'1-bit enhanced version of Spare, and UltraSparc T2 is the newest mrrfri-mire, s,1-'s1tem~0n-
rr~e.Fir'p version ofUlrraSpare with extensive on-chip support for multithreading, networking, L-‘CI, and other
key filnctions.

For increased processor performance, one design option tor processordesigners is to maximize in.srrrrerion
issue rare by increasing the number of stages in the instruction pipeline. The idea is that—with each

-mi See hrrp.-mi-it-»n.run.¢-one. Betinre Spore, the eompmiy used Motoro-la’s 6BDxCI series proeessors in its worl-zstritioris.

Trends in Parallel Systems L ‘bl

pipeline stage doing relatively less work in a clock cycle—it is possible to drive the processor with a highcr
clock frequency. However, the problems of pipeline flushes and stalls do not go away, and the total power
consumption of the chip increases rapidly with clock frequency. As a result, total power consumption ofthe
chip becomes a limiting factor in achieving highcr performance.

ln this connection, the iollowing observation is ofinterestp '3:
Po n-‘er rind memmjv irrrcnci-' considcrrrrions place riddirianrrl obstacles to impro ving single-IFrrcra:!

p€'.rf,il-iJ.r‘.|'fl|r‘JH|1'-E’. Wirifc rcccnr‘ mrempm or i.m,oros-ingsingic-Ifircrafpcrjfisrmrrncc, through even rfccper pr'pe!ines,
ha "re ledro irrrrircssivc cfnck_frt-qrrcncics, these c1nckfreqrrcncr'cs kn vc not rrrrrrsfrrrcrz’ imo rairoronsrrrrbfv better
pcrjfornmnce over Fess rrggressive rains ignsz

UltraSparc T2 and its predecessor UltraSparc T1 are designed to achieve highcr processing throughput
by adopting a different strategy. The architecture of these multi-core chips is designed for those highly
demanding applications which e'xhihit a large degree ofthread level parallelism {_TLP), but not necessarily
much instruction level parallelism {ILP}. The strategy implies that the compute time and memory latencies of
multiple executing thrcad.s are interleaved in time, with increased total throughput.

UltmSparc T2 has eight processor cores on the chip, with each supporting eight-way fine-grained multi-
threading. Overall, therefore, the chip supports sixty tour parallel threads. The chip also contains a crossbar
switch, shared LE cache, and extensive support for hi] and networking, and therefore it is in fact asi-‘sr‘crri-rm-
rr-chip (SoC 1. Since the threads run independently of each other and share hardware resources, each thread
behaves as a processor in its own right; thus the single chip can support 64 virrrrni s_)-'srcrrrs.

Figure 13.11 depicts schematically the architecture of UltraSparc Tl

PTOOGSSUT OCIFGS L2 GBGHG

tor:-in

“MUM

:r|.'§---Elk

ooret] l lbankfll
I ooret hai'|k1

I oo|e2 t|ank2

_ oonea nanka

oo|e4 t|ank4

oonafi _ tiankfi

oorefi bankfi

mm? bank? f‘_ systernintorfaoe

{Cl lt11(.'£il3I‘BB flBiWO|1t

unit

ti main
memory cub-
systems

tn ID
nus

Fig. 13.11 Archltocnmc ofUir:raSperc T1 system-on-a-chip

"Ml From (.'!ir:;1 i'Jr.rr'.|‘r'1'.firver.rdr'rr_t;.' U‘p;mri‘rrnr'1'r'es and (.'haHenge.r, by L. Sp1‘fl.Clilt:'tI and S. G. Abraham Of S1111 M1Gr05]fSl2TI1S,
IEEE International Symposium on High-Pc1'l'o11na11oc Computer Architecture (I-IPCA-2005}, 2005

rt» Mam-w nrmr nr rm-r '1 .I;|(\

G51 ii fidvunced Cemputerirrhitedlrm

The T2 chip has an area ofjust undcr3.5 emz, with about SOD million transistors on it, and is fabricated
using a VLSI process of-65 nm litre width. The chip can operate at 1.4 gigahertz with 1.1 volt supply, and has
IE3] pins on its underside for connection to the rest ofthe computer system. Nominal power consumed by
the chip is 95 watts; on the basis of power per em: ofarea, this is greater than that ofan iron. However, on a
per thread basis, this power consumption works out to be quite low.

Each ofthe eight processing cores on the T2 chip has its own data paths, register sets for multiple threads,
two integer operation units, and a floating point unit. In addition, each core has hardware provided for
cryptography and graphics, and has support for eight-way fine-grained multi-threading. These hardware
resouroes, and the per core Ll instruction eache and data cache, are shared by eight throads executing on
each core.

At the level of the system-on-a-chip, other hardware resources such as the 4 MB L2 cache are made
available to the eight cores by means ofa crossbar switch. For faster access, the L2 cache is organized in the
form ofeight parallel banks. Memory interfaces, l-"O interfaces, and networking are also shared amongst the
cores. Networking capability consists oftwo network interfaces of IO gigabits.-‘second each.

Design of UltraSpare T2 is targeted towards compute-intensive applications with a high degree of multi-
threading. Apart from back-end servers, these include network devices such as packet routers, switches for
local area networks, graphics and imaging applications, and other similar applications.

A unique feat1.|re of the Ultrafipare T2 chip is that its co mplctc design has been made available on the web
to researchers and developers Lmder an ‘open source‘ arrangement. The stated objective behind this decision
by Sun Mierosystems is to encourage innovations around the world in processor design and applications.

13.3.5 AHD Optemn

Alvi Dim, a major manufacturer of semiconductor devices, is known for its proeessors which are instn|ction-
set compatible with Intel's x86 family of processors. Opteron is a high peribrmance oil-bit processor irom
AMD which maintains instruction set compatibility with the 32-bit x86 instructions without any performance
penalty.

.-\MD‘s 64-bit instruction set architecture provides for 64-bit operands, 128-bit operands, and 6-1-bit
virtual addresses. The development ofsueh a 64-bit extension ofthe lntel x86 architecture is targeted towards
applications which require huge amounts ofmemory, examples being high performance servers, workstations,
database management systerns, and engineering design tools. The processor also provides integer and floating
point vector operations for graphics.-‘multimedia types of iirnctions, some of which are known as srrerrming
SIMD exrensions { SSE]; in this category, combined mu1ri§r.1!_1-'-rrrfd as well as matrix operations are provided.

Clpteron is characterized by a fairly large split L1 cache, with 64 KB ibr instnrction eache and 6-'1 KB for
data eache. L2 cache is either 512 KB or 1 MB, depending on the model, while the shared L3 cache goes
up to 6 MB on the newest sis-core models. Since Z1303, when the processor was introduced, it has been
implemented using the successive 130 nm, 90 nm, 65 nm and -'15 nm VLSI teclmologies.

The proeessorarehiteeture is 3--way supersealar—i.e. up to 3 instructions can be completed per clock cycle.
.'i',rmeuir1rive and 01:!-o_,r‘lorrr'er eroeuriion is prov ided, as is register renaming, to remove apparent dependencies
between instructions in the instruction pipeline.

pl See J:rrp:.-".-"n.-wn.:anrd_eom.

Trends in Poreilel Systems ' ‘Z H3

Support for multiprocessor systems is provided on tl1e basis of eache coherent tron-unifflnrm mam-my
access {'ccNLFMA], rather than the symmetric multiprocessing (SMP) design with a common shared
memory. A processor can access the memory ofanother processor, and sophisticated snooping hardware is
provided to ensure cache coherence. Compared to SMP system s, such systems can support a highcr degree of
multiprocessing without nrnning into the memory bandwidth bottleneck.

Unlike in the Sun UltraSparc T2, there is no hardware support in the Optcron processor cores ibr multi-
threading, reflecting the different design objectives behind the two proeessors. Multi-core versions of the
processor have been manufactured with up to six cores per chip. HyperTransport links -[see Section 13.1.4]
are used both ibrprocessor-memory commrmication and for inter-processor communication.

As seen above, Cray has incorporated the Clptcron processor into their XT series of supercomputers,
which can support configurations having thousands of processors. Some of the world’s most powerful
supercomputers are based on this Cray architecture using large numbers of Opteron processors. Sun
Microsystems uses the Clpteron processor in its high-end servers having large processor counts.

When we compare the design ofthe Opteron processor with thoseofTlLE6-'-1 and UltraSpare TE proces sors
(see above], a natural question arises with reference to the basic design goals of any computer system:

Which ofthe following two models of computation should the system architecture target‘?

(ii A relatively smaller number of ‘heavier' threads of computation, with one thread nrnning per core, or
-[ii] A largernumberof ‘lighter’ threads ofcomputation, with multiple threads running per core.

Clearly, the choice depends on the class of applications for which the system architecture is being
designed. Optcron, UltraSpare T2 and TILE-64 represent difiercnt possibilities in the number of execution
threads t-‘error the processing power per thread. The architects ofa computer system, knowing the targeted
application load, must make the right choice.

13.3.6 lntel Pentium Processors
lntelllu SUBS, used in the original IBM PC, was a 16-bit processor with IO-bit physical address, i.e. total
physical address space of 1 megabyte. Logical memory space consisted of ibur scgmcnts—namcly, rode,
dam, smelt and errrrr segments. A 16-bit segment oiiset meant that each segmentwas limited to 6-'1 kilobytes.

As ‘v'LSl technology advanced, successively upgraded members of the so-ealled 1136 processor
family—S'l"i2B6, B0386 and B'D4E6—had larger memory address space, 32-bit word size, higher clock
frequencies, on-chip cache and memory management functions, and additional instructions. including floating
point instructions. Successive models ofthe immensely popular PC were built around these processors.

Therefore, maintain ing bnekn-'rrr'n' r-orrr;Jrrribifi1[_1-' of instruction set with earlier proces sors ofthe x86 family
has always been a non-negotiable design requirement of any new processor ofthe iamily, since all software
written for earlier versionsofthc PC had to run with its subsequent version s. This critical business requirement
pu shod lntel processor designers to the limits ofthcir ingenu ity—sinec they had to achieve higher processor
performance with every model, while maintaining at all times iirll backward compatibility of instnretion set.

With rapid advances in VLSI technology, as it became possible to build enormously more powerful
single-chip microprocessors, the spotlight turned on the critical role ofthe instruction set in achieving high

:23] See Iti‘Ip:.1'I-"u.'u.'u.:fnIei.conr

Thu‘ Ml.'I;Ifllb' HI" l'n¢r.q|r_.u|»rs -

Gil i illdvnncod Cumputcrllrrlsitqrclsrre

perfnrnranee. Benefits ofthe RISC approach soon became clear to prooessor designers, and all new processor
designs benefited from the new ideas. But the only way for the lntel x86 family of proeessors to maintain
backward compatibility in instruction set was to continue with its CIS-C approach.

Designers at lntel pushed the fi'-ontiers of\-‘L Sl technology to achieve higherprocess-or performance while
maintaining baclrward compatibility. The original Pentium and ins successors were introduced as advanced
sequels to the lntel B0456 processor Even with the inherited C [SC instruction set, these processors combined
standard RISC design techniques in their intemal arehitecture—such as a micro-ope.r.oIion pipefine, multiple
functional units, and out-of-order sequencing.

Figure 13.12 is an overview of the architecture ofthe Pentium 4 processor.
The processor has two levels of eache In-emoty—Ll and L2. The faster but smaller Ll eache is divided

into S kilobytes of instruction cache and S kilobytes of data eache, while the larger L2 cachc is a combined
instruction and data cache of256 or 512 kilobytes, depending on the processor model. The main memory
may also be provided with an additional ofi'-chip L3 cache.

The Feteh1'De=Bode unit {marked ‘N in the figure) is connected 113 the L1 instmction eache. This unit
fetches and decodes sueoessive instmctions, producing several so-called niiem-o;'Jerrtrions corresponding to
each machine instruction. These micro -operations are forwarded to the nliero-raperrition brgfier {marked " B‘),
in which micro-operations produced by multiple machine instructions are buffered.

to main memory

L2
eaohe

¢ to If-D

i Bus Interface uolt I

L1 ‘I’ L1 ‘D'

Exec ute unit

-"'
‘ ALU! US

I.-"'— "'--,' F Qlflhtf F PU C ll.-"'— "'-._1°] Decode . “M “"12"”

Reservation station. ~, |
I, Micro-0-p'e_f3tl<'Z_rfl buffer I

Fig. 13.12 Internal architecture of the Pentium 4 processor

For execution by specific firnetional units—sueh as the integer ALU or the FPU—micr0-operations are
forwarded to a resen-'orion station. An operation is performed in a unit when its operands become available

FM Mefiruw H'f"l'nrt'q||;1rtlt\'
Trends in Parallel Systems ‘ i‘ I565

and the iilnctional unit becomes free. Execution of micro-operations need not ibllow the order in which
machine instructions are fetched Data load and store operations on memory are carried out by the found unit
and store unit, respectively, which operate as iirnctional units connected to the Ll data cache.

The reservation station and the iirnctional units together make up the execute rm r'tofthe processor {marked
‘C’ I. Within this execute unit, hardwired control is provided for the simpler instr|.|ctions ofthe processor,
whereas complex instnrctions ofthe CISC type are provided with microprogram control. This is one of the
ways in which RI SC and C [SC approaches have been combined in the imernal architecture of the processor.

‘When all the micro-operations of an instnrction have been performed in the execute unit, the instruction
is committed (or retired) to main memory. This work is carried out by the eommit rmit (marked ‘D‘], which
ensures that completed machine instructions are committed in the order in which they are fetched, as the
programmerexpects.

Fetefr.-“fleeride rmit -[_‘.-‘L’ 1, execute 1mr't{‘B'j and eomrrnt urrr't {" D‘) operate in parallel, sharing the common
rrrr'ero~operotion brgfirer {‘C"j. Thus thesethree units can be said to form a ‘ high-level‘ pipeline through which
instructions pass. But each ofthesc units is also implemented as a pipeline, so that multiple instnlctions can
be in each ofthesc units at onetime, each in a difierent stage of processing. Branch prediction logic, which
is required with the instruction pipeline, is also provided.

Memory management functions on the processor provide support for virtual memory using paging and-"or
segmentation, as well as memory protection for user programs and the operating system; segments may be
shared between running programs.

PARALLEL PROGRAMMING MODELSAND LANGUAGES

1 With all the recent advances in the han:lware architecture of high performance computer
systems—of which we have seen a few examples abot-e—it is still a major challenge to map

an application program to make efficient use of the underlying hardware. Inability to achieve this aim results
in the gap between theoretical peak peribrmance ofa system and the actual application performance achieved
in practice.

To allow software designers to build parallel applications, one possibility is to provide so-called porafiel
constructs as extensions to sequential higher level languages. Chapters IO and ll of the book discuss some
ofthe relevant issues in this corrte.st.

But another exciting possibility is to design a new parallel programming language from first principles, to
provide parallel programming constructs which are based naturally on the way in which parallel algorithms
are conceived. We shall now see an esample ofthis approach, a new parallel programming language being
designed at Cray.

13.4.1 Parallel Programming Language Chapel
Chapel is a new parallel programming language being developed by computer scientists at Cray Research.
The word Chrrpef has been derived from §|tI$‘c‘flfll=.’ jig}:-rgrrmlrrctit-'it_r [rmgrroge—hy taking the first letter ofeach
ofthesc words and inserting a couple ofhelpiirl vowels. The project is currently at research and developmem
stage, in which several Universities and research centers are collaborating. The Chapel developer team
clearly indicates that it is open to work with other computer scientists interested in parallel programming.

_ J1? lmrJI||r_.u|i¢\

G55 ii Advanced Cumputerlrrrhiteenne

Chapel isone ofthree such parallel programming languages being developed in the US tnrdertheprestig ious
High Productivity Computing Systems {l-IPCSJ program, the other two being X10 being developed by IBM,
and Fortress by Sun Microsystemsmi.

The specific goals behind the development of Chapel are: programmer productivity, programmability of
parallel computers (imp roving overtheolder parallel programming models], better portability, and robustness
ofthe parallel programs developed. Target architectures forthe parallel machine language programs generated
using Chapel are multi-core systems, computing clusters, as well as special high performance computing
platforms from Cray and othervendors.

Chapel is intended for general parallel programming; it provides high level abstractions for data-
parallclism, task-parallelism, and nested parallelism. The aim is that the language should allow all the broad
types of software parallelism to be expressed, and should be targeted towards general levels of hardware
parallelism.

Chapel provides gfobrri-vien-‘abstractions, i.e. program structures which allow the source codeto describe
the computation as a whole—rather than parallel iiagments {such as processes or threads] that must be
somehow made to communicate and work together. The language provides for so-called nrrrfti-resoirrtion
desr'g:n, which means that the programmer has the choice of using higher level or lower level abstractions.
Control of locality is provided, so that data and computational threads can be placed at specific locations
within the parallel processing sy stem.

Programs written in a language sueh as Chapel do not overtly depend on MPI {or similar] library of
comrntmiration or synchronization functions, since the semantics ofparallcl computations are provided in
the language itself.

Overt use of lower level functions in a program—such as those in MPl—does not hide communication
and synchronization mechanisms; such lower level functions thereby complicate programs and make them
error-prone and diflicult to maintain. Compared to Chapel, parallel Pfflgtflmming using MPI functions can
thcreibre be thought ofas analogous to assembly language programming.

Language Feature:

Like C or JAVA, Chapel is a block-structured, typed language with imperative statements. Object-oriented
programming features are provided—similar to those in C or J.-°t’v'A—but Chapel programs can also be written
without using these features; explicit manipulation of pointers is avoided. Parallel programming features in
Chapel are based on the features earlier introduced in ZPL, l-IPFESJ and Cray's own parallel version of C.-"
Fortran developed for their l‘v1T.-it systems.

(cl) Dora Pnrnleisrrr Data parallelism is supported with the use oi'rfonmr'ns, distributed domains and arrays,
and iterators based on index sets. In the example below, D is being defined as a 2-dimensional domain with
integer index values nrnning front l to 4 and l to S,respectively.

var m = J, n = E;
var D: domainti] = :l..m, L..n];

:2“ For 111011? intbrmat ion, see frttp.'.-'i"¢'hrrpet.r.'rr.rs'.com. trttp.'.-".-it"! I‘?-lung:-org. mid itttp.'.~‘ii:rrrriec'tfortrt:.'r.s..\r.rn.com
:35] See rlrttp.'.-".-"rt'n'u.L-r.'.s_ u.rrxhington.e'rJ'u.~'i't:.sean.'.ir.-‘hp! and tittp:.-".-'ll:|;r[fl'rie'e.edr.r.-"

Thu‘ Ml.'I;Ifllb' HI" l'n¢r.q|r_.u|»rs
Trends in Parallel Systems i- ‘£7

Now one or more arrays, with elements ofany base type, can be defined using D as the lmderlying domain
which defines the array structure. Fer example:

var A, 3: [D] real; If Note use of domain name D

Thus an anay is created when each clement ofthe tlnderlying domain is mapped to a data element of the
base type, which is real in the example above. A sub-domain of a domain can also he defined, as in:

var InnerD: suhdomaintbl = j2..m—L, 2..n-LI:
var sma;LA: jlnnerfij rea;;

The relationship bclween domains D and InnerD is clarified in Fig. 13.13.

(-- domain D

{do-rrnn |nnerD

Fig. 1113 Rehflonstslp between dormlns D and Inn-erD

Domains or sub-domains can he used to govem iterations, as in:

for ['T_-,3‘) InnerD do
A[i,j] = 1 + jILD.D;

A shorthand notation for this same iteration is:

jri,j1 in :ss@:nj A(i,j] = 1 L jfL0.0;
Thus domains 5llPPD1'l data parallelism by defining index sets, based on which arrays can be defined. and

in controlling sequential and parallel loop iterations. Both data arrays and loop iterations can be disrriburerl
across the multiple processing elements in the system.

An index set can be ofone ofthree types:

(it .»tri1hnieri1- indices {seen above) define Cartesian mptes, and are similarto integer indices used in other
progtarnrn i11g languages; an arithmetic index can optionally be made smtied or sparse.

{ii} Assn;-iurii-e indices have arbitrary values which serve as keys to hashed structures.
(iiij Opaque indices are anonymous, in the sense that nothing is said about the elements making up an

index set; such indices support the concept of unordered sets of elements.

Just as firnetions are defined, iterators can be pre-defined to yield suoee-ssive values from an index set.
Such iterators can then be used for govecrning loop iterations which range over the defined index sets. A pre-
defined iterator can be used wherever loops with that particular iterative structure are needed in the program.

rr.-.- Mcfiruw Hill r'm.-;n_.t-|-rt i

an"ii- ' re.-mm: dmptmiwnra
{bl Task Porollelhm Task parallelism is supported with the use of high level language features as well as by
lightweight synchronization operations. Synchronization variables are provided as a special type.

For example, readFE I] operation on a synchronization variable causes the calling process to wait until
the variable is full, and makes the variable em,rJt‘_v after iLs value is read by the process.

Similarly, wrir.eE‘.F [J operation on a synchronization variable causes the calling process to wait until
 ,and makes the \~'ariablc_,r‘irl'i' alter its value is written.

Task parallelism is supported in both stn.|ct|.|red and unstructured forms. The keyword begin initiates a
separate thread executing the specified statement, as for example in:

begin r'.mt-Iy'I‘nread [];

No join operation is implied when a thread is initiated using begin. Structured thread invocation is
supported by, among others, the rzobegiri statement, as in:

cobegin {
my'Z‘loreacl[l],:
I:1y'I":ireael (21;
n1y'I‘hrc:act[3];

'1

Note that here an implicit join takes place at the end ofthe coloegin block.
The statement co feral; executes loop iterations in parallel threads, with an implied join, as in:

coforali i in l..numThreads i
myThroad[i]:

As against this, the statement forall. implies that iterations may be executed in paralleL depending on
the distribution of the concerned domain:

feral; [i,f] in Ionorfl do
A[i,j] = 1 ~ jflD.D;

Concurrency can be inhibited explicitly, based on conditions specified. Amour operations are supported.
An atomic opcration is ccne which, when performed within one thread, appears atomic to all other threads in
the program—i.e. they cannot any partial result produced by the atomic operation.

When a scalar operation or function is applied in parallel to all clemems ofan array, the operation issaid to
involve pmmnrrirm. Promotions are executed in parallel, with an implicit forall controlling the execution.
Given arrays A and 3, a simple example of promotion is:

3 = 2 * A:

‘When an operator is applied to array elements to obtain a scalar value, the operation involves reduction
(see Section 13.2.2). An example ofreduetion in Chapel is:

sum = — reduce A: If find the sum of all elements in A

Trends in P-nrellel Systems ' i Iggy

Simple syntactic notation is also provided in Chapel for domain and array slicing; the definition ofdomain
I nnerfi above is an example.

As mentioned above, loop iterations are governed by domains or iterators; and, as we know, loops provide
huge potential for parallelism. Therefore several statements are provided in Chapel to specify the mode of
loop parallelism to be utilized.

As in C or JAVA, a for loop generates a single tl'|read to execute all loop iterations. A -:ofora;'_ loop
generates a separate thread tor each loop iteration. The third variant is a fora;; loop, in which some
numberofthreads are created tbrthe loop iterations, as determined by the loop iterator expression, or by the
domain or array distribution.

A special type in Chapel known as Ioctrie is used to specily an architectural unit of locality ofproeessing;
cach locale is understood to have processing and memory iirnctionality. in a system, this may refer to a
processing element (PE), as we have used the term in earlier chapters, or even a multi-core processor.

For a pr-ogram running on N locales, the locales are numbered from D to N-l; execution of the program
begins with one task rurming on loeale O. The number of locales available to the program is spoeifiod on the
command line.

The statement:

on Loc { statements }

causes the specified statements to be executed on the specified locale ‘_-cc. The special locale named ‘ hero‘
refers to the locale on which the reference is made.

A n‘i.sIribnrr'on is a mapping from domain or array indices to locales—i.e. it is the basic mechanism of
achieving data distribution across the locales. A ubiquitous variable can be created, with the semantics that
each locale has its own copy ofthe variable, i.e. the variable is replicated on all locales.

Chapel programming language has initially been implemented using Chapel-to-C compilation, followed
by standard C compilation and use of support libraries. lt is freely available as a download for research
pmposes and/or for contributing to its further development and refinement.

in tl'|e earlier chapters of the book, we have discussed at some length topics such as e0m;Jfl'er-rrE'IeeIed
parrrHel'r'sm and rf¢=pertrfenee eheefing n-‘Flinn arrrrt-' rqfen'nees' in tr Ioop. it should be noted that, when a
global-view parallel programming language such as Chapel is usecL the function of the compiler changes
sub stantially.All the data and task parallelism in the program is now made evident in the program at a higher
level, and therefore nirreerion QfpnrnHel'r'.sm by the compiler is no longer the primary issue. The main goal
of the Chapel eornpiler is to efficiently map the defined parallel semantics of the source program onto the
underlying parallel process ing hardware.

13.4.2 Function Libraries for Parallel Programming
Smndardized iirnctions which support a parallel programming paradigm offer a practical alternative to
programming language extensions, beear.|se they can work with a range of programming languages, sueh as
C, C-I-F and Fortran. Since these sequential programming languages have already achieved a Iegtrer-' position
in the computing profession, perhaps inevitably the standardization of parallel programming paradigms has
become partly separated from issues of language definition.

_ Par MIGIITLH Hf" l'ml'JI||r_.u|r¢\ :

G1“ i Advnncedlfinmputcrtltrrlrttcenrre

We now look at several such standardized models of parallel programming, two based on the messago
passing model, one on shared memory multiprocessing and one on sofiware multi-threading.

Menage Passing lnterfirrco [MPH Message Passing Interface {_M Pl limb] is widely used to build applications
for distributed memory as well as shared memory architectures. As we know, in the message passing mode of
interprocess commtnricatiorr, message data moves from the address space ofone communicating process to
the address space of the other communicating process, over the underlying communication layers.

The message passing operation requires both the communicating processes to issue appropriate function
calls. Typical point-to-point communication under MPI is carried out u.sirrg the basic send and receive calls
MP1_Send and .-l-t'PI_Ree\-'; but, as we shall sec below, MPI offers much additional functionality a_s well.

lt could be argued that interprocess synchronization and communication achieved through shared memory
opcrat ion s—such as rest-trnrf-.set—is more efiicient than message passing. But the fact remains that message
passing offers a higher level abstraction for building parallel applications which is more robust against
processor speeds, types of interconnects, and so on. Message passing primitives can be provided on both
distributed and shared memory architectures, whereas it is not really practical to provide shared memory
primitives on a distributed memory system.

MPI supports the general MIMD model of parallel processing, as well as the more restricted sirrgfc
program, mnfripiedrrrn [SPMD] version of parallelism. The interface is versatile enough to support a high
performance computing platform, a lower cost network of computers, or even modem multi-core chips.
Amongst the original design goals of MPI are source eor1ie;JorrrriJil'i1'_t-' and lrrrtgnnge irrrrbperrrrirnee.

The first version of MP1, known as]'vlPl l standard, was published in 1994, supported by a consortium of
computer scientists and vendors. It is defined as a specification for a library of functions, available to vendors
and other groups for implementation. MPI 2 standard was published in 1998, with provision f-or additional
features such as dynamic process management, remote memory operations, and parallel l.-‘O.

The underlying communication layer for MP1 is often TCP.-‘I P, although that is not pan of the specification.
Given the nature of the message passing mechanism, support for heterogeneous environments is a major
natural benefit of the MP] platform.

Apart from basic interprocess message passing and synchronization, MPI provides several additional
facilities forthe design of parallel applications, such as:

' broadcast, gather and reduce operations
' barrier synchronization between processes
~ user-defined topology over the processes
* user-defined data types for C. C I t and Fortran
* synchronous and asynchronous modes of communication
' buffered and unbuffercd communication

An MPI application consists of multiple processes. Amongst these processes, various modes of
communication can be provided using the programming interface which is available through higher level
languages such as Fortran, C, and C++. Processes are mapped to hardware processors, which may be on the
same chip, the same sy stem, or on different systems which communicate over a network.

I-Ml See Itftp.".-".-"M.'>t'|t:rrr_;Ji¢,frlrrr.rnr.r:r;g

Par MIGIITLH HI" l'mrJI||r_.u|r¢\
Trends in Porelial 5;-stems i 5-H

Processes are grouped together into so-ealled eomnwnrhlrors; within communicators, messages are sent
and received using functions such as MPJ'_.'€end and .-1dP1_]i'eet-'.

In Example 13.3 we saw that, with parallel processing, an associative operation—sueh as addition-—ean
be perfortned overn operands in loggn steps. In Figure 13.14, for implem-enting such an operation overeight
operands, we see a fogimi network rqrrology in the shape of a binary riree. The number of time steps required
equals the height ofthe tree, which is loggfi = 3.

O P"
P" P1

P“ P2 P1 P3
an 34 32 as ‘*1 as as 3?

Fig. 1 3.14 Tree-sn'oc1:ur'ed iogicai pro-can cop-ology

ln Fig. 13.14, example process l Ds are shown nest to the cncles which represent proces-res, whilethc eight
operands shown at the bottom are assumed to reside in the respective processes.

In thc first stop, four processes are pcrforrning the operation; in the second step, two processes are
performing the operation; and in the final step, the final result is produced by the process Pl) which is shown
as the root node. As compared to Example I33. here we see the significance of the Ingim! pmeess mpofogp
in terms of the specific interprocess cortrn-nunication required for :1 given application.

Let us suppose that the r.n1derl1i'ing,rJh_\-'sr'em' nerii'0rkIop0!og_1-‘ in this particular case is a 2-D torus (as in
Cray XT5). Then the communication pattern indicated above must be achieved through appropriate routing
over the underlying hardware interconnect. This would be part of the MPI irnpienrenmrrhn rather than its
specification.

lfwe cotmt each upward arrow between processes in Figure 13. 1-'1 as one unit ofcommtmication, then
it is easy to see that the total amount ofcommunication taking place, for the operation as indicated over
the n distributed operands, is in — 1]. The number oftime steps required is loggn. Therefore the amount of
communication taking place per unit time is proportional to n.-‘{log3n)—i.e. it grows with increasing n.

This example clarifies further why very sophisticated inter-processor communication needs to be provided
on modern multiprocessor systems or multi-eoreehips, sueh as theCra}-' XT, [BM Blue Gene, and the TIL E64
multi-core chip -[see above).

openMP openMP—which stands tor Open Multi-processing—is a standard API for parallel applications
based on the shared memory model ofmultiprocc.ssinglT"J. As in the case of MPI, this standard is also defined
by aconsortium ofcomputer scientists and vendors. Like MPI, openMP is also a specrficariorr, for which any
multiple computer vendors or other groups can provide compliant implementations.

.-"tehieving por!rrfJr'!i1[_1-' and s'e.oi'r'rfJr3'i!_]-' in shared memory parallel applications is a major aim of defining
the openMP standard. The first version of the standard was published in I997. and the current version was

":-il See It1’ip:.-‘I-"wwrrzo-p~enMRo-rg

rr Mefiruw Hl'iIr' wt i

a1z"ii- u u ' ' flidvnrrcedCempulJerl|rrlu'tecnue'

published in 2003. Language support defined within openMP includes C, C-l—' and Fortran. openMP makes
use of eornrrfler n‘ireer‘ives which, if ignored, result in sequential cs-ecution of the underlying program.
Applications can he parallelized incrementally, and the granularity of parallelism may be coarse or fine.

The basic concept in openMP is that a rrmswer rhrerrrfcan generate so many slave threads, which may be
executed in parallel over available processors. Thus the basic parallel construct is a paired combination of
fork and _,r'oin [see Chapter 11]), with an implicit barrier at tl1e point where tl1e slave threads join. This basic
parallel construct may be nested, as shown in Figs. 13. 15 and 13.1-ti. There is no restriction that the number
ofthreads must equal the number of available processo rs.

master
th road

n parallel
threads

master
th mad

Fig. 13.15 rhsrer cha'ead.!iave1:i1r'eacls.ar\dirrr|:iicit barrier

.- 2“\
""\'\

"\."s"'\
"\.I\""\-'-1------------1'|'|l|'|'|'|'|l|'|'|'|'|l|'|'_______________________|

one of the n
'1 parallel threads creates
lh reads mutipto threads

Fig. 1 3.18 Nesting of parritd eonsnruets

Tl1rcad memory may be made private or shared, and there is a flush operation available for shared
memory. A feature known as irrork-sharing allows assignment of independent loop iterations to separate
threads. Synchronization mechanisms such as critical section and explicit barriers are available; reduction
operation is also provided.

Trends in P-tmlliw Systems _ P I673

Pfimrnds PCISIX, or Portable Operating System Interface for UNIX, is an operating system interiace
standard of IEEE which is supported by a large number of computer companies. PThreads—or POSIX
Thrcads—is the part of POSIX which pertains to the development of multi-threaded applications.

Ftmctions and APls are provided under PThrcads ibrr.

{ l 'j Thread management—i.e. create and join threads, set and query thread attributes, etc.
{'2} Mutes {mutual exclusion] variab les—i.e. create, destroy, lock and unlock operations, used for

synchronization amongst threads,
(3) Condition variahles—to provide wait and signal communication between threads. and
{:4} Synchronization—to provide read and write locks, and barrier synchronization.

Recall that rmdcr LINIX, threads exist within a process and use resources allocated to thc process by the
operating system. Each thread has its independent thread contcitt—PC, registers, throsd status, etc.—but all
threads share the same process memory image. Once created, threads are peers, and may create otherthreads.
There is no implied hierarchy or dependency betwoen threads. Processing load may be divided amongst
threads in a hierarchical model or a flat peer-to-peer model.

Using PThreads functions, the programmer must provide the required synchronization between threads.
Because of lower overheads in managing threads as compared to processes, multi-threading under Unix is
much more effieicnt than using multiple processes. Multithreading using PThreads is also more efficient than
MPI on the same processing element, oron a symmetric multiprocessor, because 1:he multiple threads execute
out ofthe common shared memory of the process.

PVM fflnrallel VirtuaIMochi.ne] Parallel Vi rt|.|al Machine |[_P\-'M) is aplat form fordistributcd applications
developed at Oak Ridge National Laboratory in the US, in association with other Universities, in the late
lfilillls and early 1990s. The development was carried out as part of a larger research project into distributed
computing.

Under PVM, an application is conceived as a collection oi'ras'.l'.s (in tact processes) which run in parallel,
on one or more machines, and communicate by sending and receiving messages amongst themselves. Tasks
are identified by task IDs, and there is also provision for defining groups of tasks.

Heterogeneous processing environments are supported under PVM. A system seen as a t-'irrr1nI_proea-rsing
efermrnr may be a single-processor system, a multiprocessor, a cluster,or any other typeofprocessing resource.
The network underlying PVM may also be heterogcneo us, in the sense of being made up ofdificrent types of
links. lvlaehincs—i.c. virtual processing clement_s—can be added or removed during operation ofthe Pl.-‘M
system as a whole.

PVM can SllpptiflJill!H{'fiGHrI]fJtIrrIH£’li§‘m, darn p¢rrrrHei'r'sm or a combination ofthe two, using C , C-I-t and
Fortran languages. In many ways, PVM is similarto MPI; but, as we have seen in the case studies, MPI has
gained much wider acoeptance amongst thc community oi'user.s who develop parallel applications.

__"l§I\\‘ - Summary

Major trends and developments in co-mputer archirecmre are influenced s:ru|1gly by (a) advances in
underlying tedrnology. and (13) growth in range of applications. ‘lftk started the chapter with a brief

1'?»-HtG!wfl*Hi'fiC4emwr ‘nrr
G T4 i‘ Mvonced Computer Ardfitciraiwe

review of some of the key technological advancfi which hate had an impact on processor and system
architecture over the last couple of decades.

Steadily decreasing line widths and faster clock speeds have d1aracterizedVLSl technology. Graphics
processors and displays have become far more sophisticated. giving rise to major new applications such
as animation and multimedia. Magnetic disk storage densities and capacitia have seen huge increases
even as their cost. size and power consumption hate been falling Andnivith advances in electronics. signal
processing, and underlying communimtion technologies such as fiber optit:s,truly revolutionary advanc
have been fin in system interconnect and network technologies. HyperTransport. PCI Express. Gigbit
Ethernet and 10 Gigabit Ethernet are specific examples.

The types of parallelism present in a program can be divided broadly into struetum] parallelism and
irrstmclinn level parollelisrn (ILP). Processor design has often been focused on exploiting ILP, but system
design—of a multiprocessor system, for example—has to be based on the type of structural parallelism
present in the target applications. ln this sense. the designer must dwoose between more aggressive
exploitation of ILP versus a larger number of processor cores with less aggressive ts-tploitzation of ILR

The discussion of parallelism was continued with a simple example. followed by a discussion of work
done by a parallel aIgoritl1m.work-efiiciencyt efficient parallel algorirJ1ms.and Brent's theorem. Stream
processing is a newer form of parallelism which can be exploited when the target application—e.g
graphics. image or signal processing—inml\es the processing of large amounts ofdata in the form ofdata
streams.This type of parallelism has characteristics of SIMD as well as data flow processing.

Many innovatiue high performance products—-processors and systems—have emerged in recent yrs.
aimed at different target applications. Several representative products were discussed in t.his chapter in
the form of case sn.rdies.These included the Cray line of computers systems and t.he Cray XT5 system;
Pow-erPC processor architecture. IBM Power? processor and IBM Blue Gene supercomputer; Tilera";
TILEB4 system-on-a-dwip, Sun Ultrafiparc T2 processor,Al"'lD Opteron and lntel Pentium processors.

The parallel programming language Chapel. being deyeloped by Cray under the prestigious HPCS
program in the US. was reviewed as an example of a global-view parallel programming language. For use
in building parallel applications. conventional programming languages such as C. C++ and Fortran need
the support of function libraries for interprocess communication and synd"rroni1'ation.Sud"r libraries
use either shared memory or message-passing models; as specific examples, the salient features of MPI,
openl"1F: PVH and P'Threads were discussed.

5543Exercises
Problem 13.1 Explain in brief the meaning and dwe basis of development of newer VLS-I fabrication
significance of .line width inVLS| technologywlrat are technology. Does your iustification explain the ratios
the various line widths currently being used? ofthe line widths listed in answer to Exercise 1?

Problem 13.1 State and explain in briefMoore's Problem 13.3 Faster clock speeds become
law. justify this empirical law in brief. arguing on possible with advances in ‘v'LSl technology. What

Trends in Poroillel Systems

is the effect of faster clock speeds on power
consumption? Why is this an important issue in the
design of processors and computer systems?

Problem 13.4 Assume that a single processor
chip in a parallel system consumes 50 watts of power.
and that the system contains 1000 such processors.
Assume also that all other components in the system
consume. in aggregate. as much power as the 1000
processors.\Nhat is the total power consumption of
the system. in kilowatts? How many domestic irons.
operating together. will dissipate this much power?

Problem 13.5 For the system described in
Exercise 4. assume that air-conditioning and lighting
consume as much power as dwe computer system
itself. and that the cost of electric power is Rs. 6;‘-
per kilowao:-hour. What is then the monthly cost
of electric power for operating the system around
the clock?

Problem 13.6 In recent years it has been seen
that. beyond a point. processor performance does
not increase in proportion widw clock speed. List
some of dwe trends in processor design resulting
from this basic factor related to"~"'LSl technology.

Problem 13.7 What is off-chip inter-connect
delay?‘W'hat is its significance in system design?
Problem 13.5 With advances inVLSl technology.
the total design cost of a VLSI processor has
increased enormously. What has been the impact of
this increase on the way parallel processing systems
are designed?

Problem 13.9 Over the last two decades. with
advances in ‘v'LSl tedwnology. processor speeds have
been increasing much faster dwan main memory
speeds.What has been die impact of this trend on
computer architecture?

Problem 13.10 A hand-held computing device
has to be provided with color graphics display
having a resolution of 300 '>< 400 pixels. with 3 >< 8 =
24 bits of color information per pixel.The quality of

rh- ii|lcG-me Hill oi-worm r
m

675

animation to be provided requires refresh rate of
30 frames per second.and an average of 2 arithmetic
operations are required per frame per pixel.
Calculate the graphics processing power needed. in
million arithmetic operations per second. for dwis
particular application.

Problem 13.11 List dwe three different ways in
which multiple disks can be used in combination
in a RAID system. and the corresponding benefits
expected in terms of the performance of the storage
system.

Problem 13.11 in parallel processing systems
with multiple processors. there has been a trend
away from shared media interconnects to switched
media interconnects. Explain briefly the reasons
behind this trend.

Problem 13.13 List the salient tedwnical
characteristics of HyperTransport interconnect
technology. and describe in brief its possible
application in a multiprocessor system.

Problem 13.14 List the salient tedwnical
characteristics of Low"i"oltage Differential Signaling
(L‘v’D5}. and the performance benefits which it
provides.

Problem 13.15 Contrast the salient characteris-
tics of PCI and PCI Express interconnect standards.

Problem 13.16 List the salient technical features
of Gigabit Ethernet. and explain in brief the meaning
and utility of the concept ofQualty ofService [Q05]-.

Problem 13.17 Describe in briefthe concept. ap-
plications and benefits of cluster computing.

Problem 13.18 What do you understand by
structural parallelism in a parallel program? List the
different possible forms of structural parallelism
which we have studied. Contrast this concept with
instruction level parallelism {ILP}. and discuss whether
there are any trade-offs imolved in processor andl
or system design between supporting these different
types of parallelism.

rh- il|lcG-me Hill oi-worm r

Problem 13.1? Define in brief the meaning of
virtuolization. and explain why this concept is closely
related to hardware support for multi-dirding.

Problem 13.20 Example 13.2 discusses a two-
dimensional numerical integration.Outline how you
would extend this concept to three-dimensional in-
tegration. wherein a function flx.y.z] of three vari-
ables is integrated over a volume of integration de-
fined by limits Xmin. Xrnax. Ymin. Ymax. Zmin and
Zmax along the three axes X.Y and Z respectively.
justify the number of processors used in various
phases of the algo rithm.

Problem 13.21 Define the work perfonned by
a parallel algorid"im.When can we say thata parallel
algorithrn is work-efficient with respect to another
algorithm? When is a parallel algorithm optimal?

Problem 13.22 Two versions of matrix multipli-
cation algorithm are shown in Example 1.5.justify
these two versions as either being or not being op-
timal.

Problem 13.23 When do we say dwat a parallel
algorithm is efficientf Are the matrix multiplication
algorithms of Example 1.5 efficient?

Problem 13.24 State Brent's theorem. Explain in
brief its significance and underlying assumption[s).

Problem 13.25 List the dwaracteristics of stream
processing using a schematic diagram of processing
kernels and data streams. List three typical applica-
tions of stream processing. and the stated goals of
the research project Herrimac at Stanford University.

Problem 13.2i Draw a block diagram and list
the salient features of the Fermi stream processor
introduced by Nvidia list the advantages of using
a stream procasor as against using ASlC[s]- and
FPGA{s} for a given application.

Problem 13.2? Describe in brief the salient
features of:

(a} Cray XMT supercomputer
(b} IBM Power? processor

Mmnced Computer ilrrcltilicoliurc

(c) IBP Blue Gene supercomputers.

Problem 13.23 State in brief the salient features
of Cray XT5 supercomputer; draw a schematic
diagram of the 2D torus system interconnect.
showing the different types of nodes which are
connected.

Problem 13.29 Recall that PovverPC defines
a processor architecture rather than a processor
itself. List the salient features of PowerPC processor
architecture.

Problem 13.30 Describe the salient featurs
of 'l'ilera's TILE64 system-on-a-chip. and the use of
il"lesh network to realize cache coherent Nl.Jl""lA
architecture. Draw the schematic block diagram of
a single tile.

Problem 13.31 A single processing tile in the
TlLE64 system does not involve very aggressive
exploitation of lLRjustify why dais is the right choice
in the context of the overall system design and the
typical target applications.

Problem 13.32 Using a block diagram. describe
in brief the salient features of the Sun UltraSparc
T2 processor. ls the processor more suitable for
intensive scientific and engineering computations.
or for commercial servers and virtualization? justify
your answer in brief.

Problem 13.33 Describe in brief the salient
features of the AMD Opteron processor. Comment
briefly on whether such a processor should provide
hardware support for multi-thrding.

Problem 13.34 Compare and contrast the
architectures ofTl LE64. Sun UltraSparcT2. and AND
Clpteron processors.

Problem 13.35 Using a block diagram. dscribe
in brief the salient features of Intel's Pentium IV
processor. List the procmsor features designed for
exploiting lLP. What are mic ro-operations?W'hy was
it necessary to introduce that concept in the VLSI
implementation of the processorl'

Fhr MIG-l‘l7l|H Hl'Ill'4.uqi;u||¢1
Trends in Familial Systems i’ 6??

Problem 13.36 Parallel programming language
Chapel claims to support a global view of parallel
programming. Explain this concept in brief.
contrasting it with a fragmented view of parallel
programming.

Problem 13.31 Explain in brief the concept of
domain and subdomain in Chapel.giving an example
of each. Show how a domain can be used in loop
control.

Problem 13.35 In parallel programming language
Chapel.describe in brief the functions of:

(a) begin, cohtzqin, coforall and on
statements.

(b) readFE and writeEF synchronization opera-
tions. and

(c) Atomic operations.

Problem 13.39 Describe in brief the salient
features of I‘-1Pl. openl"'lH PThreads and PVM models
for implementing parallel processing applications.

ProoessA Process

Problem 13.40 For a particular application.
processing must be carried out using a three-stage
software pipeline. as illustrated in Fig. 13.17. Note
that this model of processing is justified if the ratio
of computation to communication is high.

In Fig. 13.17. Process A reads a record from a
database, and performs the first stage of processing
on it. It then sends the record to Process B for
the second stage of processing. and B then sends
the record to Process C.After the third stage of
processing. Procss C writes the processed data to
another database. Each process works only on one
record at a time; in odwer words. multiple records
are not buffered in any process. and there is no
multi-thrding within any process.

Design and implement this system using HPI.

Problem 13.41 How will the system design
of Exercise 39 change if each process has a buffer
which stores N recorclsiwhat are the likely benefits
of making this change?

i m

Read Receive Hecehe WI-m
ffflm I II I I I I I Idag base Sand to database

Fig. 13.17 Schematic of application for Exercise 39

rs» Mtlirou-' Him-...¢-......... '

Answers to Selected Exercises
Provided below are brief or partial answers to a few selected exercise problems. These answers are meant for
readers to verify the conectness of their answers. Derivations or detailed computational steps in obtaining
these an swcrs are left for readers.

Exercise l.l Average CPI = 1.55. Efiectivc processor performance = 258 MIPS. Execution time = 3.87 ms.

Exercise l.-1
ta) Average CPI = 2.24
{bl MIPS rate= 1'?S.6

Exercise 1.8
{aj Sequential execution time = 1664 CPU cycles.
{_b_] SIMD execution time = 25 machine cycles.
(cl Speedup factor = -I54.

Exercise 2.5

“J $ $

{bi 5'4 and 5'5 need to use the same Store Unit in accessing the memory. Therefore they are potentially
storage-dependent.

Exercise 2.ll

-[aj Network 1 {_d><.D><i}" Rank

OI"!F1 \.u5\C.h"..\.__ \QgfiQ‘|b

Torus 192 H6912 2
-IS-cube 192 1:591: 2

' ' ' ' '96 1.-‘E592 1
{bl Network Mean lntemodc Distance Rank

Torus 2.6? 1
6-cube 2.67 l
CCC 3.6? E

an m

Exercise 1.14
{ial A 4 >< 4 switch has 256 legitimate input-output connections, 24 ofwhich are permutations
(bl A 64-input Omega network requires the use of48 4 >< 4 switches in 3 stages, with I6 watches per

stage. Interstage connections ate 4-way shutfles, 24'“ permutations can be implemented I1'l onc pass
through the nctwecrk.

(cl The pcroentage ofone-pass permutations equals 24“ I64! = l .4 X III] :3

Exercise 3.2
(al Effective speedup = 3. Vectorization ratio rr= 0.75.
{bl New speedup = 3.43 with wrctor.-‘scalar speed ratio = I S.
{cl rrmust be improved to O. B.

Exercise 3.3
{_a] MIPS rate = n.1'»‘[t;r+ n(] ~ 0]];
{iii tI= 13.96

Exercise 3.7
{_a] Sequential execution time = 1 £51,628 cycles.
{bl The speedup = I628.
(cl Each processor is assigned 32 iterations balanced between the beginning and ending of the I loop
{d} Thc ideal speedup 32 is achieved.

Exercise 3.9

Execution Time Emggutinn Ran:
Machine Arithrnelie Mean Harmonic Mean Rank

A 4.{ID ‘us-; per instruction 0.25 MIPS 2
B 4. 78 ,1! s per instruction 0.21 MIPS 3
C 0.43 [Ur-zpcr instruction 2.11} MIPS 1

E xercise 4.1!
-[a] Average -cost e = [e|s| + egsgi-‘{'.s. + s3'j.c -3 ('2 when s3 13> s. and (gs; 13> rlsl.

{bl 1'.r=f"| ‘til -511‘:-
1£= 4.{Cl h+('l-hjr

(cl s = 0.99.
Exercise 4.15

{aj Hit ratio fl = 16."33 for LRU policy.
{bl Hit ratio ii = i6.~‘33 for the circular FIFO policy.
(cl These two policies are equally effective forthis particular page trace.

Exercise 4.11‘
(.-1] rgy =0.95r. +13.05r;.

Answers to-Selected Exercise’

.,.,,.,,,,.,.,.,..,....,...., _
-[bi] Total cost c-= e|s| + egsg.
(cl s; cannot exceed IS.-ti Mbytes, I3 = 42{ins.

=ssr

Exercise 5.12
ial 1.. =.1-I-4.1“ +i1 — fr.-lib + I‘) + (1 —_fj-I {-‘ml I‘ + (1 - fhrllib + viii -is-.-1+ {lb + ¢'i_f.i.-.-ii-
{bl r§.=r..+tj! —1El.t....r-

Exercise 5.13
(aj MIPS rate =px [I + mix];
{bl .1" = 583 MIPS;
{cl Eficctive MIPS = 1524.

Exercise 5.17
{:1} There are ED program orders: abcdcf, abdcef, abdeef, abdefc, adbcef, adbecf, adbefc, adcbcf, adebic,

adcfbc, dabcef, dabecf, dabcfc, dacbcf, daebfe, daefbc, tleabcf, deabfc, dcafbe, dcfabc.
{_b_] Possible output pattem: U1 I1, 101 1, and 1111.
{cl Possibleoutputs are: I001, 1011, 1101, G110, 0111,1110, and 1111.

Exercise-6.1 Under the favourable assumptions made, the time taken to initially fill the pipc1inc{i.e. 5 clock
cycles) is a negligible fraction of the total execution time. 'I‘herefore the speedup, efficiency and throughput
of the processor almo:-n equal 5, I and I000 MIPS, respectively.

If we assume that the pipeline is flushed after every 100 instructions [on average]. than 5 clock cycies
are lost out of every I00, loading to a 5% loss in specdtrp, efficiency and throughput; in this cas¢,tI1c three
answers are 4.75, (1.95 and 95'[i, respectively.

Clearly the loss in speedup, efiieicncy and throughput will be greater if the pipeline is flushed more
frequently, e.g. aflerevery twenty instructions on average.

Exercise 6.9
{:1} Forbidden latency is 3 with a collision vector [I00].
{bi} State transition diagram is shown below:

4
Q

11-

/
1- 4'

-5.

{cl Simple Cycle: (2). (41, { 1,41. i 1.1.4). and (2.4).:
-[id] Optimal constant latency cycle: (21, MAL = 2.
(cl Throughput = 2513 MIPS.

i'h1'Ml.'I;Ifl\ln' HI" l'n¢r.q|r_.u||rs 5

OBI i Answers to-S-elected Exercise’

Exercise 6.15
{ial Speedup tacter = 3.19;
{hi 62.5 MIPS ftirprecessnr.-Yand 199.2 MIPS fer processor 1".

Exercise 6.17
{aj The four stages perform: Expnnent suhtract,Align, Ftacticcn Add, and Nemtalize, respectively.
(la) I l l cycles to add ltltl floating-point numbers.

Exercise 7.1
{aj Memnry handwidth = mcfie + mir = 533 millinn words per second.
{bl Memory utilizatinn = cm.t{c + m) = 5.33 requests per memmy cycle.

Exercise 7.4 Aminimum rifli time steps are needed to sch-et:l1.|lethe24 cede segments en the-'1 pmces sors,
which are updating the 6 memory modules simultaneously without conflicts. The average memory bandwidth
is thus equal tn TOE] = 3.33 wnrd.s per time step, where Tl] ace-hunts tbr TO memmy accesses by tb ur
processors in 21 time steps witlteut conflicts.
Exercise 7.14

(ai (1111101) —:+(1tl11'l]'l]_)—>{1I]l1l0] —>(1tl10l'[l_) —a{11it]10f|—>({11101{1_)
(bl Use either a mute with a minimum 01°20 channels and distance 9 or another route with a minimum

distance of S and Z2 channels.
(cl The thllewing tree shews multicast mute on the hypercube:

[1010] Source

(0010; {T11

K t?: t11‘il

[Q1011] [no-011 [M1 £11011

/\
[ll [ll Note: The destinations are unclertlnccl

Exercise 8.12
{at R,,,= 20[10!'(1O — 9:1}, in Mflops;
(bi Veetnrizatinn ratin rI= 2t‘i.~'2'l' = H.963;
(cl R;.= T00 Mfitips.

Exercise 8.13
(aj Serial execution time = 1943 time uniLs.

rr -Mrlirnw Hill!‘ .- ...,-,.,,,,..,,.,,5.,..,,..E,.,,.,,.,
(b) SIMD execution time = 35 time units.

Exercise 8.14

-BB3

{a} C90 can execute 64 opteations per cycle of42 ns, resulting a peak performance = 6-N42 >< 10"? =
15.2 Gflops.

{bl Similarly NEC has a peak performance offi4i'2.9 >< ll] Q == 22 Gflops.

Exercise 9.1
[a] E = if-[1 +RL).
{bi R"=~[1 —h]R_.E= 1i"(l +R"L)= 1.-‘[1 +RL[_1 -111}.

. . , , L l 1{Cl WhIle!t£ftu= "i + 1=Es.~a1=i =ili‘R’+C 1+CR’ l+(l—h)CR'
N 'R’ N N

Whi|eNEM_r,E|h,= - If = - - =
l.-‘R’+C+L 1+R’C+R’L l+{_l—.it](L+C]R'

{di The mean intemode distance ,5 = {r +4]!3.

_ 2tr+4) 3iJ$+4iThus L = 2 Dr‘, + rm = r.;+ rm =gr,;+ rm.

E xercise IIILS

IR’ lEm=ii=i
1.-‘R’+C.' l+(l—h]CR

N N
Elia: = ' '

~ P1+(l—h_f|R 'Ifl['i'In|, +C
1+{1—h_]R(L+C.'_) {[,[\/2+4}] 1

(al A(5,S: *,*) declares A{5,B,l), A{'5,9,l], A(5,1'l],l], A(5,E,2], A{_5,9,2), A(5,l'[l,2), A{_5,B,3), A(5,9,3],
A{S,1'D,3_), A(S,S,-'-1'], A{_S,9,-4), A{5,l'l],4'], A{ 5,3,5), A{5,9,5], A{_S,1'[l,S). B{3:*:3,5:B) corresponds to
El{_3,5], B{3,6}, B(3,7], B[3,El'], B{6,S_], B{6,6], B-(6,7), B{6,B], B{9,S], B[9,6), Bt_'9,T), B{_9,B]. C{_*,3,4]
stands for C(_l ,3,-fl], C{2,3,4), Ct_'_3,3,4].

-[la] Yes, no, no, and yes respectively for the four array assignments.

E xercise 10.1‘
{Bl -5'1 —>-5': <-|' 5'3
(ti) SI: A{_l:l"~l)= B[l:N]

S3: E(1:N) = C(2:N+1]
S3: C-[1:N) =A{l:N] +El(1:N)

E xercise ll]. I2
fa] Vectorized code:

TEMP{1:N)=A(_l:N]
A{_2;N +1]=TEMP(l:N)+ 3. Ml 59

HM i Answers to-S-elected Exercise’

-lb] Parallelized code:

Dnall l = 1, N
IHA-['[) .LE. (1.1!) then

S = S + Btll * C{[)
X = B{l]

Endif
Enddo

Exercise 11.15
{aj Suppose the image is partitioned into p segments, cach consisting ofs = rrr.-‘p rows. Vector hr'.sr‘og is

shared among the proeessors. Therefore its update has to be performed in a critical section to avoid
race conditions. .-°tss1.rme it is possible protect each element of vector histog by a separate semaphore.
The following program performs parallel his-tograrnrn ing:

Varpixelfjll :m — 1,1} : n -1];
Var histogfil : b — l): integer:
Var loclt-[O : b — I): [O,l];
histog{i'[3 : b — l)= O;
lock{_Cl:b— l)= 1;
l'nr.i:= ll] untilp -11] Doall

1'lIl'i=it>(.s|1|11ill_'k+1']>(s—id-ll
fnrj=0 untiln— l do

P-[:lock(pixel(r', j]_)_];
histog{pixei[?,fii = histog{pixel{r',j]) + 1;
V-[locktjp i.\tcl(i, j1]];

Enddo
Enddo

Endall

{bi The maximum speedup of the parallel program over the serial program is p. provided there is no
conflict in accessing the histog vector and the overhead associated with synchronization is negligible.
An altemative approach is to associate a local histog vector with cach processor, which will obviate
the use ofcritical sections. At the end of the algorithm, the values in local histog vectors are added to
obtain the final result.

E xercise 12.9
Note: The aim ir| Chapter 12 has been to understand instmction level parallelism without reference to a
specific processor design. Thc stipulation of cormringfmm the l'.tr.sr clock c'_\-'el'eo_,fr'rr.srrrs:'rr'rJ.rr l has been added
to these exercises so that the i.r|sh'uction sequences can be analyzed without reference to a specific prooessor
pipeline design. Thus the answers we derive do not include the initial pipeline fill time, and we count only the
additional clock cycles needed to complete each instruction.

,,,,,,,,,,,,,,,,,,.B,,,,,,, _,
Seg'.te:1ee 1: _

2
3
1'-l
5

LEAD

LOAD
LOAD

FADE
FSUB

mom—a,
mcm—b,
mem—e,
R2, R1
R3, R1

R1
R2

R3

, R1
, R1

835

E STORE mem—a, R1

The directed graph of dependences is shown below:

1 2 3

eswteti 1
,"RAw{R2

4 i
‘Q RAW[R3]

RAW'[R1 3
\5*

U1»
1-_--—-'

nawtnty

Exercise 12.11] Herc we assume that the processor has no provision for register renaming and operand
forwarding, and that all memory references are satisfied fiom Ll eache.

in the absence of operand forwarding, every RAW hazard causes (at least] one lost clock cycle, as the
operand value is first written into the register and then, ,brought to the functional unit or
load.-‘store unit.

Instruction 3 can be executed in parallel with instruction 4 (FADDI.
We therefore add the additional clock cycles required forthe rest ofthe in st ructions (othcr than instruction

3], and add one cycle penalty forevery RAW dependenoe occurring along the dotted path. Thus the number
ofcycles needed {from the last cycle of instruction 1] equals:

l+1+2+2+1+3*1=1t]
Exercise 12.11 Effect of register renaming:
No WAR or WAW dependences are affecting the computation, and therefore regi ster rcnam ing will it yield
any additional parallelism in this particular instance.

Exercise 12.12 and 12.13 Effect ofoperand forwarding:
With operand forwarding, the FPU or memory store unit receives its requ ired operand value in the same cycle
in which it is written in the register. Therefore the three cycles lost due to RAW dependences are saved, and
the answer is:

Elli i Answers to-Selected Exercise’

]+l+2+2+l='F

Exercise 12.14 Effect oi'Ll cache miss, requiring L2 cache access of 5 clock cycles:
L1 cache miss on instruction 1 or 2 will cost 5 — 1 = 4 additional clock cycles each.
L1 cache miss on insmtction 3 will cost S — 2 = 3 additional clock cycles, since 2 cycles out of five are in
parallel with FADD of instruction -'1.

Exercise l2.l5 Outline of Tomasulo‘s algorithm: For ever}-' possible source of an operand within the
proces sor, assume a tag value. For example, assume a tag value of TFPU for the outputofFPU, and TLOAD
tor the output of memory load un it.

For every RAW dependence, if tl'|e operand value is not available, the algorithm requires the source tag
value to be written into the destination tag register. When the operand value is available on the CDB {along
with the right tag value), it is copied into every destination register where it is required, i.e. where the source
and destination tag values match.

However, in this ease the memory load unit requires special care, since its successive outputs from
in-rtructions 1, 2 and 3 go (respectively) to the two inputs of FPU for instruction 4, and then again an input of
FPU for instruction 5. One way to handle this would be to assign multiple tag values to the output ofmemory
load unit, and use difierent values forthe three load operations of instructions 1, 2 and 3.

Exercise I339 and t3.-N] Note that the first two pro-ceases make up one producer-constuner pair, and the
last two processes make up another producer-consumer pair. Process B consumes the records produced by
procmsflt, and processC consumes the records produced by process B. The solutions require two applications
of the standard producer-consumer algorithm.

H‘-r Mcliruw Hill l'||rr.q|r_.I.I||r\ _

— —
.. l

Bibliography
|AocettaB6| M.Aooetta,R. Baron, W. Bolosky, D. Golub. R. RasItit.t,A. Tevania1t_ and M. Young, "Maclt:ANew Kernel

Foundation for UNIX Development," Prue. Sn'mn:|e"r 1986 L"5'.1'5NJ'.1t’ f.'on,|'.'. pp. 93 I l3,Atianta, GA, June I966.
|."'ltCM9l I ACM, Rem"-rLrr.rrc'e'.'s in Pcrraflef and C'o.rrc'r.rrren'.r Sp-re-m.-c with an !rr.|'rr.Idr.|'c'.rion fir f.'h'a'rfe'.s .S'er'r:, ACM Pres , New

York. l9'9l.
|AoostaE-ft] R. D. Acosta, J. lijelstrup, and II. C. Torng,"An Instruction Issuing Approach to Enhancing Performance in

Multiple Functional Unit Processors," FEEE Trans. Cu-mpuIe'rs', pp. B I5-B25, Sept. I936.
|Adan1i'4| T. L. Adam, Ii. M. Cltandy, and J. R. Dickson, "A Comparison of List Schedules tor Parallel Processing

Systetm,“ f.'o-mmt.r.n. .-1 rm-r. l'i'(tztass -as-0, I974.
[Adve90] S. V. Aclvc and M. D. Hill. “Weak Drdering: ANr:w Definition," Pme. I ?tir Anm-r. Int. -Swap. C'wn,r1m‘e'r .-int'!r.,

l99D.

|Adve9-l| 5. ‘tr’. Adve, ‘i-". S. Adve, M. D. I-Iill, and M. Vernon, “Comparison of Hardware and Soltware Cache and
Coherence Schernes,“ Pimte. fifth Anny. Int’. .S}'rr:p. Crrmputer A n'.'Ir., pp. E95 3GB, l99l.

|Agarwail:iB| A. Agarwal, R. Simotti, .I. liettnessy, and M. Horowitz, "An Evaluation ol'Directory Schemes lor Cache
Coherence," Prue. ISLE Anny. Int. Eirnp. (.'on'rpur-er .-*l.rr.'.ir., l9Blii.

|Agarwal9'D] A.Agar1-val, I3. I l. Litn, D. Kranz,andJ. Kuhi.atowic2,“APRlL:A Pro-eessorArchitecturethrl'vIultiprooessi1tg,"
Pt'rn;'. Nth Anna. Int. Jfyrnp. (.'omp1.r.re'r .-“ln.'.lr., pp. lD~’l- II4, I991].

|Agarwal9l| A. Agarwal, D. Chaiken, (1. D'Sottza, K. Johnson, D. Kranz, J. Kubiatowi-ca, K. Kuriltara, I3. ii. Lim, (I.
Maa, D. Nussbaum, M. Pat-kin, and D. A. Yeung, “The MlTAiewite Machine: A Large-Scale Distributed-Memory
Multiproemint," Proc. Pl'imlr.'drop Mufrirhrecrded (.'onqvrr.rer.'r, Superrtotmputing 9] , l99l.

|Agarwal92a] A. Agarwal, "Peri'ormacnoe Tra-.teol’fs in Muititluead Processors,“ IEEE Tran.-r. Puraflei Disrri. .'>}'n'¢-ms
ststszs sssttssz.

|Agarwal92b| A. Agarwal, D. Chaiken, K. Jolutson, D. Kranz, J. Kobiatowicz, K. Kttrihara_ B. Lint, (1. Man, and D.
Mttssbautn, "The MIT Aiewite Machine: A Large-Scale Distributed-Memory Muttipro-eessor,“ in Dubois and
Tl1.a1dt'ar|[eds.]|, Sr.'aIaHe .':i.lr¢rrr='J-.1-'le'n:r:.rj;' Mr.rl‘!n'Jrr:r.'e.~r.r-r:r.r, Kluwerfitcademic Publishers, Boston, l\"[A, I992.

|.I"tgl'tflB6| G. fitghzl, .4r.'mr?t.' A Mode’! q-,f'C'm'rc'urn:rrt‘ Crmtpulation in Di.st‘rihu!eJ .$=.'tt¢'m.s. MIT P113554, Cambridge, l'\'i."l|,
I986.

[Aglta9'D| (1. Agha, "Conc'ttrrent (Jbject-Uriettterl Prograrnming," f.‘n-mmun. A CM, 33(9): I25 l4l , Sept. l9'9(i.
|.1'ltltCfi'-4| A. Alto, J. E. liopcroit, and J. D. Ullttmtt, The Design and .-1 nr.rtfr.ri.'i' q)"(.'omp1.r.r£'r .-it'gor'i.r.irr:n.'t, Addison-Wesley,

Reading, MA, I974.
|Ahu_iaB6| S. Altuja, N. Carriero, and D. Gelernter, "Limit: mid Friends,“ IEEE If.'ompr.rre:; l9{B)i I6 34, I936.

|AiianBS| S. .|. Allan and R. Oltteho-efi, "IIEP SISAL: Parallel Functional Programming," in Kowalilc {ed.}, Pa-mile!
fl-£|'.ll-ID f.'omp.r.r.rcr.rion.' HEPS1.rp¢'r1'r).rqrJuters and .ri1r:p1ica.rion.r, MIT Press, Cambridge, MA, I935.

|AllenE-4| J. R. Allen and K. Kennedy, "PFC: A Program to Convert Fortran to Parallel Fortran,“ in I-twang ~[ed.]-,
Sup¢'rr'o.rnprr.rerx." Design and rlpp.ir'r.'a.rion.~r, IEEE Computer Society Press, l_.0s Alatnitos, CA, l9B4.

_ rr<- Mr-limw Hill I_|Il1‘.l]|r_.I.ll|f\
‘B3 i B

|AIlenIi7| R. Alien and K. Kennedy, “Automatic Translation oI'ForIran Programs to Vector Form,“ ACM Trcrnx. Pmg.
Lung. anc.i.§}'s.re'1rrr. pp. -i9I --542, Oct. I951’.

[A ll iantB9| Aliiant, .-1 Hiun: Product Summary. Ailiant Computer Systems Corporation, Litt leton, MA, I939.
|AImasiB9| G. S. Almasi a1tdA. Gottlieb. Higiufy PurcrHe‘i(.'rJmp1.r!in_g. Bettjamin-'Cu1nm'ntgs, Redwood, CA, I939.
[AIvmnn9iI] R. Alvcrson. D. Callahan. D. Cummings. H. Kobienz. A. Porterficid. and B. Srnilit. “Thc Tera Computer

System,“ Prue. .-'I f.'.H Int‘. Confl Supe'rr.'on'n'n.r.ring. pp. I- 6, .I'1ttt'L=itet'd£|tt‘t, The Netherlands, _lune I991).

|Atnd-.aItl-6?] G. M. Amdaltl, "Validity oI' Single-Processor Approach to Achieving I_.arge-Scale Computing Capability,"
Pmc. .-IFIPS rant‘. pp. 4&3 -455, Reston, vat, I967.

[AnaratoneB-6] M.Anaratone, E. Arnould, T. Gross, II. T. Ktutg, M. S. Lam, O. Menziicioglu, K. Saro-cky,and.|. A. Webb,
“Vi-':irpArcltiteeture and Implementation,“ Prue. 13:}: .-Innu. Int. Si-i-mu. C-rJ'.II'§I.II.|‘.I-£'r' .-’ln;'.i1.. pp. 346.356, Tokyo, June
I936.

[Anderson6?| D. W. Anciersott, J. (3. Earle, R. E. Goidsclunidt, and D. M. Powere, "Tlte [BM Systemi'36-D Iv'[o-dei 9|:
Floating-Point Execution Unit," IBM .5}-.nem.r Joumni. pp, 34- S3, Feb. I963.

|A.ndrews9I | G. R. Andrews, Conuum:-n.r Pru,gn;.-mming: Princ'im'e.r and P'rr.rc'.riee. Benjamin.-'Cunimi1tgs, Redwood, CA,
l99l.

|ArcItibaidEi6| J. Archibald and J. L. Baer, "Cache Coherence Protocols: Evaluation Using a Multiprocessor Sitnutatiott
lviiodel," .»-i(.'M Trans. Computer .5}-.~nem.~:. 4{4]|:2 73- 293, Nov. I956.

|ArdettBl| I3.W. Arden and I-I. Lee,"AnaIysis oI'CItordaI Ri1tgNetworlt," IEEE Tn.-ns. f.'0.rqrn.rIer.r. 30{4}:29l --295, l9I:iI.
|ArvindIi3]Arvi1td and R. A. Iannumi, "A Critique of Multiprocesising von Neumann Style,“ Pmc. Iflrh .'{;-mp. C'um,n-uter

.41-ns.. Stockholm, Sweden, I933.
[A:vindti4] Arvind, D. E. Culler, R. A. lanrtncci, V. Kathail, K Pingnli, and R. E. Thomas, "The Tagged Token Damfiow

Architecture,“ Technical Report, MIT Laboratory Iior Computer Science, 545 Teclutology Square, Cambridge, MA
DZI39, I984.

[Arvi1tdI€iT] Arvind and R. A. Iannucci, "Two Fundamental Issues in Multiprocessing,“ P.r'rn;'_ Pcrraflei P'.I"or.'e'.r.ring on
.S'cienee and Engineering, I931‘.

[Arvind9iI] Arvirid and R. S. Nilthil. “F-xoeuting a Program on the MIT Tagged-Token Dar-allow Art:i'titccIure." IEEE
Trcrns. C'ompu.|‘e'r.s. 39{3}23ClU-3I3, I990.

[An-ind91] Arvind, L-. Bic, and T. Ungercr. "Evolution of Dataflow Computers,“ in Gaudiot and Bic (eds.}, .4d\'unc'ed
Topic; in Dnngffnw Computing, pp. 3- 34, Prentice~IIall, Englewood Cliffs, NJ, I99].

|AtItas3E| W. C. Adm and C. L. Seitz, “Multicomputers: Message-Passing Concttrrent Computers," IEEE C!)-Ii\';§I.lI!l.f-r='r;
2I{B)t9- 24,nttg. I9BE.

|A:teirodB6] T. S. Artelrod, “Effects of Syncitronizat ion Barriers on Multiprocessor Periormance,“ Famiiei Computing.
3{2}¢|2s 140. May tests.

|B£ibb33| R. (1. Babb, Programming Prrrcrt'le't'I"irru;te'.t.rrJr?c. Atidi5i01t—l|'rit?'.‘iie)P, Reading, |‘v'iA. I933.
I I3acliEi4| M. .I. Bach and S. _l. Burotf, "Multiprocessor UNIX Operating Systerrnt,“ .4T3LTEe'.i!Lui1. Tech. Joumui. -t53{ B},

(kt. I934.

|I3acItIi-ti] M. J. Bach. Tire'Dé.rr'gnr;f,F'rire L-‘t'\~'i'X(J;n.-raringSane-m. Prenticediall. Englewood cttns, NI. l9Bt5.
|l3aeriii]] J. L. Baer, Computer .5}'.nem.t .-'Irr.'IJ'i.|'ec.l'r.r.rr.*. Computer Science Press, Rockviile, MD, I950.
[Earter_iee?9| L1. Banerjee. Speedup q,|"t’Jrri'inu:y Program.-r. Ph.D. University of Illinois, I979.
|I3aner_jeeIiE| U. Banerjee. De'pe'nde'n|;'e .-inutft-.-ti.-:_,|'iir 5I.rp£'.rt\£I-mputing. Kluwer Academic Press. Boston. MA, I933.
|I3aritesfiB| (I. It. Barnes, R. M. Brown, M. Kato, D. .I. Kuck, D. L. Siotnicit, and R. A. Stokes, "Tlte ILLIAC IV

Computer,“ IEEE T!'£.I'.I'I|'S. C'onqrn.r.ré'r.'t. pp. T445»--T51‘, Aug. I963.

mum

rr<- Mrlimw Hill I_|Il1‘.l]|r_.I.ll|f\
mm ‘B9

|Batcher?6| K. Batcher, "The Flip Network in STARAN," Pmc. int. Confj Puroiie-I Processing. pp. 65 I-‘I, I936.
|Batcher3I]| K. E. Batcher,"Design ofa Massively Parallel Proctssor," IEEE Trans. C'0n§rJu.l'e'rs. pp. 336 -3-10, Sept. I930.
|BBN39]. BBN Advanced Computers Inc., Cambridge, MA., TCZGIJI9 Tec.i1nic¢.rIP.r'oJ1rcI Summary. Nov. I939.
|Beetem35| .I. Beetetn, M. Denneau, and D. ‘ii-eingarten, “The (IFII Supercomputer,“ Prue. 12:3 .-innu. Int. Sswp.

C-o.rr:§r1u.rer.-‘Ir-r.'.ir.. pp. 3153 316, Boston, MA, May I935.

[Bell92] G. Bell, "Uln-acenlpnten ATe1-aflop Before lts Time,“ Co-mmun. A CM. 35{3]|27 4?, I992.
|Be1t-Arl9'D] M. Ben-Ari, PIrincipie'.r q,f'C'unc'urr'e"nt and D'i.n‘riint|'.re'J Programming. Prentice-Ilall, Ettgl£'Vi'o-o-ti Clillii, NJ,

I991).
|Bernstein6-6| A. J. Bernstein, "Analysis of Programs Iior Parallel Processing," IEEE Trans. (.'onquurers. pp. T46 T57,

(kt. I96-I5.
[Berntsen9lI] .I. Berntsen, "Connnttnication-Efficient Matrix Multiplication on Ilypercubes," Pan:.rHe.i Computing.

pp. 335--342, I990.
|Bhuyan33] L. N. Bhuyan and D. P. Agrawal,"Designand Periiormance oI'(ienera lized Interconnection Networks,“ IEEE

Trans. Crrmpurcrx, pp. I03I I090, DB6. I933.

|'Bisia1ti33| R. Bisiani and M. Ravishankar, "Pitts: A Di'stt‘i'b-ttted Shared-Memory System,“ Prm.'. .1'?rh slnnu. Int.
C'on:§on.rer.-1rt'ir.. pp. II5 I24, I933.

|Bitar3-ti] P. BitarandA. M. Despai1t,“M1.tltiprocessor Cache Synchronization: Issues, Innovations, and Evolution," Prue.
I31): .-‘Inna. i'n.r. Comprrier .-“Irr.'ir., I936.

|Bitat9l| P. Bitar, "MlMD Synchronization and Colterence," Tecltnical Report UCBICSD 9036415, University of
California, Berkeley, May l99I.

|Bitat92] P. Bitar, "The ‘Aeakest Memory-Access Order," J. Para. Di.-uni. Corquuring. l5:3D5- 33l, I992.
|Black9'I]I| D. L. Black, "Scheduling Support tor Concurrency and Paralbeltstn in the Mach Operating System," IEEE

Con-ipure-r. 23(S}:35 -42, May I990.
[Blelloclt9D| G. E. Blelloclt, l'Z'c'.ro-r.Hru:1"¢'t'.'t_,|li1-r Da.rcr~Pt.rraHe.i Computing. MIT Press, Cmtibtidge, MA, I990.
|Blevins9I]] D. W. Blet-"ins, E. ‘IV. Davis, R. Ileaton, and J. It. Reif, "BLITZEN: A lligltly Integrated Massively Parallel

Machine,“ J. Para. Distri. Cwnpuring. pp. I50- I-I5-0, I990.

|Boothe92| B. Boothe and A. Ranade, "Improved Multitltreading Techniques for Iliding Communication Latency in
Multiproeeeior," Pros. I911: .-innu. Int. .5}:-n,u. Computer .-In:‘Ir.. Australia, May I992.

|Borkar9D] S. Borkar, R. Cohn, G. Fox, T. (irons, H. Iitutg, M. I..am, M. Levine, B. Moore, W. Moore, C. Peterson, .I.
Susman, .I. Sutton, J. Urbanski, and J. “ebb, “Supporting Systolic and Memory Communication in EWA RP," Pine.
I Fri: .-‘Inna. Int. f.'ompr.rrer.-“Ircir.. pp. i'0- 3|, May I990.

|Brainerd'9D] W. S. Brainerd, C. Ii. Golberg, and]. C. Adams, P.-ogranuners Guir.i'e' to F-on'nr.rn 9!]. Mcflraw-Itill, New
York, I991].

|Brawer39] S. Brawei; i'n.rrr}dmt'Iion to Parallel‘ Pmgrann-ning. Academic Press, New ‘iizirk. I939.
|Briggs32] F. A. Briggs, K. S. Fu, K. Ilwang, and B. W. Wah, "PUMPS Arcltitecture tor Pattern Analysis and Image

Database Management," IEEE Trans. (.'o-nqnure-rs. pp. 969 --932, (Jet. I932.
|Brinch I-lanserJ5| P. Brinclt I-lansert, "The Programming Language Concurrent Pmcai," IEEE ‘Trans. Sn-fin-are

Engineering. SE-K2}: l99- 206, June I935.
|Brututer9D| R. A. Brunner, D. P Bltandarkar, F. X. McKeen, B. Patel, W. .I. Rogers, and G. L. Yoder, "Vector Prooeming

on the VAX 91110 System,“ Digital Tec.i1nica'i Journal. 2{4]|II'.i-I - T9, I990.

|Burk]tardt92] Il. Burlthard1__ at-s.-at-or Summary o,|l'.lC§'R-J. Kendall Square Research Corporation, ITO Tracer Lane,
Waltham, MA G2 I54, I992.

“WWW

TI‘-r Mclixaw HI'iic'|--r.-pr--I-n _-D, __
6Q“ M B

|I3utIer9I | M. Butler, T. Y. Yeh, Y. Patt, M. Alsup, Il. Scales, and M. Sltebanow, “Single-In-structio11-Stream Parallelism
E; Greater Than Two,“ Prrm. 18:5 .-'Inm.r. Int. Syrup. C'u.r:r§|'J.r.r.re.r .vIn.'I'r._ pp. 2T6 -2B-5, I9'9I.

[Buzb-eeB3l I3. L. Buzhee et al., "Supercomputing Value and Trends,“ unpublislted slide prmentation, Los Alamos
National Laboratory, NM, Jilly I983.

[CallahanE5] D. Callahan, “Task Granularity Studies on a Many-Processor CRAY X-l'v'lP,“ Pare-He! Computing.
pp. I09 -IlB,Ju11e I935.

|CalLahanlill| D. Callahan, K. Cooper, R. I-lootl.l{, Ketmedv, and L. Torcmon, "ParaScope: A Parallel Programming
Environment," Inr. J. Supercomputer Appi. 2(4), I933.

[Caswell9U] D. Caswell and D. Black, "Implementing a Maeh Debugger for Multithread Applications,“ lI"in.re‘r
I990 L-SENi'X L'.'oq,i.'. ‘lV:uahi11gton, DC, Jan. I990.

|CDCSD] CDC, Cyber ._7|'1|'].-".i'li'|L'r¢:.|"e'1‘ EH5 Te-1-.irniez.r1De-.rc-riparian. Control Data Corporation, Nov. I930.

[CD-C9'D_| CDC, “Introduction to Cylaer ECIIIJID.-"architecture," Technical Report 641000457, Control Data Corporation, St.
Paul, MN, mo.

[CekIeov9D] M. Cekleov, M. Dubois, J. C. Wang, and F. .-‘It. Briggs, "\-"irt|1al-Address Cache in Multiproeessors,“ in
Dubois and Tltakkar {eds}, (.'u:.‘Ire' and Inmrconn-r.'ct A :1‘Iritecturr='.r in .'l~fuf!ipn::.'es.ru:?t, Kluwer Aeademie Pt‘m.~‘,
Boston, Mk, I991).

[Censier?B| L. M. Censier and P. Feautrier, “A New Solution to Coherenoe Problems in Multicache Systenua,“ IEEE
Trans. C'omp1.r.|‘er.'t, C-2'T(I2)! II I2 -II IB, Dec. I975.

|Cl1.aiken9'D| D. Chaiken, C. Fields, K. Kwihara, and A. Agrawal, “Directory-Based Cache Coherence in Large~Seale
Multiprooemor,“ 155.15 (_It‘.l.I'I'Ip1.|‘J‘-£'.t', 23{e);49_-59, I990.

[ChangBB| A. Chang and M. F. Mergen, "I!lI]II Storage: Architecture and Programming,” .-ICM Trunx. l'.'o:rq|-n:rer.'§r.-r:em.t.
6{I]|:2E- SCI, I958.

[Cha.ug90] L. C. Chartg and B. T. Smith, "Classification and Evaluation of Parallel Prog-ramming Tools," Technical
Report CS 90-22, University oI'New Mexieo,Albuquerque, NM BTI3 I , I990.

|Cl1ang9I | P. P. Cl1ang,W. Y. Chen, S. ft. Mahlke, and W. M Ilwu, “Cornputing Static and Dvnmnic Code Scheduling for
Multiplednstruetion-Issue Processors," Pro:-. 24th Int. .'i)»mp. .">-fi¢'r0an;'.b'., l99I.

[ChengB9] ll. Cheng, "Vector Pipelining, Chalning, and Speed on the IBM 34191) and Cray X~'MP,“ IEEE ['0-rr§r1r.rI'e'r,
22{9}:3l 44, I989.

[Cl1eng9I| D. Y. Cheng, "A S1.|.rt.-'ey of Parallel Programming Tools," Tmhnical Report RND-9|-ODS, NASA .-‘limes
Reziearch Center, Motfett Field, CA, I99I.

[Cllinfiil] C. Y. Chin and K. Hwang. “Pacltct Switcliing Networks for Ivlultipmccason and Datafl-ow Computers." IEEE
Trans. Cbmpr.r.|‘e'r.'t, pp. 9'9I -- IUD, Nov. I934.

[Chow'I-'4] C. K. Chow, "On Optimization lor Storage Ilierarehim,“ IBMJ. Res. anJDevefop.. pp. I94 -203, I974.

|Christy90| P. Christy, "Software to Support Ivlasrtively Parallel Computing on the MasPar MP4," Digest t.fF'upér.r
Suring (.'o.rq|'?e'un, San Francisco, CA, Feb. I990.

[CIarkB3] K. L. Clark and S. Gregory, "Parlog: A Parallel Logic Programming Language,“ Technical Report DOC B3~S,
Dept. ofComputing, Imperial College, London, May I983.

[ClarkH6] R. S. Clark and T. L. Wilson, "Vector System Performance of the IBM 3090," lBM.$rmu-m Joumui. 25-[I]|,
I956.

|Coeke9CI| J. Coeke and V. Markstein, "The Evolution of RISC Techriologyr at IBM,“ IBMJ. Res. u'n¢.iDe0e'I'-t.rp._ 3=I{ I}:
4 -ll, I990.

[Convex9fl| Convex, Fortran Optimization Guide. Convex Computer Corporation, Richardson, TX,l99D.

weww

TI‘-r Mclitaw HI'iic'|--r.-tn--I-r~ _-
__ H I

|Cormen9\D| T. ll. Cormen, C. E. Leiserson, and R. L. Rivest, Intmdnetion tn Aigttrithmr, MIT Prem, Camlzrridge, MA,
I990.

[Cragoo59] H. G. Cragon and W. .l. Watson, “’l11e Tl Advanced Scientific Computer," IEEE Computer. 22(I):55--64,
I959.

[Cragon92a| ll. G. Cragon, Ens-nen Stmtegy T:.t.wtr0m_r and Fe"-rfitnnnnee A-fot.I'e'].\t, IEEE Computer Society Press, Los
Alamltos, CA, I992.

|Cragon92b| ll. G. C'ragon, "Memory Systems and Pipeline Processors,“ Class notes, Department oI'ECE, Uni1..rersityoI'
Texas, Austin, I992.

[CrawIord9D| J. ll. Crawtord, "The i456 CPU: Executing Instructions in One Clock Cycle,“ IEEE Mic't'o, III I]-'.2't'--36,
Feb. I991).

|Cray't'?| Cray, CR.-“I Iii (.'on'tptt.r-er System H¢trr.in'¢tr'e'Re_'1’é'rvevrce' .'I-fttnttcrf, Cray Research Institute, I9'T|'.

[Cray59] Cray, The f.'rt;ti' I".-‘MP F'ttnc'tio-nut‘ De.~tt.'rt]rtti0n Mztnttttf, Cray Research Inc., Eagan, MN,I959.

|Cray9l] Cray, Tire (‘re-_v l"t'MP C-91'? Snpe-:zvtmputer.‘t}-.-dem. Cray Research Inc., Eagan, MN,I99I.
|Cray92] Cray, Crq;-.-‘MPP Announcement. Cray Research, Inc., Eagan, MN, I%.
[CS RD9I | CS RD, "Perfect Club I3ench1nark Evaluation Package,“ Technical report, Center tor Supercomputer Research

and Development, University of Illinois, Urbana, I99I.
[CyI:enko92| G. Cyl:-enko and D. J. Kucl; "Revolution or Evolution,“ IEEE .'§net.-tntm, 29{9]|:39--4|, I992.
I Dal ly56] W. .I. Dally and C. L. Seirz, "Tlte Torus Routing Chip,“ Junrnui e_r,!'Dinrioute-d f.'om;n.-ting. I|[3]-: I 5? I96, I956.
|Dally5 Ta] W. J. Dally et al., "Architecture ofa Message-Driven Processor,“ Pt-rte. ttttm nnn. int. .5}-nap. Compute-r Ant-i1..

pp. I59 -205, IEEE CS Press, .Iune I957.
[Dally5Tb| W. .I. Dally and C. L. Seirz, "Deadlock-Free Message Routing in lvlultiprocessor Interconnection Network,"

IEEE Trans. ('0-.rr§0ttt'e'r.r, C-36{5}2 54?--553, May I957.

I Dal ly5 Tc] W. J. Dal ly and P. Song, "Design ofa Self-Timed VLSI Multicomputer CommunicationController,“ Pl'rte. int.
(.'on,|'l (.'otqr:ttter Design, pp. 230--234, IEEE CS Press, (kt. I951‘.

|Dally9Da| W. _l. Dally, “Network and Processor A.rcl1itect1.u-e tor Message-Driven Computers,“ i.n Suaya and Birtwistle
{eds.]|, l*'L'~'.-'1 nnd Parnilei Cnnrpntntion. Chapter 3, Morgan Kaurmann, San Mateo, CA, I991].

|Dally90l:r] W. J. Dally, "Perlormautee Analysis ofk-ary n-Cube Interconnection Networks," IEEE Tran.-r. Co-rqnnters,
39(6): T15 T55, I991].

|Dally9Dc| W. .I. Dally, "\~’irtual Channel Flow Control,“ Pme. mt; Annn. int. .Sfyt-qt-t. (.'ompu.rerAn;'h., pp. 60 65, May
I990.

lDally92] W. J. Dally,J. Fiske,J. Keen, R. Lethin, M. Noakes, P. Nuth, R. Davlson, and G. Fyier, "The Message-Driven
Processor: A Multicomputecr Processing Node with Efficiertt Mec.hartisms," IEEE .'Irfit_'tv, I2{2]|:23 -39, Apr. I992.

[Davit.‘oon?l | E. S. Davidson, "The Designand Control oI'Pipelined Function-Gene rators,“ Pirnc. int. IEEE Conjl System
Nettwtrbt and C'0m,rtttter.r, pp. I9 2 I, I9?I.

|Daviclson]'5 I E. S. Davidson, D. P. Thomasc L. E. Shar, and J. ll. Patel, "Eltective Control for Pipelined Computers,“
Prue. (.'UMT’C'Ol'1t'. PP. I5| I54, I975.

]DEC56| DEC, "The Whetstone PerI'ormance,“ Technkal report, Digital Equipment Corporation, Becltiord, MA, I956.
IDEC92] DEC, "Alpha Architecture IIand1:ook,“Tecl1.nical report, Digital Equipment Corporation, Boxboro, MA, I992.
[DeCegamma59| A. L. Decogamttla, Tire Té'c'.hmt-to-gr of Parallel Pt'0c'e.r.'ting.' .-’Itr.'iti.ret;'t1tt'e'.r and I15! Hcttrtrwcrre,

Prentice-I-lall, Engtewood Cllfffi, N], I959.

|Dekel5l] E. Dekel, D. Nasslmi, and S. Sahni, "Parallel Matrix and Graph Algorithms,“ SIAt'HJ. C'om;n.-ting, pp. 65?-
GT3, l95I.

BPWFPPW

_ Ff-1' Mclimw Hill I'||rr.-;|r_.-.I||r\
‘Q2 i B

|Denning-I55] P. J . Denning, "Working Set Model for Program Behavior," Commun. .4(.'t'l-L I I{6}:323 -333, I965.
|Dennis5D| .I. B. Dennis, "Data Flow Supercomputers,“ IEEE Compute-r. pp. 45 56, Nov. I959.
[Dennis5l1] .1. De1:|nis,"l11e Evolution of“Static” Dataflow Ancltitectttre," in Gaudiot and Bic [eds], Advanced tops-.1 in

Dnrnflnw Cnynpming, pp. 35---9| , Prentice-Ilall, Englewoo-|:l Clitts, NJ, I99].
|DiefendorIl92] K. DieIend.orIt'and M. Allen, ‘1Z}rganization ofthe Motorola 55I ID Superscalar RISC Microprocessor,"

IEEE ."l-ficm. I2|[2}:4D-63.Apr. I992.
|Di_ikstra65] E. W. Dijkstra, "Cooperating Sequential Processes," in Genuys {ed}, Programming Lctngztugex, Academic

Press, NewYo1'k. I965.
I Dinning59] A. Dinning, "A Survey of Synchronization Methods lor Parallel Computers,“ IEEE Computer. 22(7), I959.
|Dongarra56] J. J. Dongarra and D. C. Sorensen, "SCI-IEDULE: Tools for Developing and Analyzing Parallel Fortran

Programs,“ Technical Memo 5-I5, Argonne National Laboratory, I956.
|Dongarra59| J. Dongarra and A. I-linds, “Comparison of the Cray X."MP~4, Fujitsu VP-21]), and Ilitachl S-5IDl"2D,“

lfl II‘-W113 31111 D-B‘G1‘0-DI {B115-L Parallel Processing fitr Supeteontpurbrg and Artificial Intefligence, pp. 259 -323,
Mcfiraw-Ilill, New York. I959.

mew

lDongarra92| J. Dongarra, "Pertiormance of Various Computers Using Standard Linear Equations Software," Technical
report, Computer Science Department, University ofTennemee, Knoxville,TN, I992.

|Dubois56| M. Dubois, C. Scheurich, and F. A. Briggs, "Memory Access Butlering in Multiprocessors," Proe. tI3.l'.I1.-'It'I.I'J'!t.
int. Simp. f.'o.rttp:tter rIrt.'t't., pp. 434 -442, I956.

lDubois55| M. Dubois, C. Scheurich, and F. A. Briggs, "Synchronization, Cohereme and Event Ordering in
Multiprocessors," IEEE Cumpttter, 2 IQ}, I955.

l Dubois90a| M. Dubois and F. A. Briggs, "Tutorial Notes on Shared-Memory Architectures for Multiprocessors," Pro;-.
i'?!lt Szrmp. Crtnputer t*Itt'.l1., Seattle, WA, I990.

|Dubois9Db] M. Dubois and S. Thakkar {eds}, C'crclre' and J'n.rerc'onne't.'t .=Itz'.Fti.re~r.'tttre'.\' in Mtt1tiprtx'e.'r.rotx, Kluwer
Academic Publishers, Boston, MA, I995.

| Dubois92a| M. Dubois ," De layed Consistency,“ in Dubois and Tliakkar-[eds. }, S'enini.:ie Shared-.lHemo.r-_v .'l-fut‘: ipnpee.-mt.r.r.
Kluwer Academic Publishers, Boston, MA, I992.

|Dubois92b] M. Dubois and S. Thalckar {eds}, .'i'euiubie Shrtt‘ed-.Mcm-m'_3' Multiproee.-trots. Kluwer Academic Publishers,
Boston, MA, I992.

[Eager59] D. L. Eager, J. Zaliorjarl, and E. D. Lazowslca, “Speedup Versus Efficiency in Parallel Systems," IEEE Trcrttx.
(_'0n:ptt.r-erx, 33511405 -423, Mar. I959.

[Edcnfi:Id9fl] R. Edcnficld, M. Gallup, W. Lcdbettcr, R. Mcfiarity. E. Quintana, and R. Rciningcr. “Thc 65040 Processor:
Part I. Design and Implementation," l'EEE."|rfit_'t1r, IlIl{ I]|:6-6 -Tl-l, Feb. l99lIl.

[Emma5i'] P. G. Emma and E. S. Davidson, "Characterization of Branch and Data Dependences in Progratre for
Evaluating Pipeline Performance," IEEE Trans. C'omputer.r. 36:559--525, I957.

|Encore57| Encore, il-fuitimox Tet-tum-at 5.-'unirnor_i; Encore Computer Corporation, Ft. Laudercklle, FL, Mar. I953‘.
lE11slowT4) P. II. Enslow |[ed.}, A-fuit'iptrtc'e'.r.ror.r and P'arr.r1tlt.'i Plrn:'e.r.ring, Wiley, New York, I9T4.
lFeltenl-l5| E. Felten, S. Kacrlin, and S. W. Otto, "The Traveling Salesman on a llypercube MIMD Computer," Proe. int.

Con-,i.' Pure-liei Processing, St. Charles, lL,Aug. I955.
lFeng5I I T. Y. Feng, "A Survey oflnterconnection Networks," IEEE Computer. l=I{ I2}:I2 - 27, I95 I.
|Ferrante5i'| M. W. Ferrante, "Cyberplus and Map V Interprocess-or Communications tor Parallel and Array Processor

Systems," lll Karplus (oil), .7lfut't|ytr0ci¢'.r.rot3 crnd'rIrtt-rt’ P't?n;'e.r.wr.r. Simulation Councils, IttC., San Diego, CA, I951

TI‘-r Mcliraw HI'llc't--r.-in--I-r~ _-
__

|Fisher5I| J. A. Fisher, "Trace Scheduling: A Technique for Global Microcode Compaction,“ IEEE Tnun.-r. t'.'omputer.r.
3IIl(_T}:475- 490, I95 I.

|Fisl1er53] J. A. Fisher, ""\-'ery Long Instruction WordArchitectures and the ELI~5 I2," Pme. iiitit Sr:-n_;-1. Computer Ant-i1..
pp. no isa, scnt Press, New York, I953.

|Flynni'2| M. J. Flynn, "Some Computer Organizations and Their Eftiectiveness,“ IEEE Tron.-r. Computenr. 2l{9]|:945
sac, I972.

Fortunei'5| S. Foltune and J. Wyllie, "Parallelism in Random Acce-ss Machines," Prue. AC'.~'H .'i}=,r;-g-,1. Tireory o,F'(.'omputing.
pp. ll4- l|5, I975.

'Fox57] G. C. Fox, S. W. Otto, and A. _l. Hey, "Matrix Algorithms on llypercube {I}: Matrix Multiplication," Poroiiei
tT'omputin,g. pp. I7-3|, I957.

Fu_iitsu9D] Fujitsu, FPZt'1l?t'J.5'e'rie'.r Supercomputers, Fujitsu Ltti, Japan, I991].

'Fu_iitsu92| Fujitsu, l"PP5l]t'l lector Puruiiei Prone.-mot: Fujitsu America, Inc., San Jose, CA, I992.

[Ga.isit.i52] D. D. C-a,iski. D. Padua. D. J. Kuok. and R. H. Kuhn, “A Second Opinion on Dataflow Machines and
Languages," 1.15.155 Conrottter. |s(-2}, I952.

'Ga_iski55| D. D. Oajski and J. K. Peir, "Essential Issues in Multiprocessor Systems,“ IEEE Computer: I5{-6}, I955.
(iaudiot9|| .I.-L. Gaudiot atlti L. nm, Admflced Topics or Datqflow Canipufingg Prentice-Ilall, Engbewood clan, NJ,

I9‘9I.

'Oeternter55a] D. Oelernter, "Generative Communication in Linda," .-iC.il-I Trans. Prog. Lung. unrt.5}'.nem.r, i'(I]|:5l]- -
II2,.Ian. I955.

lfielerntertilfibl D. Geternter, N. Carriero, S. Chandzran, and S. Chang, “Parallel Programming in Linda," Pm;-. Int. t’.'onl'T
PcrruHe1Pl"ut.'e.r.ring, pp. 255-2153, I955.

|Geternter9Cl] D. Gelernter, A. Nicolau, and D. Padua, Lttnguage.r and Cotnpiier.r_fi_tr Pttrrtiief Computing, MIT Press,
Cambridge, MA, |a9o.

[(1harachorloo9D| K. Gharachorloo, D. Lenoski, J. l..audon, P. Gibbons, and J. llennessy, "Memory Consistency and
Event Ordering in Scalable Shared-tvtemory Multiprocessors," Pt-oe. Urn Annu. int. .5}:-np. Coniputer Ar-:ii., June
I991].

[Glraracltorlooilll G. M. Gharachorloo and K. R. Traub, "Mnllithreacling: A Revisionist View ofData.flovtArcl1itecnne,"
Pnwc. Ifitn A nnrt. Int. Srimp. Computer .»it1;'.it., May I99I.

|(iharachorloo92a| K. Gharacltorioo, S. Adve, A. Gupta, .I. L. Ilennessy, and M. Ilill, "Programming for Diflerent
Memory Consistency Models,“ J. Para. oi.-.-tn. (.'ontputing, Aug. I992.

lGl'tarachorloCt92b] K. Gharachorloo,A. (iupta, and]. L. Ilennc-ssy,"Iiiding Memory Latency Us ing Dynami-cScheduling
in Shared-Memory lvlultiprocessors,“ .F't-oe. 19th .-tlttrttt. int. Sin-np. Connruter An.-11., Gold Coast, Australia, May
I992.

lGharachorloO92c] K. (Iharacliorloo, A. Gupta, and J. L. llennessy, “Performance Evaluation of Memory Consistency
Models for Shared-Memory lvlultiprocessors," F-utt.r1'.it.i'nt. (_'on,i'.'rln:-ii. Supportfitr Frog. Lang. and ()5, I992.

lGjessing92| S. Gpshtg, G. B . Gustavson, J. R. James, and E. ll. Kristiansen,"The SCI Cache Coherence Protc-col,“ in
Dubois and Thakkar {eds}, Seoioiaie Sir¢.rr1ertl-.il-fernor_v .i'tiiuitt]o.rrn.-e.r.-tors, Ktuwer Academic Publishers, Boston, MA,
I992.

lGlats92| C. J. Glmts and I. M. Ni, "The TURN Model for Adaptive Routing,“ Prue. liitii .-1In'n'tt. int. .8}-mp. Computer
.»i.nr.'h.. I992.

|Gobie5 I] ('1. II. Gable and M. ll. Marsh, "A Dual-Processor UNIX VAX Ilt'75D," Technical report, Dept. ofElectrical
Engineering, Purdue University, West Lafayette, IN, Sept. I95 I.

5lWF"P"r

_ Ff-1' Mrlimw Htii r".--r.-1",.-.-In-».
‘Q4 i B

|GofI9l| G. Golf, K. Kennedy, and C. W. Tseng, "Practical Dependence Testing," Pme. ACM .S'i'GPLAN (kt-n_,f.' Frog.
Lang. Des ign and .i'.r:Ipien-tentation, I9'9I.

[Gooclman53] J. R. Gooclrnau, “Using Cache Memory tokeduce Processor-Memory Ttafi'ic,”Pm-e. iiltit.$t-tnp. Computer
Areit.. }1p.I24 I3I,Ju.ne I953.

|Goodman55] J. R. Goodman and P. We-est, "The Wisconsin Multicube: A New LargeScaie Cache-Coherent
Multiprocessor,“ Prue. I5111' .-tlnnu. Int. S!-'I'J'I1I.I. (.'o.rt:IpttterAtr.'h., pp. 422 -43I, I955.

[GoodInaI159] J. R. Goodman. M. K. Vcmon. and P. J. Worst. “Eflicicnt Synchronization Plimitivcs for L-aI'gI:-S-cal-I:
Cach-e*Cohe rent Multiprocessors Proe. Third Int. (.'on,|'.' Ant-it. .'i'uppon_,For Pmg. Long. and 0.5 pp. 64 -73, I959.

|Goodman9D| _l. R. Goodman, "Cache Consistency and Sequential Consistency,“ Technical Report 6|, IEEE SCI
Committee, I990.

|Goor59] A. J. van de Goor, I.’.'oI-qnuter A tr-iriteeture and Design. Addison-Wesley, Reading, MA,I959.
[Gottlieb53 IA. Gottlteb, R. Grishman, C. P. Kruskal, K. P. McAutitte, L. Rudolph, and M. Snir,"T'l1e NYU Ultracomputer-

Designing an MIMD Shared Memory Parallel Computer," IEEE T-on.-r. Computers, C-32(2): I'i'5- I59, February
I953.

[Goyal5/4| A. Goyal and T. Agerwala, "Pertiormance Analysint of Future Shared-Storage Systems,“ IBM ..i. Res. and
E¥'\'-ct-:1-p. pp. 95 9s, Jan. I954.

|Graham92l S. Graham, J. L. I-lettnessy, and J. D. Ullman, “Course on Code Optimization and Code Generation,“ in
Tutorial on C'oz.i'e Clotimization and Generation, Western Institute of Computer Science, Stanford University, Aug.
I992.

|Graunke9D| G. Craunke and S. Thakkar, "Synchronization Algorithms for Shared-Memory Multiprocessors,“ IEEE
C'onIputeI'; 23{6}:6I]-69, I991].

|Greenberg59| R. I. Greenberg and C. E. L.BEi6t'S0t1, "Randomized Routing on Fat Trees,“ Arivonee.-r in Computing
Research, 7:345--3T4, I959.

|Gross53| T. R. Gross, "Code Optimization Techniques lor Pipelined Architectures,“ Pme. IEEE Computer St'n;'I'ety
smug t.-n. (.'on,i.'. pp. ats -ass, I953.

[Ciupta90] A. Gupta, W. D. Weber, and T. Money, “Reducing Memory and Traflic Requirements for Scalable Directory-
Bascd Cache coherence Schemes,“ Pt-oe. int. tf.'ont‘.' Puruiiei Pt-oeessing, pp. 3 I2 32I, I990.

|Gupta9I IA. Gupta,J. L. Ilennessy, K. Gharachorloo, T. Mowry,aII.d W. D. Weber,“Computative Evaluation of Latency
Reducing and Tolerating Techniques,“ Prue. iiitn Annu. int. .S}ntp. Co.-qouter Areit.. pp. 254- 263, Toronto, May
I99I.

|Gupta92| A. Gupta and V. Kumar, "Scalability of Parallel Algorithnut tor Matrix Multiplication,“ Technical report,
University of Minnesota, I992.

[Gupta93] A. Gupta and ‘I-". KumIIr, "The Scalability of FFT on Parallel CoInputers,“lEEE Trans. Puroitei Dittri. Sr.-:.rem.r.
to appear in I993.

[Gm-d551 J. R. Gard, C. Kirkham, artd J. Watson, "The Manchester Prototype Dataflcw Cotnpurer,“ Contntun. Atflii
25(l}:36-45, I955.

|Gustatson56] .I. I. Gustatson, S. Ilawkinson, and K. Scott,“The Architecture ot'a Ilomogeneous ‘vector Supercomputer,"
Pare. Int. (.Ton,l.' P'araHr:I' Pt'oee'.s'.\tI'n__g, pp. 649- -652, I956.

|Gustat'son55| _l.L. Gustatson, “Reevaluating Amdahl‘s Law,“ Commun. A Cit-i. 3 I{5}:532--533, May I95 5.
|Gustalson9I| J. Gustatson, D. Rover, S. Elbert, and M. Carter, "The Design of a Scalable, Fixed-‘lime Computer

Benchmark,“J. Punt. Distri. Computing, II, Aug. I99].
[Gust.avson56] D. B. Gustavson, "Introduction to the Ftettbus .1-fiempnn.-e.r.vor.-r and A~fic'Rt$_}'.¥te'nI, ID{2]|:i'? -55, I956.

ibivrwflv

rr<- Mclimw Hill r".--r.-1",.-.-|.¢-».
mm as

|l-Iagersten92] E. Ilagersten, A. Landin, and S. I-Laricli, "Multiprocessor Consistency and Syncluonization Through
Transient Cache States," in Dubois and Thakkar|[eds.}, .S'cafab1e Share-J-Memo.ry Jl'fuff|'p:tIv.'e".'l'.r0!x, Kluwer Academic
Publishers, Boston, MA, l99'2.

ll-Ials.teaclB5] R. ll. I-lalstead, Jr., "Multilisp: A Language lor Conc|.u'rent Symbolic Computation," .»lI.C'M Tran.-r. Pm-g.
Lang. ¢.rnr.|l.§}'.'¢.re'rrn:, T{4]|:5IDl 53B,(3ct. I985 .

[1-Iarrison9'D| W. Harrison, B. Kramer, W. Rudd, S. Shatz, C. Chang, Z. Segall, D. (Ilemmer, J. ‘Wlllimmon, B. Peek, B.
Appethe, K. Smith, and A. Kolawa, "Tools for Multiple-CPL] Ent=ironments,“ IEEE Sqf.'r|-Pare. 'T|[3}:45 5|, May
I990.

[1-layesflél J. P. Hayes, '1". N. Madge, Q. F. Stout, 5. Culley, and J. Palmer, "A.rchitect1u'e ofa l-lypecrcube Supercolnputer,“
l"’.rrn;'. Int. C'0.q',f.' Puraflef Pnn;‘e$.rr'ng_ pp. 653 --E154], I936.

|lIeathB?] M. T. Heath, "llypercuhe Applications at Oak Ridge National Laboratory," lleath {$11.}, hfsyre-rm.-be
.1-fi:i‘.ripm:.'e.r.'m-rx, SIAM, Philadelpltia, I937.

||lel|ern1an67| I-l. llelberman, Digital (.'um;;urer.'iv.-ac-m Princ'Ip.le':r. Mcfiraw-Ilill, New York, I967.
|lle1u1emy9'D] J. L. llennesey and D. A. Patterson, (.'0.mp:.r.rc'r.-‘l.rt'!r1irec‘n.rre'.'.-I Qr.run.rr'.l'u.rh'e'/lppnm¢'I1'_ l'vlorg,an Kaufmann,

San Mateo, CA, I990.
|ll5e11nesey92| J. L. I-Iennesey, "Introduction to a Tutorial on Code Optimization and Generation,“ WICS, Stanford

Unhrersity, I992.
[lIen2herg,erB4| L. (,1. llertzherger, "TheArcl1itect1.|re ofthe Filtli-Generation lntierenoe Computers,“ Fum-re Gerrerarliun

Cbnpurer 5_y.'n'em3, I{ I)1 I9‘--2|, July I954.

||-lill92] M. D. Hill, "W'hat ls Scalability‘?," in Dubois and Tliakkar {eds}, .':Tcai'abi'e Shared-Mcrnrrry .'l-fnrf.r|'pn'n.\e'$.r0r.§§.
Kluwer Academic Preqs, Boston, MA, I992.

||litlisB-5| ‘W. D. llillis and G. L. Steele, "Data ParaltelAtgoritl1ms,“ Comnmn. ACTH. 29{ l2}:ll?0 IIB3, I93-5.
[I[ira.kiS?} IL Hiraki, K. Nishida, S. Sekiguchi, T. Shimada, and T. Yiba, "The SIGMA-I Dalaflow Supercomputer: A

Challenge lor New Generation Supercomputing Systems,“ J. lqfi.-. Pm¢-¢-mug. lD~[4]|:2l9\ 226, I987.
|lli1ata'92| ll. Hirata, K. Kirnura, S. Nagannne, Mochizuki, A. Niaahimura, and Y. Nakme, "Ari Elementary Processor

Architecture with Simultaneous Instruction Issuing from Multiple Threads," 1'91}: Anna. Int. S}-1-rap. Computer
Arr.'h.. I992.

|l[oare?4| C. A. R. I-Ioare, “Monitors: An Operating System Structuring Conoept," Cwnmun. ACM. l?{lD}:549 55?,
fit. I974.

[IlOlI']'H] R. C. IIi'rIl1,G. S. (I1'ilI'lJIlt\, E. D. Lazowska, and M. A. SCOTL Srruc!1:re'd(.'0nc'urren!Pirogmmming wi1'h' Operating
5_5'.rIe'm.'r1I||'PpfiL'ul‘i0n.r, Aiiclison-Wes ley, Reading, MA, I978.

|l-lornewo-odE?] M. llomewood, D. May, D. Shepherd, and R. Shepherd, "THE IMS TBDD Transputer," IEEE .'I~f1icr0_
i'{5]tl0 '.?_‘6,(_kt. I937’.

|Il01‘d'9D] R. M. IIO1‘d, Pumlfef Su;x'n'.‘0n1pu.|'in,g in SM-fD .-“l.n;'}1'i.|'r.*1;'.r1.rre.r_ CRC HHS, B064! Raton, F L, I991].

|lIorwatR9| W. I-lorwat, "Conc1.u~rent Smalltalk on the Message-Driven Pro-ce=isor,“ Master‘s thenis, Laboratory for
Computer Science, MIT, I959.

|l5otchips9l| I-Iotchips, Pimp‘. Hm Chips H‘! Is}:-up. on High-Perfirmamw (.'hip.r, Stantord University, Palo Alto, CA,
l9'9l.

[|lwa:ng?7] K. I-[Wang and S. B. Yao, "G1:-timal Batched Searching ot'Tree~Structured File-3 in Multiprocessor System,“
J. ACM. pp. 4-ll -454, July IQTT.

|I'lWflflg?H| K. llwang, (_bmpur¢'r.-'Iri!hme.'ic.' PIr|‘ncipi'c.'c. .-“lrr.'.lrih'='a;'r:.|'re' and Deilgn. Wiley, New York, I975.

|ltwangB2a| K. llwang, and Y. I-I. Cheng, "Partitioned Matrix Algorithms tor VLSI Aritlunetk Systems," IEEE Tram.
(.'0mpu.re‘r.\t. pp. I2I5-- I224, Dec. I952.

“WWW

_ rr<- Mclimw Hill :1--r.-1",.-.-|.¢-».
6Q‘ M B

|I-Iwang82b| K. Ilwang, W. Crolt G. ll. Goble, B. W. Walt, F.A. Briggs, W. Simmons, and C. L. Co-ates,"A UNIX-Based
Local Area Network with Load Balanc ing," IEEE (.'w-rrpurrer; IS{4):55 - 645, I932.

I-I-IWiI11gB4] K. Ilwang and F. A. Briggs, C.'0rqr1ule'r Arr.'l1l.ree'lure' unelrnumllel Pnwe'.r.rlng. Mcflraw-Ilill, New York, I954.

|Ilwang87a| K. Ilvrang, "Advanced Parallel Processing with Supercomputer Architectures,“ IEEE. vol. TS, Oct.
I981’.

[1-lwa.ng8Tb1 K. Hwang and .l. Ghosh, "1-ly|:|ernet: A Communication-fifficient Architecnlre for Constructing Massively
Parallel Computers,“ lEEE Trans. Compare-rs. 36:I45D- I466, Dec. I981‘.

|IIiwang8'lc| K. Hwang, J. Ghosh, and R. Cltciwlrwaityuit, "Computer Architect1.u'es torA[Processing,“ IEEE Canapurexc
pp. I9 29,1311. I953‘.

|Ilwang88] K. Ilwang and Z. Xu,"Mult ipipe line Networking tor Compound Vector Processing,“ IEEE Trans. CUn:§|?u.H_'r.V,
arms;--4?, mes.

[Ilwang89a| K. I-lwang and D. De(_}root (eds), Pamllel Processing for Supemompurers and Amficlal Intelligence.
Mc(}raw~IIill, New York, I939.

[I[wang89b} K. Hwang, P. S. Tseng, and D. Kim, "An Oflhogonal Multiprocessor for Parallel Scientific Computations,“
IEEE Tram". (.'0.r:qrJr.r.r-yrs, C-3B»{ I }:4T El, Jan. I939.

|Ilwang90] K. I-lwarig et al., "UMP: A RISC-based multiprocessor Using (_}rt.hogonal Aocesr: Memories and Multiple
Spanning Buses,“ Pmr.-. .-I CM l'nr_ C’-:>nl.' Sn-pemomparlng_ pp. Tl 22,Amsterdam, The Netherlands, June I990.

weww

|I-twang9l| K. Ilwang and S. Shang, "Wired-NOR Barrier Synchronization tor Designing Shared-Memory
Multiprocemor,“ Firms. lnr. E.‘-onfj Parallel Ptme-aiming, St. Charles, lL,Aug. l9'9l.

|IIwu9I| W. M. I-lwu, "Tutorial Notes on Compiler Support tor Superscalar Processors,“ Prue. lflrn Anna. lnr. .'i:i-rrap.
C0rr:pule‘r A re‘-l1.. Toronto, I9'9I .

|Iannucci88] R. A. Iannucci,A Llmqflowrvnn Neurrmnn HybridAn;-hiogcmre, Ph.D. thesis, MIT Laboratory tor Computer
Science, 545 Teclutoiogy Square, Cambridge, MA IDQI39, I988.

[II';IM9Da] IBM, Rl5(.'.$>sren:l|5|'?Gll 1'2-e-lrnalr.-_gi-_ IBM Advanced Illorkstatiotut Division, IBM Austin Communications
Dept., Austin, TX, I990.

|IB M9111:-I IBM, .'5:vs.r|e'r:*1.-"_§'53‘I'J Pnx.'e'$.'mr.':, .$i'.i:re'm Fnrncr lo-ns, International Business Machines, Wltite PL'1i.t1:i, NY, I991).

IIEEEESI IEEE, .'§|'an¢lu.rr.l T54, ().n;le'r Hr). (TN-S353, IEEE Computer Sflfilflly Press, LOG Alamitos, C11, I955.

lEEE9|| IEEE, Fun.-rebus-* .' Logical Layer .5§r:iecr]'icari0n.s, 896.1-1991, Microprocessor Standards Suboommittee,s
IEEE Computer Society, I99I.

'Intel8-4| Intel, Muln'bos H Bus Arclilrecmre .SIpec;|&'-mtlon Haraliloolr, Intel Corporation, Santa Clara, CA, no. I445-D77-c,
I984.

|Intel9'III| Intel, S'upe'rtvJmplle'r.r_fi1r I'.lre' lP."}'If.'.-"~li'|'5I'l Teu;'hnlc'ul Summary, Intel Scientific CDl‘l1plllCl‘B, Beovertori, DR, I990.

InteI9l| Intel, Paragon XPHS Prcnz;lur.'.r 0;-en=|'ew_ Supercomputer Systems Division, Intel Corporation, Beaverton, UR
9TI[II|]-6, I99].

,Iarnes9'[Ia| o. n. Jame-s,A. T. Laundrie, s. (ijessing, and (1. s. SoI1.ni,"Scalab-Ie Coherence Interface,“ :1-:55 (.'0n:puI‘-er;
235114 tr, mo.

J.ames9'Db| D. V. James, A. T. Laundrie, S. (ijeming, and (1. S. Sohi,"Distributed-Directory Scheme: Scalable Coherent
Interface,“ IEEE Computer; 23|[6):74 T7, I990.

[Jermolult9I]I| T. Jermoluk, Mulrl,r:n».;-ex.-mr UNIJLI Silicon Graphics Inc., Santa Clara, CA, I990.
Johnson9l I M. .Ioh1u:on, Sr.rpe'r.\w_'ulur A-llc'r0pnwe'.'»'.s'0r EE'.rlgn_ Prentice-Ilall, Englewoo-cl Cllllii, NJ, I99I.

JoI1nsson9I]| L. .Iohnsso1u "Communication in NetvrorkArchitectures,“ in Suaya and Birtvristle {eds}, VLSI an¢.lParallal
Corqnnrarlan, Morgan Kaufmann, San Mateo, CA, I990.

rr<- Mclimw Hill I_|Il1‘.l]|r_.I.ll|f\
—_ H7

|.Iones8ID| A. K. Jones and P. Schwarz, "Experience Using Multiprocessor Systems A Status Report,“ ACM Comparing
Sane-_y_ I2{2):I2I I65, I980.

[Jones8-6] M. B. Jones and R. F. Rashid, "Mach and Matchmaker: Kernel and Language Support tor (Jb_ject-Oriented
Distributed Systems,“ Pim1.'. (.U'P5L.-I I986, pp. at--rt, Portland, on, Sept. I986.

|Jordan83] I-I. F. Jordan, "Performance Measurement on I-IEP- A Pipelined MIMD Computer,“ Prue. lllrlr .5}-nap.
Canlpnrerrlnz-h.. pp. 20'? 2l2, I983.

|Jordan86| I-l. F. Jordan, "Structuring Parallel Algorithnn: in an MIMD, Shared Memory Environment," Parallel
C'0mp:.n‘r'ng. pp. 93 Ill), May I9815.

|Jouppi89| N. P. Jouppi and D. W. Wall, "AvaiL'1ble Instruction-Level Parallelism tor Superscalar and Superpipelined
Machines,“ Prim. Tlrlrd Int. f.'unj,|".' Aniilr. Suppo-rlfirr Frog. Lang. and ().'i pp. 282- -2B2,ACM Press, New York, I989.

|KalLstrom88] M. Kallstrom and S. S. Thakkar, "Programming Three Parallel Computers,“ IEEE .5’-nfin-are-, pp. II 22,
Jan. I988.

lKane88] G. Kane, ll-fl'P.§'R2|']ll']|fl Rl.§'C.-he-llliac-nrre, Prentice-llall, Englewood Clifiii, NJ, I988.

|l(ar-pfi-I5] R. M. Karp and R. E. Miller, "Properties ofa Model for Parallel Computations: Determinacy, Termination,
Queueing,“ Sl.-‘I.M..l. Appl. ll-la.r.l1._ pp. I390 I=III, Nov. I966.

|Karp88] R. M. Karp and ‘u". Ramachandran, “A Survey ot' Complexity oI'Algorithrm lor Shared-Memory Machines,“
Technical Report 4-D8, University oI'CaliIornia, Berkeley, I988.

lI<.atz9lJ] R. H. Kat: and J. L. Ilennessy, "High~Perlormanoe Microprooessor Architectures,“ lnr. J. High-firmed
El£'L'.l'flJ'nlC.'r, l{ |), mt. I990.

|K.awabe8?| S. Kawab-e et al.,"The Single Vector-Engine Supercomputer S-820,“ Nl.Hte'l Ele'cIrUnie‘.r, pp. II I I25, I987‘.
lKermaniT9| P. Kermani and L. Kleinrock, "‘r'irtuaI Cut~TI1.rough: A New Communication Switching Tecltnique,“

(.'¢rmpu.re‘rNe*luwrkr_ 3{-H226? -I815, I9T9.

[K.odama9D1Y. Kodmna, S. Sakai, and Y. Yarnaguchi, “A Prototype of Highly Parallel Datafiow Machine EM-4 and Its
Preliminary Evaluation," P:a,l.' Info, Japan. I991].

|I(ogge8| I P. M. Kogge, The .rIrr.‘lriI'-ec.rr.r.rr=' rg,l'Plpellned C'orr:prr.re'r.r, Mofjraw-I-lill, New ‘nm, I98I.

|I<.owalik85] J. S. Kowalik |[ed.]-, Parallel MIMD Cnrnpnrar lan: HEP Snperanrnpurar and .-lppllaarlon.-r. MIT Press,
Cambridge, MA, I985.

lKruatrachue88| B. Kruatrachue and T. Lewis, "Grain Size Determination tor Parallel Processing,“ IEEE Sqfiwi-are-.
5{I}:23 3I,Jan. I988.

I KSR9l I KSR, KER-l Us-an-law, Internal Report, Kendall Square Research Corporation, l?UTracer Latte,“-'alt]\an1, MA
CIEIS4, I99I.

|KuckT8| D. J. I{ucIt., The .S'I'rr.rcrr.rre' r{l'C'o-mpr.r.|'e'm and Crlmpulallons, Wiley and Sons, New York, I988.

[Kn-cIt82] D. .l'. Kuclc and R. A. Stokes, “The Burroughs Scientific Procsor ['BSP‘)," IEEE Trans. E.'nmpnre-ns, pp. 363
3T6, May I982.

|Kuck8=l] D. .I. Kuck, R. II. Kuhn, I3. Leasttre, and M. Wolfe, "The Structure of an Advanced Retatgetable ‘u'l':ctori:'Jet',"
in Ilwang {ed}, Superr.'ompure'.r:r.' Design and .»'Ippllc'a.|'ion.'t, IEEE Computer Society Press, Los Alamitos,CA, I984.

lKuck8n] D. J. Kuck, E. S. Davidson, D. ll. Lawrie, and A. I-I. Sameh, "Parallel Supercomputing Today-The Cedar
Approach," SL'|l€J'1‘£'e', 23 |{-2}, Feb. lass.

I l<.umar87] V. I<.umarandN. Rao,"Parallel Depth-First Search, Part I]: .-"tn.alysis,“ lnr...l. Para. H-ngramnnng, |6{-I5]-:SDI
SI9, I981‘.

[Kurna.r88] M. Kumar, "Measuring Parallelism in Computation-Intensive Sci:mtificlEngineering Applicau‘o11s," IEEE
Trans. C'wqUu.re'r.'c, 3?(9]|: lI]88- I098, I988.

“WWW

_ rr<- Mclimw Hill I_|Il1‘.l]|r_.I.ll|f\
‘Q3 i B

|Kumar9D] V. Kumar and ‘ll. Singh, "Scalability of Parallel Algorithms lor the All-Pairs Shortest Path Problem," Prue.
lmr. Cc-n,l.' Parallel Pmr.-e.rxln,g. pp. I36-. I4D, I990.

[I<.umar92| V. Kumar and A. Gupta, "Analyzing Scalability of Parallel Algorithms and Architectures,“ Technical Report
AJIPCRC 92-D20, Army Iligh-Pertormance Computing Research Center, University of Minnesota, Minneapolis,
MN, I992.

[Kung78] ll. T. Kung and C. E. Leiserson, "Systolic Arrays (tor ‘i-"LSI]|,“ Dull‘ and Stewart {eds}, Spar.te' Matrix
Pnn.‘-2-edlng.r_ Knoxville, TN, I978, SIAM, P|1iLadelphia.

|Kung80| I-l. T. Kung, "The Structure of Parallel Algorithms,“ in Yovits {ed}, .4¢:l\=anae.r in f.‘ornpnrer.-r. vol. I9,
pp. 65- Il2,Acadernic New York, I980.

|I<.ung84| S. Y. Kung, "(In Supercomputing with Systolic and Wavet'ront Array Processors,“ Pme. JEEE. pp. 867- 884,
July 1954.

|Kung88| S. Y. Kung, l-I..'S'l .-*Irrai'Prrx'e.r.mrs_ Prentice-Ilall, Englewood cons, NJ, I988.
|Kung90| I-I. T. Ktuig, "Ilow to Move Parallel Processing into the Mainsueam,“ Prae. Firs: Ilirrlrslrap an Parallel

Pl'r.u;'-£'.'l'$ing_ Taiwan, China, Dec. I990.
|'Lam88] M. S. Lam, "Sofiware Pipelining: An Etfective Scheduling Technique tor VLIW Machines,“ Pme. A(.'ll-l

.S'l'GPL.-‘IN Canfj Pl"a-g. Lang. Design and lnmlemenlallan, pp. 3 I 8 328, I988.

|Lam92| M. S. Lam, "Tutorial on Compilers lor Parallel Machines," Western Institute of Computer Science, Stanlord
llniversity, I992.

|Lamport 78| L. Lamport, “Time, Clock, and Ordering of Events in a Distributed System," C-wnnlrln. .-lIf.'M. July I978.
|Lamport79] L. Lamport, “How to Make a Multiproceaior Computer That Correctly Executes Multiprooess Programs,“

IEEE Tranx. Cnrqn-nrer.~:. 28{9]|:24|- 248, I979.
|Lan9'D| Y. Lan, A. Ii. Eslahanian, and L. M. Ni, "Multicast in Ilypercube Multipro-cessors,“J. Para. Dlsrrl Comparing,

pp. 30-4I,Jan. I990.
[Lang82_| T. Lang, M. Valero, and I. Alegre, "Bandwidth Analysis of Crossbar and Multiple~Bus Contentions for

Multipro-oessors,“ lEEE Trans. Computers, pp. I227 I233,Jan. I982.
|Larson73] A. G. Larson, "Cost-Effective Processor Design with an Application to FFT,“ Technical Report SL1-

SEL-73-D37, Stantord University,Aug. I973.
|Larson84| J. L. Larson, "Multitasking, on the Cray X-MP-2 Multiprocessor,“ IEEE Cal-npnren pp. 62- -69, July I984.
|Laudon92| J. Laudon, A. Gupta, and M. llorowitz, "Architectural and Implementation Tradeolls in the Design of

Multiple-Context Processors," Technical Report CSL-TR-92-523, Computer Systems Laboratory, Stanlord
University, Stanlord, CA 94305-4055, I992.

|Lawrie75] D. ll. Lawrie, "Access and Alignment of Data i.n a Array Processor," IEEE Trans. t'.‘a.rnpnrenr_ Dec. I975.
[Le1sure9D] B. Lemaure, Pf.'FForrran Exlen.r|iu-n. Kuck 8-. Associates, Champaign, [L 6I82D, I990.
[Loc8D] R. B. Lee, “Empirical Results on the Spoctlup. Efiiic-icnc-y, Redundancy. and Quality o-fPa.raI1cI Computations,"

Pl'In;'. lnl. (.bn,l.' l"'arallcl l"’nn;‘e'.'s.\'in,_|.;', pp. 9| --96, Aug. I98U.

|Lee84] J. K. Lee and A. Smith, “Branch Prediction Strategies and Branch Target Butler Design," IEEE (.'0.r:qrJr.rIe'r_
l7(I}:6 22, I984.

[Leiserson85} C. E. Leiserson, “Fat-Trees: Universal Networks for I"Ierdwa.re-Effiwzient Supercomputing,” IEEE Trans.
(_'onqr.ru.rers_ 341892 9CII, I985.

|Leiserson92| C. E. Leisetson et al., "The Network Architecture of the Connection Machine CM-5,“ Prue. A(.'.~‘H.'>}-ngn.
Parallel .-‘llgrrrirlrnri anal .-'Irr.'lri.rr:c.rr.rn=.:_ San Diego, CA, I992.

[Lenoski90] D. Lenoski,J. Laudon, K. Gharachorloo, A. Gupta, and] . I lennessy, "The Directory-Based Cache Coherence
Protocol for the DASII Multiprocessor,“ P2rrx.". llllr .»"Inn:.r. lnr. Eyrnp. Co.rr|,r:arer.rIn;'lr., pp. I48 I59, I991).

mew

Ti‘-r MCGIOW HI'iir'|--r.-in--I-r~ _-
__

|Lenoski92| D. Lenoski, J. Laudon, K. Gharachorloo, W. D. Weber, A. Gupta, J. l~len.nessy, M. Ilorowitz, and M. Lam,
“The Stantord Dash Multiprocessor,“ IEEE Co.-npnrer_ pp. 153 79, Mar. I992.

[Lewis92 | T. G. Lewis and H. El—Re‘i\'i1'ii,lnlnxluc'liun lo Parallel Computing. Prentice-I-Iall, Englewood Cliffs, NJ, I992.

|Li8S| K. C. Li and I-I. Schwetman, "‘v"ectorizing C: A Vector Processing Language,“ J. Para. Dian‘. Co.-nparing.
2{2]|:l32 I619, May I985.

[Li86] K. Ll, "Shared Virtual Memory on Loosely Coupled Multiprocessors,“ Technical report, Yale University, I986.
|Li.88] K. Li, "I‘i'Y:A Shared ‘i-"irtual Memory System for Parallel Computing,“ Pme. lnr. co.-,1; Parallel Ph'x'e.r.t'ing_ pp.

94 - IDI, I988.

[Li89] K. Li and P. I'iI.l1.l£lk, “Memory Coherence ilt. Shared-Memory Systems," ACM Tran.-r. Con-paler Sr.-aern.r_
pp. 32I -359, Nov. I989.

|Li9l I K. Li and K. Petersen, "Evaluation of Memory System Extens ions,“ Prue. lflrlr Anna. Inr. Sn-np. (_hrnpr.|‘le'r .-'ln;'.i!._
Toronto, I99I.

|Li92| K. Li, "Scalability Issues ot'Shared Virtual Memory lor Multiprocessors,“ in Dubois and Tl1.akkar{ed=s.}, Sealalale
Sh-aneal-.'l-le-rnor_vlI~lal:inm¢;~es.-r-or.-c, I(luwerAcade1nic Publishers, Boston, MA, I992.

[Lil_ia88] D. J. Lilja, "Reducing the Branch Penalty in Pipelined Processors,“ IEEE Cornpnrer. 2 I{7}:47- 55, I988.
|Lilia92| D. J. Lilja, .-‘Irel1'i.|'e'l:'.rr.rral .4 llema.ri\'£'s_,lo-r Exploiting Parallelism, IEEE Computer Society Press, LosAlamitos_

CA, I992.
[Lin9Ia] K. Lin, P. K. lv‘lcI(inley, and L. M. Ni, "Performance Evaluation of Multicast Wormhole Routing in 2D-Mesh

Multicomputers,“ Pme. lnr. Con,l.' Parallel Pmeessing. vol. I, pp. 435 442, I99I.
[Lin9Ib| X. Lin and L. M. Ni, "Deadlock-Free Multieast Wormhole Routing in Multioomputer Networks,“ Proe. l<':'.|'.i1

Anna. ln.r. Sfyrnp. Coniprrler .-“In:'lr., pp. IIt5-- I25, I9'9I.
|Linder9I] D. ll. Linder and J. C. Ilanien, "An Adaptive and Fault Tolerant Wormhole Routing Strategy lor it-ary

n-Ct.lbe:i,“lEEE Trans. C'om,|'n.r.rer.r, 4D{I}22- l2,Jan. I99I.

[Margulis90| N. Margulis, i8|'Sl7 .Hieropruae.r.rr.-‘In;'-iri!e'c'l'rrre'. Intel (}sborne»'Ivlc(lraw-I-lill, Berkeley, CA, I990.
|Marson88| M. A. Marson, (I. Balbo, and G. Conte Pe:_;i'on-naee Mm.lrrl£'.r of .4»lalripmc-exsor S}-.-clern-r. MIT Press,

Cambridge, MA, Cambridge, MA, I988.
[M'.asPat9I | MasPar "The MasPar Family Data-Parallel Computer“, Technical summary Mas Par Computer Corporation,

Sunnyvale, CA, l99l.
[Mirapuri92] S. Mirapuri, M. ‘llloodacre, and N. Vasseghi, "T'he MIPS R4tIIoI] Processor,“ IEEE .4-:li|;'.r'o_ I2{2}:I0 -22,

Apr. I992.
Mowry9I | T. Mowry and A. Gupta, "Tolerating Latency Tlnough Eltwa re-Controlled Preletching in Sl1ared~Memory

Multipro-cessors,“ J. Pam. Disrri. Comparing I2:87- ID6, June I99I.
'Muchnick88| S. S. Muchnick, "Optimizing Compilers tor SPARC,“5an R*£'.i1nol0,[{}'. Summer:-r54 -'77, I988.
|Mudge87| T. N. Mudge, J. P. llayes, and D. D. Winsor, "Multiple Bus Architectures," IEEE Crmpnlar. 2l]{6]|:42 49,

I987.
'Nassi87] l. R. Nassi. "A Preliminary Report on the Uttramax: A Massively Parallel Shared-Memory Multiprocessor,"

Technical Report ETR 87-4, Encore Computer Corporation, Fort Lauderrdale, FI_, I987. Fort Lauderdaie, FL, I987.
[1'lCUBE9D] TICUBE, nCUBE I5-fill] proae.r.r-or Manual, HCUBE Company, Beavrton, UR 991106, I991).

'NEC‘9tJ| NEC, “SK-X Series“, I-INSX,“ Technical report, Nippon Electric Company, Japan, I991].
NeJC[‘9I]| NeXT Computer, Inc., Redwood City, CA, The Maelr Operating .S}'.nem_ Cnapier l, I990.
[Ni8Sa| L. M. Ni and K. llwang, "Optimal Load Balancing in a Multiple Processor System with Many Job Classes,“

l'EEE Tran.-c. SQ,lin'are Engineering, pp. 49I --4915, May I985.

5il*“°li"P"r

_ rr<- Mclimw Hiii t".--r.-,n_.-.-to-».
‘Mn i B

[Ni85b] L. M. Niand K. llwang, "Vector Reduction Techniques lor. Arithmetic Pipeline,“ IEEE T!'£l‘J'I.'i. Cb.rq|'1u.rer."A. pp.
4-D4--4II, May I985.

[N891] L. M. “I'll, "A Layered Classification of Parallel Computers," Pme. l 99l lnt. ['0-nfi fit-r Young C0-nzpater .S'1:'ien.ri.sr.\r.
pp. 28- 33, Beijing, China, May I99I.

|Nickolls9'D| J. R. Nickolls, "The Detign ofthe MasPar MP~l: ACost‘Et‘Ioctive Massively Parallel Computer,“ in IEEE
Digest ol'Papen:-Cot-neorn. pp. 25 28, IEEE Computer Society Press, Los Alamitos, CA, I991].

|Nicol88] D. M. Nicol and F. I-l. Willard, "Problem Sise, Parallel Architecture, and Optimal Speedup,“ J. Para. Distri.
Ch-ntpating. 5 14-D4 -420, I988.

|Nicolau84| A Nicolau and J. A. Fisher, "Measuring the Parallelism Available lor Very Long Insu'uction Word
Architectures,“ IEEE Trans. Ctnnpaterx. 33{ll]-:968--9715, I984.

[Nikhil89} R. S. Nilthil and Arvind, “Can Datafiow Subsume von Neumann Computi.ng‘?,"' Pn_'u;'_ ltltlt .-tnna. ln.|'. Syn-t-gr.
C0rqtruterAtt-lr., pp- 262 272, I989.

|Nikl1il92a| R. S.Nik.IliI., '"Tutorial Notes on MultitI'ireadedArcI\itectu.res,“ Proe. i'5i'tltAnna.lnl..':T_l-nt,n-. Computer .-'In;'.it.,
IE Contact DEC Cambridge Res, Lab., I Kendall Square, Bldg. 70D, Cambridge, MA I12 I39.

[Nikhil92b| R. S. Nikhil and G. M. Papadopoulos ""T: A Multithreaded Massively ParatlelArchitect1.u-e,“ l'-‘me. l9t.lt
.-‘Inna. lnl. Sryrnp. Computer .4n'.'lr., M.ay I992.

|Nitzberg9I | B. Nitrberg and V. Lo, “Distributed Shared Memory: A Survey of Issues and Algorithms,“ IEEE Cu.rrtpt.tler;
24ts)ts2 -so, |9s|.

|Noa]».'.es90| M. Noakes and W. .|. Dally, "System Design of the J-Machine," in Dally {ed}, Pme_ .'i't'xt.lt MIT Conlj
.4t.i5'ctnt.'et.i' lies-eart.'lt in I-"t[.Sl', pp. I'l9- I94, MIT Press, Cambridge, MA,|99lJ.

|NS88| NS, NS32532 Per_,lorntanee rlnal_i'sis.- A Eenelrmark Sraafv, National Semiconductor, I988.
|NSF92| NSF, "Grand Challenge: lligh-Pertormance Computing and Communications," Report, Committee on

Physical, Mathematical, and Engineering Sciences, U.S. Office of Science 31'l£l Technology Policy, National Science
Foundation, llllasltittgton, DC, I992.

|Nussbaum9I] D. Nussbatun andA. Agarwal, "Scalability of Parallel Machines,“ Conn-nan. .4rI.'.?l-l. 34(3)-:57-6|, I99l.
|GSF9'D] DSF, OSF.-"'1 Teeltnieal Seminar, Open Software Foundation, Inc., Cambridge, MA, I990.
|G'usterhout88| J. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N. Nelson, and B. B. Welclt, "The Sprite Network

Operating System," tees Compute.-r, 2 |{2t;23 36, mas.
|Padua80| D. A. Padua_ D. J. Kuck, and D. ll. Lawrie,"lligh-Speed Mult iprocessors and Compilat ion Techniques,“l'EEE

Trans. Compttters, pp. T63 -T76, Sept. I980.

|Padua86| D. A. Padua and M. J. Woltie, "Advanced Compiler (lptimrzatiotui lor Supercomputers,“ Conn-nan. .rilCl'-l.
pp. II84--I2DI,Dec. I986.

'Panda9I | D. K. Panda and K. Ilwang, "Fmtt Data Manipulation in Multiprocessors Using Parallel Pipe lined Memories,“
J. Para. Dislri. f.'ompttting_ I2:I3D I45,.Iune I9'9I.

|Pa1asoIt9'D| Parasolt , E1.'pne.'r.r Llrer it fiaitle l'er.rion iiil, Parasolt Corporation, Pasadena, CA 911125, I990.

Pa1ker9l| K. Parker, "The Next Generation Furturebus - Fatttrebtts-tDesign, {I}:I2 28, Jan. I99I.
Patel78] J. ll. Patel, "Pipelines with Intern.al Butlers,“ Pme. Stlt .5}-nap. Con-tpater .-it-elr., pp. 249- 254, I978.

|Patel8I I J. I-I. Patel,"Perfonnance of Processor-Memory lnterconnections tor Multiprocessors,“ IEEE Trans. Computers.
pp. I'll-1'80, Oct. l98l.

Patel82| J. Ii. Patel, "Analysis of Multiprocessors with Private Caches,“ IEEE Trans. Computers. C-3I{4}i29€r -304,
Apr. I982.

Pattersorn82| D. Patterson and C. Sequin, "A VLSI RISC," IEEE f.'omprtter, I5{9}, I982.

mew

rr<- Mclimw Hill :1--r.-1",.-.-|..-».
mm ml

|Perrott79] R. Ii. Perrott, “A Language lor Array and Vector .-ltfflll Tranx. Prug. Lang. ana‘ .'>}'r|'em.r.
H2}: IT?--l95,0ct. I979.

|PerrottBl| R. Il. Perrott, Parallel Programming. Arldison-Wellley, Reading, M.-‘l, I937.
[Pfistcrfiial G. F. Pfisler. W. C. Brantley. D. A. George. S. L. Howey. W. J. Klciufelder. K. P. Mehulifle. E. A. Mellon. V.

A. Norlton, and J. Weiss, “The IBM Research Parallel Procasor Prototype {RP3}: Introduction and .-‘lrchitecture,“
Pma. lnl. C'arr,f.' Parallel Pmae.r.rln,g. pp. T154-Tll, Aug. I955.

[Pfistcrfifib] G. F. Pfister and V. A. Norton. “Hut Spot Contculcion and Combining in Multistage Int:-wormcefiuu Networks."
Prinz". lnl. (_brr,f.' Parallel Prtn;"e'.'l'.\l'ln,|.;'. pp. 791]--79?, Aug. I935.

|PoiycI1ronopouIosll9| C. D. Polyeltrortopouloel M. Girkar, M. R. I-laghighat, C. L. Lee, I3. Leung, and D. khouten,
"ParaI'r:eae 2: ."\’fl E1w'u'o1\n1ent Iior Parallelizing, Partitioning, Syncltronizing Progratm on Multiprooemors," Pm:-.
lnl. (.'a.rrf.' Parallel Pmae'.r.-ring, pp. T15-5 YT], I939.

|PountainE T] D. Pountain and D. May, A Tam-rlal lnI'm¢’.lur.'l Fan la Oecam Pirrrgmmmlng, McGraw~I-lill, New York, I957.
|Prasanr|a I(u.1narB7| V. K. Pranatma Kumar and C. S. Raglmvendra, “Array Processor with Multiple I3road.cas.ting,“ J.

Para_ Dirlrl. Cbngrrallng, pp. IZDZ I206-,l'\pt'. I951’.

[Prep-arata T9] F. P. Preparata and J. E. Vuillemilt, “The Cube-Connected (Iyclee: A ‘vlersatile Network tor Parallel
Computation," Pmc'_ Zflllr Swap. Faundallans ['0-mpal-er S'cl., pp, I411-I41‘, l9T9.

|Przybylski90| 5. Przyhylski, (.'acha and .1-ramm all-mr.-1;» new». Morgan liaulirlann, San Mateo, ca, moo.
|PSR9I]I| PSR, MlMDl:er Urer .'r Gulab PE-rs ion .?.fll. Pacific Science Research. P1acerville,Cl-\ 90025, 1990.
[Quinnflll M. J. Quinn. Designing Ejfi‘icientAlgor'itl1na.rfor Parallel Conunuzers, Mofiraw-I-Iill, New York, I93 7.
[Qninn9G] M. J. Quinn and P. J. Ilatcher, “Data-Pamllel Pmgramnzing D11 Mu.1tioornpu:ers,” lEEE .'l.Za,|'l u.'ane, l{5]|:6'9 T6,

Sept. I990.
|RagsdaIe90| 5. Ragsdale {eli}, Pamllel Pfmgrammlng Primer: Intel Scientific Cnmpiltcfs, Beavcnnu, CIR, 19%,

|Ran1amoortI'lyl'l| C. ‘v’. Ramamoortlty and H. F. Li, “Pipeline ."1|1'Cl'llI6CTLLl'B,“ ACM Comparing Sr.-r\-e-_p.; pp. 6| I02, Mar.
I971‘.

]Rasl1iclBI | R. F. Rashid and G. G. Robertson, ".-'iocerlt: .-’lCorn1m1nication-Oriented Network Operating System Kernel,“
Pn;n;". J5':h.-=IC.‘.lr!.S}1np. U}-Jerallng .Sl'.'n‘e'rn. P'I1'rr£'r:;1le'.'l'. pp. 64 1'5, Dec. I93 I.

[RashidB-6] R. F. Rashid, "From RIG tolleoent to Mach: The Evolution ofa Network Operating System,“ Prue. Fallal-ulnl
(.'ampule‘r Coal‘. pp. IIEE I I37, Dallas,TX, Nov. I986.

I Rioellfi] .I. R. Rke,"Problem.=a to Test Paralleland ‘vector Languages,“ Tmhnical Report CSD-TR 5 I15, Purdue University,
May I935.

RitcItieT4| D. M. Ritchie and K. Thompson, "The UNIX Time-Sharing System,“ (.'arm'm.rn. At'.'ll-l. I?|['l):36S- 3T5, July
I974.

RotImie9I] J. Rofltnie, “KSR-I Memory System,“ Technical report, Kendall Square Rmearch, Cambridge, MA, I9'9I.
|RussellB7| C. II. Russell and P. J. Waterman, “‘u’ariat ions on UNIX for Parallel Processing Computers,“ Cammnn. A(.'M.

3o(|2)¢|o4s |os5,o=¢. I951.
'Saayeclra9'I]I] R. ll. Saavellra, D. E. Culler, and T. von Eicken, "Analysis of Multitltreadecl lircltitectures Iior Parallel

Computing," Pnm. A CM .§:rrnp. Parallel Algorillrms and ;ilral1l.re‘c'lure'_ Greece, July I990.

|:Sakai91] S. Sakai, Y. Koclama, and Y. ‘famuguchi, “Prototype Implementation ofa Highly Parallel Datafiow Machine
EM4,“ Prac. lm‘. Parallel Pnn;'e'.r8lng §l'rqrJ0.'r lam, |'9"9|

5ayarmraya11anBD] M. Sayanarayanarl, "Con1merciaI Multiprooessing Systen'Lq,“lEEE Compaler. I3|[5}:T5 -96, IQBD.

“WWW

ScI1e1.u'ichEl9| C. Sclleurich, .-'1 cr.'a.s'.r Unlerlng and l'.'a.l1e'.r'e'nce* in Sl:ane'r.|L.ll’le'mm'_3' .1-lalllpn'Jv_'-r.'.'r.mr:r, Ph.D.ll'l1I:‘al:i, University
of Southern California, I939.

rr<- Mclimw Hill I-|Il‘I‘.']|r_.I.ll|f\
'roz"—F- Bibutkgmplry

|Schimmel9'D| C. Schimmel, "UNIX on Modern Architectures,“ Ptme. Summer .1990 US£.'\ll’X l.'aq,fj. Anaheim, CA, June
I990.

Schwartzflfll J. T. Schwartz, "lJl1:ra-Computers,“ .-i Cll-l TIT-I'I'J'.'l'. Frag. hing. anafii-.-a'em.r. 2|[4):4B4 -52 I ,I9BD.
SCSIE4| Computer Business Equipment Manufacturers, ‘Walt. DC, .'i'C.5'l Small t’.'arnp-urer .':}-.-aem lm‘er_{aee_ Al'lSl'.'X3,

I984.
SeitzB5| C. L. Seitz, "The Cosmic Cube,“ Camman. .-lCll-l. 2B|[I }, l9B5.
Seit2BB] C. L. Seitz, W. C. At.h.as, C. M. Flaig, A. J. Martin, .I. Seizovic, C. S. Steele, and W. K. Su, "The Architecture

and Programming of the Ametek Series 2I]ID Multicomputer,“ Pma. (.'aq,|'.' l'l'vpe.rt'1.rlJe Camparers and Cam;-urrem'
.rI,r.-1_pllr.‘allrJ-11.11, pp. 33 36, pasadena, CA, Jan. I933.

&it2B9] C. L. Seit2,.I. Seimovic,and W. K. Sn, "The C-Programmer's Guide to Multicomputer Programming,“ Technical
Report CS~'l'R-BS4 , California Institute of Technology, Pasadena, CA, I989.

Seit19D] C. L. Seitz, "Concurrent Architectures," in Suaya and Birtwistle |[etLs.]|, l"1..S'l and Parallel (.'u.riquuralian,
Chapter}, Morgan Iiaufmamt, San Mateo, CA, I991].

|Seit192| C. L. Seitz, "Mosaic C: An Experimental Fine-Grain Multicomputer," Technical report, Calilornia Institute of
Technology, Pasadena, CA 9| I25, I992.

|SevcikEt9| K. Sevcik, "Characterization of Parallelism in Applications and Their Use in Scheduling," Pm;-. ACM
.'§lGMETR.lC.'i~' and Per_,farn'ianr_'e_ May I959.

|ShapiroB6| E. Shapiro, “Concurrent Prolog,“IE.EE Campurer. l9{I]-:44-SB, I986.
[Shar72] L. E. Sher. “Design and Scheduling of Statistically Configlired Pipelines," Lab Report SU-SEL-72-D42,

Stanford University, I912.
[Sheperdson63| J.C. Sheperdsonand Il. E. Sturgis,"Computahility of Recursive Fu11c.tion.~t_“J.At’.'.'l-f. ID'.'2Il-255, I963.
|ShihB9| Y. Shih and .I. Fier, "Ilypercube Systems and Key Applications,“ in Ilwang and Deliroot {eds}, Parallel

P.rncars:'.r1gjar Supen.'ompu.llr|g and Artificial Intelligence, pp. ZD3 -244, Mcfiraw-Ilil I, New York, I939.

|Siegel?9| I-I. J. Siegel, "A Model of SIMD Machines and a Comparison of \-"arious Intercomwtion Networks," IEEE
Trans. C'amp1.r.rer.'r, '2B{I2]|29OT -9Il,I9i'9.

|SiegelB9| I'I. J. Siege I, lnlerr:anneelian llI'elwarlr.r_/i'Jr La:ge—Seale Parallel Pr0ee.r."clng.' Tire!)-ri' and Case Slrrrllex. Ztld
ed., Mcfiraw-Ilill, New York, I959.

Siewiorek9I I D. P. Siewiorek and P. J. Koopman, The rlralrlraarure a,l"Sr.-perrar:-re.-urer.-c. T!?I»IN.- A Case Sraafr. Academic
New York. I99I.

'Sim|'oons92| M. L. Simmomt, ll. J. Wlrlstcmiml, (J. M. Luheck, C. Eoyang, R. Mendez, I-l. Ilarada, and M. Ishiguro, “A
Perlorrnance Comparison oI' Four Supercomputers,“ Cammun. ACM. 35|[E}:I |6- I24, I992.

|:SimIhu92] P. S. Sindhu, J. M. Frailong, and M. Cekleov, "Formal Specification of Memory Morlule-s," in Dubois and
Thakkar (C115. }, Scalable Slra.r'eJ-.‘l*lemar_i' A-l11l.rlprt.>ee.r.'m-r.r. Kluwer Academic publishers, Boston, MA, I992.

Sm ithS2| A. J. Smith, “Cache Memories,“ .-iC.I‘ll Comparing Sur\'e_i; pp. 473. S31], Sept. I952.
Smit1tR5| B. Sn1itl1,"The Architecture of the I-[E R" in K.owali.I-1{ed.},Parallel MIMD Ca.mpu.ra.rlan.' HEP Sapereolmpuler

£l!I‘£]r/I_p|I'?ll'tC£|'ll0H.¥, MIT Press, Catnhfilige, MA, I935.
Smifl1BB| .I. E. Smith, "Characterizing Computer Perfomtance with a Single Number,“ Camman. .-1l(.'.il-f, 3 l(ID}:

l202- I206, I935.

[SmithB9| J. E. Smith, "Dynamic Instruction Scheduling and The Astronautics ZS-I,“ IEEE Camparer. 22{?):2l -35,
I989.

|Smith9'lII| J. E. Smith, W. C. I-lsu, and C. I-lsiung, "Future (]eneral—Purpose Supercomputer Architecture,“ Prue. ACTM
.'iapen.'umpu.rlng Co:-rf.' l 990. New York, Nov. I991].

rr<- Mclimw Hill I-|Il‘I‘.']|r_.I.ll|f\
mm ma

|SnirB2| M. Snir, "(Jn Parallel Search,“ Prue. Pnlnelple.-r af'Dlsrrllm-rerl (.bmp-axing, pp. 242 -253,I9E2.
|Sohi9'D] Ci. S. Sohi, "Irstruction Issue Logic lor Iligh-Perlormaime, Interruptible, Multiple Functional Unit, Pipelined

Computeis,“ IEEE Trans. (.'an'§rmler.t. 39(3]|I349--359, March I990.

|SPARC9'I]| Sun Microsystems, SP-1R Crlrelrileerune lle_-,|'i.-nen-ee ll-lam.ral l-“B. Dec. I990.
|Stallings9'D| "lll. Stallings, .R||E'£.l.I.l'|L'i':'|L.l.l'J’.f.'i.l'.l"I!.r-|1'.lI'i'.l.fJ‘ Se: Campurer.-:_ 21111 ed., IEEE Computer Society Press, LosAiamitos,

ca, I991].
|Stenstrom9'D| P. Stenstrom, "A Survey of Cache Coherence Schemes lor Multiprocessors,“ IEEE Cm-qualer 23(6):

I1 25, I991].

[Stenstro-m92_| P. Stensn-om_ T. Joe,and A. Gupta, "Comparative Performance Evaluation of Cache-CoherentNUMA and
COMA Architectures," Prue. l Slllr Anna. lnl. Srimp. f.'arra1u.rer .»“In;‘l1., l P9.-7".

[Stone'i‘ I] ll. S. Stone, “Parallel Processing with the Perfect Shufile," IEEE Tram". (Ian-i,r1urer.r. C20: I53 I6I , I9'll.
|Stone90| ll. S. Stone, Higl:-Per_,!arman¢-e- f.'ampI.rl'er Arehlreemre-_ Addisoit-Wesley, Reading, MA,I99'D.
|Sullivan7i'] II. Sullivan andT. R. Bashkow, “A Large Scale, Ilomogeneous, Fully Distributed Parallel Machine,“ Pm;-.

4'I'li .'i:i'mp. Ca.rqr.Iale'r .-ircl1'., vol. 5, pp. I05 I24, Mar. I9Tl.

[Sun9I] X. I-l. Stuiand D. T. Rover, "Scalability of Parallel Algorithm-Machine Combinations,“ Technical Report IS-
505?, UC-32,Ames Laboratory, Iowa State lJniversity,Am&:, Iowa, I99I.

|Sun93] X. ll. Sun and L. M. Ni, "Scalable Problems and Memory~I3ound Speedup-,“J. Para. Comparing, I993,
also appeared ilt Pme. .-“ICM .'§1:pen.'r:mpr:llng. l§'§'I'1

|SweazeyB9| P. Sweazey, "Cache Coherence on SCI,“ IEEE Comparer Arelil.ree.rr.rre ll'i»-ll.s-Imp, Elilat, Israel, May I989.
|Tabak9'D| D. Tabak. Mulrulp.-rm-e.rsar.r. Prentice-Ilall, Englewood Clifls, NJ, I990.
[Tabak9I | I1 Tobak, .-“I rlvancerl .'I-Ec'nJprcm'e's.ran-, Mcliraw-I-lill, New York, I99I.
|Tanenbaum92] A. S. Tanenbaum, M. F. Kaashoek, and ll. E. Bal, “Parallel Programming Using Shared Ctbjects and

Hm-adcasting,“ 15.155 r1m=;.~i.-m». 25(5): lo -2o, I992.
|TevanianB7| A. Tevanian, R. F. Rashiii, M. W. Young, D. l3.‘(iolub, D. L. Black,a1u:lE. Cooper, "MachThreads and the

UNIX Kernel: The Battle lot‘ Control,“ Ph‘N.‘_ Summer I578? L-'.S'Ei'Ii'l)l'(.'un.-"., pp. lB5- I97, Phoenix, AZ, June I9IiT.

|TevanianE9| A. Tevanian and B. Smith, “Mach' The Model tor Future lJl\IlX,“lifi-re. I4{l2}:4I| 4I6, Nov. I989.
[Thakkar9'D] S. S. Thakkar, M. Dubois, A. T. Latutdrie, G. S. SohL_ D. V. Jamm, S. Gjessing, M. Thapar, B. Delagi,

M. Carlton, and A. Despaln, "New Directions in Scalable Shared—Memory Multiprocessor, Architectures“, IEEE
I'.'lni'J':§r.Ir.|'I'e'r, 23{s)¢1| -B3, woo.

[ThompsonFl0| S. D. Thompson A Camp-le.rlr_v Thear_;=_,far I/L.5'l. Ph.D. thrsis, Carnegie~Mellon llniversity, I9BD.
|Thornton'i'I]| J. E. Thornton, De.-a'gn a,r"a Campm'er.- The (.'Dt'.'I'i|'i|'i-I‘). Soott and Foresrnan, Glenview, IL, I9i'D.
|TIl:t3[Texas lnstzrtunents Inc., Dallm, TX, Na-Bus 5'qoecg]ficafl'orI, l9B3.
[TMC9'D| TMC, The CM-2 Teelmieal .'i'ummary. Thinking Mmhines Corporation, Cambridge, MA,I99D.
|T MC9I | TMC, The CM-5 Ti.'¢'l1'nlc'al Summary, Thinking Machines Corporation, Cambridge, MA,I99I.
['l'ornusulo6'l] R. M. Tomasulo. An Eminent Algorithm for Exploiting Multiple Arithmetic Units,“ lBll-I J. Re.-r. flfld

EE'\'-elap._ ||(|):25 33, I961‘.
|TreleavenIEI5] P. C. Treleaven, "Control-Driven, Data-Driven, and Demand-Driven Computer Architecture,“ Parallel

C.‘-a.rqr1allng_ 2, I955.

[TteW9I| A. Trew and ('1. W'lIson {eds }, Pa.-ll. Pre.-renl. Parallel: A Surrey a,f'.=Inar'lal1le Parallel f.'am_rm-ler .$?'cl'em.r.
Springer-'l"erlag, London, I99I.

|TuckerEEt| L. W. Tucker and Ci. (i. Robertson, "Association and Applications of the Connection Machine“, IEEE
Cfampmer. 2I|[B}:26-3B, I938.

“WWW

rr<- Mclimw Hill I-|Il‘I‘.']|r_.I.ll|f\
'ro4"—F- aaoigmpiy

|Ullman84l J . D. Ullman, Cbrqzarallanal A.rpe|;'.I'.r of l-2.5!, Computer; Science Press, Rockville, MD, I984.
|\-"ITA90] VME Bus International Trade Association and IEEE PIOI4 Working Group, 64-Bi: l’MEba.r Specificallan,

Ecllliarr D, Jan. I991).

|Wah90] B. W. Wah and C. V. Rilttlattltiollity {ed$i.} , Com,|Juter,r_,|EJr Artificial lnI'elllgen'ee Pnm;'e.'cll.rrg, Wiley, New York,
I990.

|Wall9I I D. W. Wall, "Limits of Instruct ion-Level Parallelism," Prue. Fa-unlr lnl. Ca-rr,l.' Arelr. .'§'appar.r_,llJ-r Ping. Lang.
amll'l'i. pp. llfr -I33, |99I.

|WalIace64] C. E. Wallace “A Suggestion lor Fast Multiplier ,“ IEEE Trans. Campalers pp. l4- ll, Feb. I96-4.

[Waltz8T| D. L. Waltz, "Applications ol' the Connection Machine. {New Computer Architecture Iorm Thinking Machines
Colpofaliott, 1.55.5 C'U.mpU.le'J'; 204 | 1:1-is 91193 t.

|Wang92| II. C. Wang, Parallellzalion qfllemlve PDE Sol ver.-r on Slrareel-Me'mor_i' M'alllprar.»¢'.rsanr, Ph.D. thesis,
University of Southern California, I992.

|Wang93] I-l. C. Wang and K. I-lwang, "Multicoloring Parallellzation ofGrid-Structured PDE Solvers“, Technical report,
University of Southern California, LcsAngels, I993.

|Weicker84| R. P. Weicker, “Dhrystone: A Synthetic Systems Programming Benchmark“, Camman. Afflll. 2i'(I0]|:
I0l3 I030, I984.

|Weiser85] W. ‘kaiser et al., and Perlorinance ofthe Zmob Parallel Processing Systems,“ Pl-ac. CUMPCUN,
pp. Tl -7'3, I985.

|Weiss84| S. Weiss and .I. E. Smith, "Instruction Issue Logic in Pipellned Supercomputers,“ IEEE Tran.-z. C-an'§nuler.r,
pp. l0I3- I022, I984.

[Wi lson8 7] A. W. Wilson, "Ilierarchical Cache|'Bus Architecture for Shared-Memory Multiprocessors,“ Prue. l4.I'lIAnn1.r.
lnl. Strap. Ca-rm'JaI'er An;'li'., pp. 244 -252, I9'3l.

|'Wirthi'?| N. Wirth,“Modula: A Language lor Modular Multiprogramming,“ .SIqfinw:e Praletlce amlExperlen-ee, i':3- 35,
Jan. I971‘.

|Woli9Ia| M. E. Wolf and M. S. Lam, "A Loop Transformation Theory and an Algorithm to Maximize Parallelism,“
lEEE Tram". Parallel Dlslrl. .§:i'.tle'mr, 3-[ICHZ452 4lI, I99I.

|'l\lolI9|b| M. E. Wolfanid M. S. Lam, "A Data Locality Optimization Algoritltm,“ Prue. ACMSIUPLAN Ca-q,|'_' Ping.
Lang. Design and lntplemr.'nI'alian, pp. 30- 44, I9'9I.

|Wolfe82| M. J. Wolle, qollmlzlng Saperc‘m'npllers_fa-r .'i'ape.rr.'orm.ra.rer.-l, Ph.D. fliesis, University ol' Illinois, I932.

'Wolle89] M. J. Wolle, "Automatic Vectorization, Data Dependence, and Optimizations for Parallel Computers,“
lll "W313 3119 5961991 ‘[9115-l. Parallel Processing for Srlpercowgputlag and Artificial Intelligence, Chapter II,
Mc(']raw-Hill, New York, I939.

'Worlton84| J. Worlton, "Understanding Supercomputer Benchmarks,“ Aaramarian. pp. I2I -I30, Sept. I984.
Wu80] C. L. Wu and T. Y. Feng, “On a Class of lvlultistage Interconnection Networks," IEEE Trans. Campa:er.s',

pp. 1596- i'02,Aug. I980.
WuII'l2| W. A. Wulfanli C. G. Bell, "C.I‘nt‘llp -A Multi-Miniprocessor,“ Pme. Fall Jain: Crinirxaler C'mr,!.', pp. 1'65 - ‘lll,

I972.

Xu89| Z. Xu and Ii I-twang, "Molecule: A Language Construct tor I_ayered Development of Parallel Programs," lEEE
T'r.rn.r. Comp1.r.rer.r, 33{5}253T-599, I939.

Xu9I I .l. Xu and K. Ilwang, "Mapping Rule~I3ased Systems onto Mutt icomputers using Simulated Annealing,“ .l. Para.
D'i.\;fr'l. Caaparlng, pp. 442--455, Dec. l99I.

[Yamaguclti91] Y. Yarnaguchi, S. Sakai, and Y. Kodama, “Synclu-onization Mechanisms of a Highly Parallel Dataflow
Macltitte EM-1,“ l£lCE Tran.t., 14¢ | 1.204 -2 I3, I99I.

rr |- Mr Grow Hill - :1-r.q|| ..|..»-. A
—“‘ T05

[Yew8?| P. C. Yew, N. F. Tseng, and D. H. Lawrie, “Dbttrihuting Hot-Spot Addressing in Large-Scale Multiprocessors,"
EEE Trans. Ca.r.r;paler.~'l, pp. 333 -395, Apr. I937.

[Yew9l] P. C. Yew and B. W. Wah (eds.]|,Special Issue on Sh.ared~Memory Multiprocessors, J. Para. Dis-rrl. Comparing,
.ll.I.tte I9".-ll.

[Young8'i'] M. W. Young, A. Tevanian, R. F. Rashid, D. B. Golub, J. Eppinger, J. Chew, W. Bolosky, D. L. Black, and
R. Baron, "The Duality ol Memory and Communication in the Implementation of a Multiprocessor Operating
System," Pl-ae. lllll A CMSl'mp. qrmmrlag .5}-elem PI"l:I'J‘('lple'.'£, pp. 63--76, I98'l.

[Z irna90| H. Zima and B. Chapman, Saperr-oriqullerjbr Parallel and l-Ea;-rar Carrpalerr, Acldison-‘Wesley, Reading, MA,
I990.

[Zorpetta92] G. Zorpetta, “The Power of Parallelism,“ IEEE .'£§r:ean-am, 29(9}:28--33, I992.

rr |- M: Grow HJH .- =..=.,.. ..|..»-. i

I-D ring 43l
2-D mesh ?6,43l
2-D torus 76,655
3-D mesh 43I
3-D torus 43 I, 653

A
abacus 3
acoem time I6-D
acknowledge signal 22?
."'|J1il S39
Ada message pissing 564
Ania name a1.’uiressi1ig S64
Atiaretuiezvous 564
adaptive routing 328
add-and-multiply I49
address mapping I6-S
addreqstrmtsiatiortcaclw I42
acidrets translation mechanisms I69
.|'lCiIEB‘EiSi1'Ig11IfldEi I33
air-traflic simulation 5?-1
algebraic optimization 505
aigorithrrs and data structures T
atias analysis 6I]ID, ISID, 6-2|
AIIia1\tFJ€ 36B
Miiant FX.-EBDID 97, 296, 3?l
Mtiant FXIBI] 20
alio-cation poiicies 2lID
MU, arithmetic 8'. Iogic unit 6-D5
MID ID2
.!tMD29'DIDD I43
.!tMD0ptero11 655,662
.-\rndal1l‘s Law 94, IDS, 350, 6-4B
Ametek SJI4 3 I3
Ametek Series 2DII]I 3I5

Index
AMT DAP 29,39, ml, 3|-2
arialyticalmodeiing 202
auizrnatecl Q1‘£Ipi'iiI..‘S 633
anticipatory paging 2I3
anti-ciependence {see WAR depetuietwe}
arithmetic mean execution rate 92
arrtltmetic mean execution time 92
arrtltmetic mean performance 92
arithmetic pi-peiine stageq 25?
ARM pro-censor I34
array oontroitmit 389
array Language ertterisions 430
ASIC, application specific integrated clrcult 553-
amociative memory I9?
asymmetric multiprmeqsor IE
asymptotic speedup 9| , 92, I IE
asyncluunous message passing 47?, 565
asyttcltrouous mottei 22?
asy11chro1to1.|s pipeiining 320
asy11chro1to1.|s protocol I90
asywchrottousthning IE6
atomic memory accesses 2 I6
atomic operation 309, 545, 668
atomicity 2I3, 2I15
attached pro-ceiueors IB
autotasking 550
availahie paraiieiiqm 9|
average CPI I3
average htency 234
average paraiieiism 90

B
I:|ackpIane bus I B2, 2B3
backward compatibility 601.663
barrei sltifier TD

__ Fr-r Mn: Grow HI'lft'|--r.-ii.---in-~ _
mini Index

barrier synchronization 644, 658, 672
baseline rletwork '79
basic bio-cl»: 9|, 502, 59l
basic bio-ck |DD1L‘iT.t'IlCii|El1't SD3
bmic bio-ck sciiedulittg 502
Bayes, Thomas 6| 5
BEN Butterfly 296, 312, 413
BBN TCZDDIJI 4, 2|, I02
benchmark 97
Berkeley RISC 52, I43
Bernstein's conditions 47
binary switch 7B
binary tree 7|, 76
bisection width 67
block frames I95
1Ji0-C]~L misses I65
bio-ck replacement policies I77
blocking flow control 325
blocking network 287
board interface logic IB4
branch handling techniques 250
branch prediction 252, ssa, 593, sews, 6|5, o2|
bmnch prediction unit 596
branch processor I53
branch target 25D
branch target buffer 253, 6| 7
Brent's theorem 6-4B
broadcall IB5
broadcast 55,68, lBS,67I]I
buliier deadlock 323
buliiered crossbar networks 37E
bus addressing IE4
bus arbiter IS-4, 636
bus arbitration 1?, I E3, I so, zes
bus cycle IB4
bus master I B3, 636
bus system 77, 2&2
bustimer IB4
bus-busy IB7
bus-grant I37
bus-request IE7
butterfly network 78, 292

C
Cmmp multiprocessor 37, HI
C.-'5-access memory organization 347
C-access memory organization 345
cache addressing models I92
cache and memory hierarchy I3
cache biocks I95
cache coherence |9I, 296, 476
cache design I33
cache design alternatives 308
cache design parameters I97
cache events and actions 302
cachc flushing 3-B8
cache hit I92
cache hit ratio 202
cache miss I92
cache perliormance issues 202
cache~b:neo multiproccssors I90
cachcing, bcncfils 414
Caltech Mosaic C 43 I , 442
CAM, content-addressable memory I97
categorized dependence tesm 496
CCC, cubesconnected cycles 73, 76
ccNUh-‘IA, cache-coherent non-uniform memory access

2 I, 659, 663
CDI3, common data bus 24B, 263, 596, 603, 6| I
CDC I604 4
CDC 6600 4, 243, 247, 263, 6|5
CDC 76-DD 39, 263, 6|5
CDC Cyber 21110 365
CDC Cyber 205 39, 34B, 37I
CDC Cyberptus 43l
Cedar multiprocessor 296
central arbitration IB7
centralmemory multiprocessor-s 24
chained directories 3414
chai:ning limitations 377
chmuiel band1a'idt]1 330
C]'Iil1I.I1Bi deadlock 323
Chapel parallel programming language 650, 665
chip area 5B5
chordai ring 7D

rt -Mcfiraw Hilff - .- .--. .Index -5., M,
circuit switching 25|
circular FIFO algorithm I75
circular wait 323, 557
CISC, complex instruction setcomputing I6, I33, I37,

663
C-Linda 540
clock cycle 229
clock rate I3, II7, I33
clock skewing 229
clock synchronization I90
clocked latches 225
cluster computing 635
cluster shared-memory I9
CM-2 29, 39, I00, I20, 3|2,434
CM-2 architecture 355
CM-5 I02, I20, 392
CM-5 network architecture 395
CM-5 software 542
CMU Plus 4lI
coarse-grain parallelism 54, 526, 649
coarse~grain partition 57
codecompaction 5I5
code generation 5I4
codeoptimization 50I
code parallelization 5 ll
coherence property l6I
coherence protocols 77
collision 233
collision vectors 235
collision-free scheduling 235
(_‘(]l'i-‘ifi, cache only memory access 20
combining networks 290
combining tree 440
commit unit 665
common data bus {see CDI3}
common subexpression eIin1ination 505
communication I05
communication Latency 54, 3 I4, 330, 434
communication overhead I I7, I24
comparison ofmemory models 220
compatibility 535
competuiationcode 5I9
compilation phases 459

compiler directives 5, 544, 67|
compiler support 5, 45 I
compiler technology I3
compiler-detected parallelism 595, 6-4|, 649
complete graph 597
completely connected network 70, 76
complex instruct ion set computing {sec CISC)
compound vector functions 372
computational granularity I05
computer architecture 555
computer arithmetic 255
computer cost II7
computer generations 4
computing capacity 90
concurrent GOP 45I
concurrent GDP - actor model 452
concurrent read 32
cotwurrerit write 32
condition variables 673
conditional probability 6|5
conditions ofparallelin 44
connected transaction I59
Connection Machine CM-2 (see CM-2}
Connection Machine CM-5 (see CIML5)
constant folding 505
constant propagation 505
context switch I94
context-switching overhead 422
context~switching policies 425
control decomposition 570
control dependence 46, 592,606
control flow 6|
control mechanisms I35
control network 393, 396
control parallelism 5|, 645
control processor 397
control-dependent iterations 46
control-flow optimization 507
convergence division 26I
Convex C. 365
Convex C3240 97
Convex C3500 family 26
Convex C3540 370

__ Fr-r Mr: Grow HI'l|t'|--r.-ii.---in-~ _
"Uni Index

cooperative problem solving 453
correlated predictor 6| 7
Cosmic Cube 35, 3 I3, 442
Cosmic kernel 563
cost per byte I60
COVI, concurrent outerivector inner 5 I2
CPA, carry-propagation adder 257
CP|,cycles per instruction I3, I33
CPU implementation and comrol I3
CPU throughput I4
CPU time I I7
Cray I 39, 243
Cray I5, 25 345
Cray C~90 26
Cray computer systems I02, 654
Cray CXI 654
Cray Linux Environment 656
Cray multiprocemors - multitasking 545
Cray Research 665
Cray SeaStar interconnect 655
Cray 'l"3D 36| , 654
Cray 'l"3E 654
Cray X-MP 4, 345, 654
Cray X-MP - macrotasking 55 I
Cray XMT 654
Cray XT 63 I , 654, 663
Cray XT 5, XT6 655
Cray Y-MP 26, 296, 345, 434, 654
Cray?-MP 5I6 357
CrayY-MP C90 97, l0l, 345, 356, 359, 370
CrayY-MP soltware 54I
CrayY-MIP.-'5 97, I20
Cray, Seymour 654
Cray.-‘MPP 39, 360, 43l
CRCW-PR.AIi-l model 32
CREW-PRAM model 32
critical section 474,672
crossbar network.-‘switch 37,77, 75, 5 I , 256
crossbar network.-‘switch - limitations 255
crosspoint switch design 257
C5A,carry-save adder 257
CSP, communicating sequential processes 565
cube connection 75

CUDA, Compute Unified Device Arcbitccturc 652
cturent loop 636
cyberspace 634
cycle scheduling 5|6
cycie time I3
cycie width 62|
cycles per instruction {see CPI}
Cypress CY7C60l SPARC processor I46

I]
DAG, directed acyclic graph 5 I4
daisy chained I57
damain and array slicing 669
data bus 253
data cache I35
data dependence 44, 265, 590, 606
data locality 65I
data mirroring 634
data network 393, 396
data parallel model 479
data parallelism 5|, I00, 450, 645,65I,666, 673
data stream 65I
data striping 634
data structures I05
data tokens 62
data transfer bus I53
data~accept I55
datafiow computer 40, 62
dataflow computers - evolution 455
tletaflow graph 63. 458
data-pa rallel applications 64| , 642
data-ready I55
data»routing Iirnctions 67
deadlock avoidance 324, 559
DEC Alpha I02, |2I, I34, I5I
DEC PDP-II 2I2
DEC PDP-5 4
DEC VAX I2I
DEC VAX I|i'750 I47
DEC VAX 5600 I34, I39, I92
DEC VAX 9000 4, 26, 365, 366, 37I
DEC VAXNMS 272
DEC, Digital Equipment Corporation |2|

Fl‘-r Mr: Grow HI'l|t'|--r.-ii.---in-~ _
Index >

decentralized cont.rol 6|5
decode stage 240
degree of interleaving 207
degree ofparallelism 59, 6-42, 6-44
Dekl£er‘s protocol 554
delay insertion 235
delay slot 250
delayed brarwhes 253
demand paging systerrn 2 I2
demand-driven computation 65
dependence analysis 49]
dependence between instructions 590
dependence equations 493
dependence graph 44, 59|
dependence testing 49I
design constraints 6|9
design issues 557
design space of processors I33, 620
design verification 598
development layers I I
Dhrystone 97, 95
diagnostic network 393, 397
difference engine 3
dimension-order routing 326, 435, 655
dirting philosophers problem 575
direction vector 493
direimmappirrg cache I95
directory structure 304
directory-based protocols 303
discrete transistors 4
display technology 632
distance vector 493
distributed arbitration I55
distributed cacheing 424
distributed computation 475
distributed control 394
distributed memory multicomputer 22, 24, 36, I22
distributed parallel arbitration I90
dbnrlbuted shared memory 4I0
distributed-memory model 353
dizitribution 669
Doacross loops 532
domain decomposition 566

domains and sub-domains 666
DRAM, dynamic random access memory 63|
DSI3 weak memory model 2l9
dynamic branch strategy 252
dynamic connection networks 67, 77
dynamic dataflow 460
dynamic instruct ion scheduling {see dynamic

scheduling}
dynamic pipeline 232
dynamic scheduling 247, 263, 595, 600, 604

E
eager evaluation 65
ease ofuse 535
E-cube routing 326
EEPROM, electrkally erasable programmable ROM

634
etlective access time I65, 205
etlective bandwidth I52
effective pipeline throughput 25I
efficieucy 118, 229, 231, 538
cfici-cut algorithm 647
electromechanical decimal computer 3
elimination ofdead code 506
elimination ofun-ary operators 506
embedded applications I34
Encore Multimax 254, 365
ENIAC 4
EPIC, explicitly parallel instruction computer 60]
ERCW-PRAM model 32
EREW-PRAM model 32
ETA I0 E 345
EFL EM-4 460, 46I
EFL EM~4 node architecture 46I
EFL Sigma-I 460
event ordering 2 I3
evolution ofscalable computers I20
exclusive raid 32
exclusive write 32
execute stage 240
execute unit 664
execution profile 617
execution trace 6|7

__; rr<- Mclinrw HIM r'ttrr.-;u_.-.-t-rs
1|2'"*|1 Index

expected CPI I35 floating-point unit (sec FPU)
explicit dependence lookahead 457 flow analysis 489
explicit parallelism I6 flow control digits (flits) 315
explicit token store machines 460 flow eo1tr;|-61311-ategies 324
exponent 255 flow dependence (see RAW dependence]

535, 540 flushing I94
expressiveness 535 Flynn's classification 9

forbidden latencies 233
F fork op-eration 672
Iactor algorithm - parallel 569 form iimor 533
Iactor algorithm - sequential 565 Fm-U-an gg 539
mlfllfifi P°ll°lfli 545 Fortran 90array notation 457
'i1l¢""fi"‘*b"“$°d Poll‘? '33 FPGA. ficld progrerrinirtblc getc entry 653
Fast Fourier Transfiorm I07, 55l FPU, floating Point mm 153, 595
Ffitlblflt I59 Fujitsu 52
limes 72,395 FujitsuAP|0I]0 at
lilull tolerance I91], EDS, 642 Fujm,-u \,r|:2[H]] 355' 352

Efldlwsk sflfltwfllfltl 333 Fujitsu v|=2onot'|o 345, no
EH1-Ii:-1"-\'1n'dw111w¢1101\ 732 Fujitsu wvsoo 52, I02, sts-1
Ffl“mi'liPU 652 fullmap directories 304
litlsh 4 dwfltis will 664 runy mlstlltcllliive mitts rat
Ell‘-ll filflllfl 249 Iunctiottaldecotnposition 570
Elsltifldd 394 fttnctionalparallelbrm an
Film ¢1WW=l 655 function.alpipelines 151,315
5I\9'5l‘i1'-T1 m"iTl°9mPmB1‘5 434 Iunctionalprogramming 454
EM-stain Pmllslism 5?--434- 649 functionalunits 263, set, 594,s|o
fi1'lfi‘Bml-*1 Plnlfim 57 Futurebus- I59
fi=1¢-slain Wflvsfiflnline 514 FX Fortran 539
finite precision 255
fifllt-in-first-oul(F[FC|)a1goritbn1 175 C
fixed-load model 104 gather instruction 343
fixcd-load apoctlup 109 gather operation 670
fixed-memory speedup I13 gerreralized multiprocessor 25l
fixed-point operations 255 general-purpose registers I37
fixed-point in-tit 153 generation scalability |2I
fixed-time mode! I04 Gigabit Ethernet 637,655
fixed-time speedup I11 global allocation policy 2I|
flash memory 634 global computation model I I5
flits (see flow control digits} global optimizations 506
floating-point numbers 255 global prediction 6I7
floating-point operations 256 global registers I45
floating-point opemfiotts pet‘ second 14 global shared memory model |9I
floating-point registers 263 globally shared memory I9, I9|

rr -M|:Gm'w Hilff - .- .--. IIndex -5., ,, ,
global-view abstractions 6-6-5
IL"|oo-dye.ar IIDI
Goodyear MPP 39
GPL1 computing 652
GPU, graphics proecssing unit 65 I
grain packing 55
gmicn siee 52, 434
grand chailehges 99
gmnuiarity 52
greedy cycles 236
GustaI'so11‘s Iaw III, II2

II
I-L11, high availability 638
hardware paralieiism 49
hardware sy"1tchroni:.tation mechanisms 303
hardwired Iogic I3?
harmonic mean execution rate 93
harmonic mean pertiormauce 92
harmonic menu speedup 93
Harvard Mark I 3
hazard ayoidmce 245
I-IEP system 41D
heterogeneous prmessing 3 I6, 523, 525
hidden bit 256
hie-rarchicalbus systems 2B2
hierarchy optimization I15-6
higlvorder interleaving 206
histogracmrning SBI
hit ratios I65
Hitachi E20.-‘ED 343
hoitl-and-wait 55?
host eomputer 25
hot spot TS
hot~sp-ot prob-Iern 2'94
hot-sp-ot throughput T5
HP Spectrum I69
I-IP, high perforrnartce 635
IIIPC, high pertiormance computing 3SI
IIPCC, I-[igh-Perliorrnartce Computing and

Communication 9'9
HPCS, Iiigh Pro-ductiyity Computing Systems 6615
hybrid architecture 46I

hybrid memory systems 2I3
hypercube 23, 76, ID‘?
hypercube routers 38?
hypercube routing fu.nctio11s 619
hypernets BB
HyperTransport 635, 655, 15453

I
b'()b1.|s 2R3
U0 demand I I7
Iffldepertdence 45
[BM 3, IIIII, 65?, 666
IBM 3090 4, 9?, 350
IBM 360.|'31'I1I 4, l2I, 2153
IBM 36CI.|'9I 24?, 2152, 6H]
IBM 390 I34
IBM YDI 4
[BM 7090 4
[BM EDI 52, I-59, I72
[BM Blue Gene 63l, 653
[BM ES."9{H]] 2|, 3155, 37I
IBM PC.-‘AT 3?]
IBM Power? processor 657
IBM RIS(_‘.|‘System E-IIIIDID SD, II12
IBM RP3 IDr2__Ifi9,2915,3l2__4I3
IBM R.$:'6-IIIIIJIIJ I5l
IBM RT I69. IT2
IBM System 3B I159
[EEE T54 Standard 255
Iliiac IV 39, T2, IDI
llliac mesh 76
Iltiitors Cedar project 37
ILP - limitations 6| H
II.P,inst1uctionIeveI paral ielism 53, I[IID,2-645, SDI

SEE, 640, 649
IMAGINE stream processor 652
implicit parallelism I6
incitlsion property I6I
inde-peitdent requests and grants IE7
imiirectjump prediction 62]
Infinifland I9], 638, 655
in-order eompletimt 268
in-order issue 263

_ Ff-r Mcliraw HI'IIr'|--r lrlll r». '
rtfii ' ' i Index

inputset 4?
instruction buffer S94
instruction cache I33
instruction commit 533, 665, 603
instruction count I3
instructiondeco-de 595
instruction encoding 6-Di‘
instruction execution phases 240
instruction Iietch 595
instruction issue 595,6D6,6Il
instruction issue degree I50
instruction issue Iatency I35, 266
instruction issue rate I35, 266
instruction level parallelism {see ILP)
instruction pipeline I35, 533
instruction pipeline cycle I35
instruction pipeline depth 533
inst.ruction queue 665
inst.ruction reordering 505
instruction scheduling SDI , 595
instruction scheduling - dynamic S02
instruction scheduling - static S02
instruclionsets I33
instruction window 6I3, 6I9
instructions- aritlunetic and logic 604
instructions - comparison 604
instructions - data transfer 604
instructions - transfer of control 604
integrated circuits 4
integrated environment 537
Intel 630,663
InteI4U\436 663
lntel 3033 663
lntel 33x36 family I4I
Intel i436 I39, I4I. I72. I92
lntel i360 I43, I43, I94
lntel i960 50, ISI
Intel iPSC 23, 3 I3, 3 I4, 434
Intel Itanium 6-OI
Intel Paragon 23, 33, ID2, I20, 3I6, 43I
lntel Paragon)iP."S software 54l
Intel Pentium I34, I4l , 235, 664
Intel Touchstone Delta 9?, ID2, I2ID

Intel:t36 I33
Intel s36 instruction set 662
InteIXeon 654
interconnect technology 635
internal data forwarding 244
interprmessor communication 399, 646
interprocessor communication network 21-ll
interprmessor-memory rietwotrk 23l
interrupt I36
interrupt handling T7, I34
interrupt lines I34
interrupt mechanisms I39
interrupt messages 566
interstage connection T3
inyertedpaging I22
IPC complexity I23
IPC, interprocess communication 423
IPv6 I9I
ISA, instruction set architecture I3, I32 60?
isoelficiency IDS
isoetficiency function I06
issue multiplicity 6I9
issue stage 240
iteration space 492
iterators 669

J
J-Machine 33, 3 I6, 43 I , 434
J-Machine, communication support 43?
J-Machine, MDP design 435
J-Machine, message format lit routing 439
J-Machine, message-driven processor 434
J-Machine, router design 439
J-Machine, synchronization 440
join op-eration 663, 622
jump prediction 593, 6| T

K
it-ary n~cube networks 1'4, 76, 33
KLIPS, kilo logic inferences per second 97 99
KER-I 33, I'D, I02, 424, 43 I , 443
KSR.-I ALLC!t-CI-IE memory 45D
KER-I architecture 443

rt -M|:Gm'w Hilff - .- .--. Its, -5., ,, ,
KSR-I multi-ring searching 45|
KER-I programming model 45I
K-‘SR-I remote memory access 450

L
Lamport 2|?
language features for parallelism 435
Laplace 6|5
Laplace equation I22
latency 52, l24,422
latency analysis 232, 32I
latency hiding techniques 403, 632
layered decomposition 526
layered parallelism 523
lazy evaluation 65
least frequently used {LFU} algorithm I 7'5
least recently used {LRU} algorithm I T5
lexicographic order 492
limited directories 304
Linda 533, 565
Linda - tuple space 565
line width 630
linear array TD, T6
linear pipeline 22?
LINPACK matrix lactorization 56'?
LINPACK results 3?-FD
list scheduling 5|6
loadfstote instruction set 539, 594
loaclistove operations 5|
loadlstore unit 596, 664
local allo-cation policy 2Il
local area network 635
local buses 232
local computation model I|5
local memories I9
local optimizations 505
local prediction 6|?
local register file 652
iocale 669
locality ofreterences |6l, I63, I92
localization 526
localized iteration space 530
lock synchronization 546

locks for protected access 553
logic programming 434
logical design 593
logical network topology 67-‘I
lookahead 9
lo-op butler 243
loop distribution 509
loop interchanging 509
loop optimizations 507
loop parallelization 520
loop transformation - permutation 52 I
loop transtiormation - reversal 52 I
loop transformation - skewing 52 I
lo-op t:ra1.tsformation theory 520
loop u1u'olling 593, 6I4, 62I
loop-level parallelism 54
low-order interleaving 206
LVDS, low voltage differential signaling 636

M
machine granularity I2|
machine-dependent optimizations 5|]?
macrotasking 549
mainframes 365
MAL, minimal average latency 235, 23?
manager-worker approach STI
Manchester Datarlcw 46!)
mantissa 255
Maryland Zmob 43I
masking instructions 343
MasPar MP-I 23, 29, 39, IGI, 333
massively parallel processing {see MPP}
muster threads 672
master-slave flip-flops 228
matrix multiplication 32, 35, I06
meanperfiormatnce 92
mech.anicaladcler."sub-ttmtor 3
mechanicalcomputer 3
medium-grainparallelism 54
memory allocation schemes 2|D
memory bandwidth 203
memory banks 209
memory bus 232

__ Ff-r Mn: Grow Hill 1-|llI'.\]l|'"ln’\ _
"ii Index

memory capacity planning I65
memory capacityrsine II7, I60
memory consistency issues 2 I4
memory cycle I3
memory design implications I64
memory events 2 I4
memory hierarchy I60
memory hit I63
memory interlmving 205
memory latency 53, 55, I23, 453
memory management 2 I0, 665
memory model 2 I4
memory replacement policies I 74
memory requirement I05
memory swapping 2I0
memory-access pipe lines I57
memory-bound problems I I2
memory-bounded speedup model I I2
memory-to-memory architecture 2'?
MERR_IMJ'tC stream processor 652
mesh network 72, I0?
mesh routing chip 3 I 5
mesh~connected router 3I3
message I9|
message formats 3I9
messagepassing II, I23
message routing 33?
message types& parameters 563
message-bmed protocol 63?
message-passing I39,227
message-passing mechanisms 3 I 3
message-passing model 4??
message~passing multkomputer I0, 54
message~passing network 22
message-pass ing program development 562
Mflops, tniliion floating point operations per second 9?
microcoded logic I3?
micro-operation butler 664
microtasking 550
MIMD architecttu-e 392
MIM D, multiple instruction-stream, multiple data-

stteam 9, 24, 633, 649, 670
MIMDiner 533, 540

minisupercomputers 365
MIPS pmcessor I33, 205
MIPS R3000 I93,620
MIPS R4000 24I, 243, 254
MIPS R4000 instruction pipeline 24I
MIPS, million instructions per second I4, 9]‘
MIPSJUS 272
MISD, multiple instruction~stre.am, single data-stream 9
mis-predktion penalty 62I
MIT ‘T I02
MIT Alewitie 40, I69, 424, 43I
MIT J-Machine (see J-Machine}
MIT tagged token architecture 460
MIT»'lv'lotorola ‘T 460,463
MIT:‘Motoroia ‘T architecture 463
MIT.-‘Motorola ‘T node design 463
M IT." Motorola Monsoon 460
MMU, memory management unit I42, I92
monitor 559
monitorapplications 562
monitorsttucture 559
Moore's law 630
Mosam C 3l5
Mosaic C, 3x3 mesh boards 442
Mosaic C, node 442
Motorola 65?
Moto1oIa 63040 I34, I39, 260
Moto1oIa 630.10 |4I
Motomla33l00 I43
Motorola 33| I0 254, 27I
MPI, message passing interface 656, 6T0
MPP, massively pamliel processing 6, 5 I, 99
Multibus II I39
multicache inconsistency I23
multicast 55,63, I9I
multicast routing algorithm 329
multicomputer 3I2
multicomputer development 3 I4
multi-core chips I34, 533, 624, 630, 642
multidimensional architectures 43I
multifilnctional arithmetic pipelines 263
multi-level cache coherence 303
multi-level cache memories 204

rr -smsmw Hilfr _'Index -5 ,,,
multimedia applications 632
multipipeline networking 323
multiple-context processors 420, 426
multiple-issue processor 592
multiplexer 233
multiply pipeline 253
multip-ort memory 236, 239
multiprocessing 425
multiprocessing requirements 543
multiprocessor execution modes 542
multiprocessor operating system 32
multiprogramm ing 54, 4'25
multi-resolutiondesign 666
multistage crossbar interconnect 39I
multistage interconnection networks 32, 22
multistage network 23'2, 290, 296
multitasking 54,425
multitasking environments 543
multitasking tradeolls 550
multithreaded architectures I24
multithreaded computations 422
multithreading 40, 42 I , 425, 592, 64l , 649
multithreading, coarse~grain 624
tnultithreadingjoe-g1'ain 624
multithreading, simultaneous 624
multivectormultiprocessors 352
lnultiway shufiie T8
mutex variables 623
mutual exclusion 552

N
NaN,not-a-number 256
Nanobus I39, 234
nClJI3E 23, 3I2
nClJI3E~'2 23, 33, 9'2, I0l , 3I5
NEC EX-3 92,320
NEC EX-X Series 356
NEC EX-X.-'44 343
nesting of parallel constructs 622
network characteristics 23|
network diameter 62
network embedding 33
network on a chip 635

network partitioning 333
network performance 69
network properties 62
network sine 62
network stages 236
network teciutology 635
network throughput 25
NEWS grid 332
node degree 62
node duplication 53
node splitting 5I0
nonatomic memory accesses 2I6
nonblocking network 232
non-cacheable data 303
nonlinear pipeline 232
nonpipelined processors 229
non-preemption 552
normalization 26I
N-queens problem 52|,530
N3 32532 I4I
Nubus I39
NlJl\-‘in computer clusters I9I
NlJI\-‘I.-"tmuItipro-cessor I9
numerical integration 642
Nvidia 652
NYU Ultracomputer project 32

O
object decomposition 523
object-oriented model 43l
objects and parallelism 523
Oocam 565
Omega network 29, 29l
UMP, orthogonal multiprocessor 43l 433
OM P, processor cache 433
UMP, snooping cache 433
Up-enMP 650, 656, 62I
operand forwarding 592,593,602 606
operating system 2
operationcode 6|I
operation latency I36,62I
optimal {OPT} algorithm I 25
optimal number of stages 230

__ Fl‘-r Mn: Grow Hill 1-llll'.\]l|'"l||’\ _
"Ham Index

optimal parallelalgorithm 64?
optimistic synchiaonizat ion 546
optimizatioit in basic blocks SDI
optim izing compilers lor parallelism 4B3
optimum block size 203
olacle-dri\1'en trace-based simulation 620
(JSFH 2?}
out-of-orclaer completion 265
out-of-order execution 604, 662, 664
out-of-order issue 268
output dependence (see ‘HAW dependence}
output set 4?
overhead of instruction level paraliefmn 6l9
overlapped register windows I45

P
Pandvoperators S5?
wket collision resolution 325
packet switching 63', I9], 2B]
page faults I65
pagemigration I23
page swapping 4lD
page trace IT4
paged memory ITI
paged segments IYI
paging I69
Parafrase 491]
parallel code generation 490
parallel disk arrays 392
parallel elwironment I6
parallel flow eoutrol 437
parallel language constructs 45?
parallel languages 484, S39
parallel prefix 399,403
parallel programming ernrironments 53?
parallel programming models 473
parallel schedule SE
parallel tltreads 663
parallelism profile 90, IDS
parallelism relation 49
parallelizration 49, 523
paraiielization inhibitors 5 I3
paralleiizing compiler B, 539

parity calculation II9
Parsys Supernodellllllllllll 23
Parsytec FT-400 97
partialorder 59]
PCI Express 636
PCI, peripheral component interconne
PE array 390
PE clusters 390
peak performance I2
pcrfectshufflc 68. 1'8
performance I2
performance bottleneck SE6, 605
pertorrriance factors I3
pertimnattce measure 97
performance tuning 544, 569, ST2
performancetcost ratio 230
permutation 55, 63, 399
personaleomputer l4l
PFC, Parallel Fortran Converter 49l
physical addrmscacltes I92
physical address space I6‘?
physical design 59B
physical network topology 6?l
pipeline chaining 3T4
pipeline cycle I35, 266
pipeline design parameters 266
pipeline effieiency 23-9
pipeline flush 589, 599, 602
pipeline hazard 590
pipeline net 315
pipeline schedule optimization 23?
pipeline stall 263, 6-D2, 623
pipeline tl1.rougl1put 239
pipelined memory access 207
pipelining 9
pipelining in ‘v’Ll‘l-U processors I55
pipelining of loop iterations S3 I
pixel density 632, 663
point-to-point links l9l , 63?
polynomial complexity 30
portability 538
POSD(, portable operating system interface for UNIX

6T3

ct 636

rt -M|:Gm'w Hilff - .- .--. .Index -5., ,,.,
Power architecture I54 program counter 6|
power consumption SEE, 6l9, 633 program flow mechanisms 6|
Power series I33, 205 program graph 55, 328
PlowerPC architecttue 657 program graph transformations 3B0
PR..='iM, parallel random-access machine 30, 3| program loop 6I4
precedence constraints 502 program optimization 439
precompiler B, 539 program order 605
predicated instructions 6-DI program partitioning 52, 476
pretietch buffer 243, 263 program replication 476
prefetching techniques 4l2 program state 595, 597, 605
prefetching, benchmark results 4l2 programmal:-ility I24
prefetching, benefits 412 programming environments I6
ptepro-cxfisor Ii, 539 programming languages II
Princeton IAS 4 programming overhead II7
Princeton Shiva 4Il promotion 663
priority interrupts IB9 protected access 4T4
priority levels I90 PTht-eads 673
priority-based policy IBB PVM, Parallel ‘w’irtual Machine 673
P-RISC 460
private virtualmemory I65 Q
pmblem g;ranularity |2| Q:-S,Qu-slit! ~1l'5¢1"-W 635
problem scalability l2l quality ofparalleli-sm 95
problem scaling I22
problem size II? R
probleros ofasynchrony 423 mmx 255
pmcess migrm-um 297 R..fitID_, redund.ant array of independent disks 634
pmcessmg may 355 random replacement ITS
pmcessmg kemei 65| random-access machine 3|]
pmcfiismg mdfi 336? 395 RAW, read alter write dependence 45, 59'D_ 6-D2, 6-D9,

processor clock rate 5EB,6I9 6'2 __ _ _
processor consist-e1wy 4IS m“d'mc"'m3"““m 543
processor design 535 mad? siglml 22? _
processor efficiency 426’ 428 reduced m-struction set computing (see RISC}

pmeessur efficiency linear region 430 mmcflon 399‘ M6’ 663‘ M2
processor efficiency, saturation region 429 mdumml nmchme 6'5
processor elements 39] mmmdmwy 95’ 642
pmmmr thingy 205 refresh rate 632
pmmsmr “U mmmk 23' register allocation 5 I 1'

procmsor performance 535 Wgi5t""r filc I33
Pmmmr State 595‘ 597’ 605 regnter renaming 59l , 596, 599, 6-Di‘, 6lCI

processor utilization |23 “B91” "““‘1““"‘ '43. _ . g gpmcmmpm _hus 556 register tagging 24]',._63
pmdmflmimumr problem 560 register-to-register architecture 26

__ Fl‘-r Mn: Grow HJ'llr'r--r.-ll.---or-~ _
726% Index

relative MIPS 9B
relative vectorrscalar performance 350
relaxed memory consistency 4lEl
release consistency 4IB
remote direct memory accars l9l
remote memory I9
rendering pipeline 633
reorder buffer I5 I , 596, 59B, 605
replication 399
reservation 232
reservation stations I5 I , 244. 263. S96, 6lD, 664
reservation table 228, 232
resource cunflir:-ts 136
resource dependence 46, 593, 596, 607
responsetime 9|
ring network 7|), 76
RISC impacts I50
RISC, reduced instruction set computing I6, I33, I37,

660
role ofcompilers 52
rotation 6il
routing 67
routing efficiency 336
routing network 62
RPC,remoteprocedurecalI 565

S
S-access memory organization 346
scalability II6. 355. 393
scalability metrics I I6
scalable cache coherence protocobi I24
scalable computer I02
scalable computing 395
scalar processor I36
scalar RISC I43
mated matrix multiplication I I5
scaled problems IM, III
scaling for higher acctnacy II I
scatter instruction 343
Schedule 533, 540
scheduling 52. 476
SCI ~ scalable coherent interface l9l , 4l5
SCI cache coherence protocol 4l6

SCI sh.aring list creation 4| 7
SCI sharing list structures 4|6
SCI sharing list updates 4| 7
scoreboard 4D, 24B,6I5
SCSI, Small Computer Systerm Interface 283
sector mapping cache 2t]rD
segmentation I69
segmented memory l7I
semaphores 556
semaphores - binary 556
semaphores - counting 556
semiconductor technology 63D
Sequent multiprocessor 2H4
Sequent Symmetry 2l,36B
sequential bottleneck I ID
sequential consistency 2 I4, 2 I7, 4l9
sequential environment I6
sequential locality I64
server farrm 634
server synchronization 547
set-msociative cache I93
shared caches 308
shared media intercorutect 635
shared memory model 3I:l4
shared memory multiprocessor ID, I7, 36, 5B6
shared resource allocation 557
shared variable communication 54, 473
shared variable model 473
shared variable program structures 552
shared variables ll
shared virtual memory I24, I63, 4DB
shitting 6B
SI-IMEM 656
shuflic 63
Silicon Graphics I93. 36B
SIMDarchitecture 3&2
SIMD instructions 3B4
SIMD, single instruction stream, multiple data stream

9, 24, 27
simple cycles 236
simple operation latency 266
simulation 59E
single-stage network 286

1- M ' H "tr i-.-.r.- ..---...-.Index -5., ,,,
SISD, single instruction stream, single data stream 9
size scalability I2I
slave IE3
slave threads 672
slotted token ring 43 I
snooping logic I43
snoopy protocols 298
software parallelism SD
software pipelining S3 I , 6??
software portability I24
software scalability I24
soltware tools 53?
sole-access protocols S46
solid state drives 634
solid-state storage 348
source tag 6II
space complexity 3D
SPARC implementations I45
SPARC processor I33, 2 I9
spatial locality I64
SPEC92 620
special Iunction units I43
speculative execution 596, 6| B, 62 I, 662
speedup I I B, 229
speedup versus stream length 230
spin locks 553
split cache I93
splittrausaction IE9
SPMD, single program, multiple data-stream 63 B, 645,

6'.|'fl
SSE, streaming Sllvlllextension 633, 662
stage utilization 239
Stanford Dash 3B, I69,4DB,4I I,424,43I
Stanlbrd Dash - architecture 444
Stanlord Dash - benchmark results 4I4
Stanford Dash - cmhe coherence 44'?
Stanford Dash - dimtory protocol 446
Stanliord Dash - memory hierarchy 446
Stanliord Dash - mesh interconnect 445
Stanford MIPS 52
star network 7|, T6
Stardent3l]II]ID 363
5tardent3D-40 3?I

state diagram 235, 6|-6
static arithmetic pipelines 25?
static branch strategy 252
static dataflow 4-I50
static networks 6]‘
static scheduling 247, 595, 6410
storage density 633
storage dependence 47
storage technology 633
sto11e~and—torward routing 3 I9
stream processing 66, 633, 6-48, 65 I , 6-7'0
stream processor 630
streamline connections 232
strength reduction SD?
string reduction 65
strip-mining 3T4
structural parallelism SBB, 641D, 649
subscript categories 494
subscript partitioning 494
subscript separability 494
subtract-and-multiply I49
Sun. Microsystems 2 I9, 392, 660, 666
Sun SPARC I43, 205, 660
SUN SPARCstation 2, 3?I
Sun Ult1a5parc T2 processor 660
superscalar pcrtormauce 2?|
superscalar pipeline design 266
superscalar pipeline scheduling 263
superscalar processor S2, I34, ISD,5B7
suspend locks 555
S"u"M {see shared virtual memory}
swap device 2| I
swappcr 2 I2
swapping systems 2| I
switch module TB
switched interconnect I9I
switched media interconnect 635
symbolic processing I53
symbolic processors I5?
Syn1boIics36|]ID I59
symmetric multiprocessor ll-I
synchronization 63, IDS, 476, 545, 673
synchronization environment 54?

--H29 Index

synchronization latency 53
synchronization overhead I23, 434, 45B
synchronized protocol I90
synchronous message passing 427, 564
synchronous model 223
synchronous program graph 380
synchronous timing IE5
system area network 635
system attributes I3
system clock driver IE4
system deadlock 557
system efficiency 95
system interconnect IT, 2BI
system performance 535
system sotlware support T
system throughput I4
system-on-a-chip 35 I , 624, 630, 660
systolic arrays I0, T2
systolic program graph 350

T
tag unit 244
tagged-token architecture 62
Tandem multiprocessor B2
target bufliers 243
task parallelism 663
temporal locality I64
Tera computer system 40, I02, I69
Tera dmign goals 452
Tera multiprocemor 452
Tera pipeline structure 455
Tera sparse 3-Dtorus 453
Tera thread state Sr. management 456
testdtset 555
thread context 623
thread management 623
thread-level parallelism 623, 6-6|
three-address instruction format 539
throughput 229, 23I
TI~.-'lSC 4, 263
TI-ASC arrit.iu'netic processor 264
tightly coupled systems I‘?
TILE-64 systemaan-a-chip 659

Tilera 65B
Tilera Uvlmh interconnect 659
tiling 526
tiling for locality 528
time complexity 30, 55
timing protocols IE5
TLB, translation Iookaside buffer I40, I69, I92
TMC Cll-l~2 {see CM-2}
TMC CM-S {see CM-5}
TMC, Thinking Machines Corp-oratio
token-matching 62
Tomasulo‘s algorithm 248, 263, 610
torus network 1'2
tournament predictor 6|?
trace scheduling compilation 5IE
trace-driven simulation 202
transaction IE6, I9l,636
transact ion modes IE9
transaction processing YT, 64I
transactions per second 99
transfer bandwidth I60
transformation matrices 522
transistor count 588
Transputer 7?, 3I5, 565
traveling salesperson problem 580
Ti} weak consistency model 2 I9
turnaround time I2
two~bit predictor 6I6

Li
LJM.-Mnultiprocessor I?
unit ofttanslcr I60
Linivac L.-XRC 4
UNIX I95, 2I2
UNIX BSD 4.0 2l2
UNIXSystem V 2I2
unknotmt dependence 45
USC.-‘(IMP 43l
user partitions 393
utilization 95

V
vacuum tubes 4

tt I20, 392

rt -M|:Gm'w Hilff - .- .--. .Index -5., ,,,
vector 34I
vector access memory schemes 345
vector add 323
vector balance poi.nt 352
vector instructions I56, 34l
vector load 372
vector loops and chaining 324
vector memory instructions 343
vector multiply 322
vector operand specifications 3-45
vector pipelines I5?
vector processing 34I
vector processor.-‘computer I0, I I, 25, I56, 34I
vector recurnence 37?
vector reduction 343, 5 I0
vector store 323
vector supercomputers I34
vector units 398
vectortscalar ratio 352
vectorization 49, 34I
vectorization inhibitors 5II
vectorization methods 508
vectorizing compiler 54
vector-scalar instructions 343
vector-vector instructions 342
very large scale integration {see VLSI}
viewing angle 632
virtual address cache I93
virtual address space I6?
virtual channels 322
virtual computing environments 642
virtual cut-through 325, 655
virtual interrupt I89
virtual memory I6?
virtual networks 332
virtual processing element 6'73
virtual systems 66I
visualization support 544
VI_I"Ii' architecture I54
VI_IW, very long instruction word I34, 60]
VLSI complexity model 33

VLSIdesign 598
‘VLSI technology 58?, 630
VLSI, very large scale integration 4
"i’MEbus I82, I89

W
wait protocols 545

' ' - - ‘ 609, 6 I 2‘lll.-‘tilt, write after read dependence 45, 590,
wave fronting 523
nnw, write alter write dependence 45, 590,
weak consistency I24, 2 I 8, 4I9
weighted arithmetic mean execution rate 92
weighted arithmetic mean execution time 93
weighted harmonic mean execution rate 93
weighted harmonic mean speedup 93
Whetstone 92
wide area network 635
window size 2I3,62I
wire length 6?
wired barrier synciu'oni:zation 309
‘ill-'isco1ninlv'lulticube 43l
work performed 90, 646
work-cflicicnt 64'-"
working set I65, 2 I3
workload I05
wormhole routing 3 I4, 320
write butters 409
write-back cache I92, 300
writeback stage 240
nritehtvalidate protocol 299
write-once protocol 30l
write-through cache I92, 299
write-update protocol 299

X
Xerox 63?
X-Net mesh interconnect 39I
X-Y routing 326

Y
Yale Linda 4ll

	Cover
	About the Authors
	Contents
	Foreword to the First Edition
	Preface to the Second Edition
	Preface to the First Edition

	Theory of Parallelism
	Parallel Computer Models
	THE STATE OF COMPUTING
	MULTIPROCESSORS AND MULTICOMPUTERS
	MULTIVECTOR AND SIMD COMPUTERS
	PRAM AND VLSI MODELS
	(Viktor Prasanna, 1992)
	ARCHITECTURAL DEVELOPMENT TRACKS

	Program and Network Properties
	CONDITIONS OF PARALLELISM
	(Wen-Mei Hwu, 1991)
	(Kruatrachue and Lewis, 1988)
	PROGRAM FLOW MECHANISMS
	(Gajski, Padua, Kuck, and Kuhn, 1982)
	SYSTEM INTERCONNECT ARCHITECTURES

	Principles of Scalable Performance
	PERFORMANCE METRICS AND MEASURES
	 Ni, 1993)
	PARALLEL PROCESSING APPLICATIONS
	SPEEDUP PERFORMANCE LAWS
	Ni, 1993)
	 1991)

	Hardware Technologies
	Processors and Memory Hierarchy
	ADVANCED PROCESSOR TECHNOLOGY
	SUPERSCALAR AND VECTOR PROCESSORS
	MEMORY HIERARCHY TECHNOLOGY
	 VIRTUAL MEMORY TECHNOLOGY

	Bus, Cache, and Shared Memory
	BUS SYSTEMS
	(Dubois, Scheurich, and Briggs, 1988)
	 1 1992)

	Pipelining and Superscalar Techniques
	LINEAR PIPELINE PROCESSORS
	NONLINEAR PIPELINE PROCESSORS
	 INSTRUCTION PIPELINE DESIGN
	(James Smith, 1989)
	ARITHMETIC PIPELINE DESIGN
	SUPERSCALAR PIPELINE DESIGN

	Parallel and Scalable Architectures
	Multiprocessors and Multicomputers
	CACHE COHERENCE AND SYNCHRONIZATION MECHANISMS
	(Hwang and Shang, 1991)
	THREE GENERATIONS OF MULTICOMPUTERS
	MESSAGE-PASSING MECHANISMS

	Multivector and SIMD Computers
	(Cray Research, 1990)
	MULTIVECTOR MULTIPROCESSORS
	(Smith, Hsu, and Hsiung, 1990)
	 COMPOUND VECTOR PROCESSING
	(Courtesy of Cray Research, Inc., 1985)
	(Hwang and Xu, 1988)
	SIMD COMPUTER ORGANIZATIONS
	(Thinking Ma chines Corporation, 1990)
	 THE CONNECTION MACHINE CM-5

	Scalable, Multithreaded, and
	(Daniel

	Software for Parallel Programming
	Parallel Models, Languages, and Compilers
	PARALLEL PROGRAMMING MODELS
	(Justin
	(Gul Agha, 1990)
	PARALLEL LANGUAGES AND COMPILERS
	DEPENDENCE ANALYSIS OF DATA ARRAYS
	(Monica Lam, 1992)
	CODE OPTIMIZATION AND SCHEDULING
	(S. Graham, J. L. Hennessy, and J. D. Ullman,
	(S. Graham, J. L. Hennessy, and J. D. Ullman, 1992)
	(Alliant Computer Systems Corporation, 1989)
	(S. Graham, J. L. Hennessy, and J. D. Ullman, 1992)
	LOOP PARALLELIZATION AND PIPELINING
	(Michael Wolf and Monica Lam, 1991)

	Parallel Program Development and Environments
	PARALLEL PROGRAMMING ENVIRONMENTS
	SYNCHRONIZATION AND MULTIPROCESSING MODES
	(Courtesy of Cray Research, 1987)
	SHARED-VARIABLE PROGRAM STRUCTURES
	MESSAGE-PASSING PROGRAM DEVELOPMENT
	MAPPING PROGRAMS ONTO MULTICOMPUTERS
	 Computers, 1990)

	Instruction and System Level Parallelism
	Instruction Level Parallelism
	INTRODUCTION
	BASIC DESIGN ISSUES
	PROBLEM DEFINITION
	MODEL OF A TYPICAL PROCESSOR
	 COMPILER-DETECTED INSTRUCTION LEVEL PARALLELISM
	OPERAND FORWARDING
	REORDER BUFFER
	REGISTER RENAMING
	TOMASULO’S ALGORITHM
	BRANCH PREDICTION
	LEVEL PARALLELISM
	THREAD LEVEL PARALLELISM

	Trends in Parallel Systems
	BRIEF OVERVIEW OF TECHNOLOGY
	FORMS OF PARALLELISM
	CASE STUDIES
	PARALLEL PROGRAMMING MODELS AND LANGUAGES

	Answers to Selected Exercises
	Bibliography
	Index

