

Reg No.:____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIFTH SEMESTER B.TECH DEGREE EXAMINATION(R&S), DECEMBER 2019

Course Code: CS301

Course Name: THEORY OF COMPUTATION

Max. Marks: 100 Duration: 3 Hours

PART A

		Answer all questions, each carries 3 marks.	Marks
1		Define nondeterministic finite automata(NFA). Draw the NFA for the language	3
		$L=\{a^n b^m \mid n, m>=1\}$	2
2		Convert the following NFA to DFA.	3
		$\frac{1}{q_1}$ $\frac{1}{q_2}$ $\frac{1}{q_3}$	
3		Write regular expression for the language L= $\{1^n \ 0^m n>=1, m>=0\}$	3
4		Differentiate Moore machine from Mealy machine. Write the tuple representation for both machines.	3
		PART B	
		Answer any two full questions, each carries 9 marks.	
5	a)	Write the notation for the language defined by a DFA. Write a string belong to the language L^3 if $L=\{0,1\}$	3
	b)	Construct NFA without ϵ – transitions from the following NFA. M=($\{q_0, q_1, q_2\}$, $\{a, b, c\}$, δ , q_0 , $\{q_2\}$) and $\delta(q_0, a) = \{q_0\}$, $\delta(q_0, b) = \{q_1\}$, $\delta(q_0, c) = \{q_2\}$ $\delta(q_1, \epsilon) = \{q_0\}$, $\delta(q_1, a) = \{q_1\}$, $\delta(q_1, b) = \{q_2\}$,	6
_		$\delta(q_2, \epsilon) = \{q_1\}, \delta(q_2, a) = \{q_2\}, \delta(q_2, c) = \{q_0\}.$	2

δ	a	b
P0	P0	P1
P1	P2	P1
P2	P3	P1
*P3	P3	P4
*P4	P5	P4

Page 1 of 3

 \mathcal{Y}

A

		simulate the moves of a Turing Machine	
	b)	Write a note on Universal Turing machines.	5
17	a)	How to identify deterministic Turing machine from nondeterministic TM	3
	b)	Write notes on the following:	7
	·	i) decidable and undecidable problems	
		ii) Halting Problem of Turing machine.	
18	a)	Write the properties of recursive languages and recursively enumerable	3
		languages.	
	b)	Write the Chomsky hierarchy of languages. Prepare a table indicating the	7
		automata and grammars for the languages in the Chomsky Hierarchy.	
19	a)	Define Turing machine [Write the tuple representation for TM].	5
	b)	Design a Turing machine to identify the strings belong to the language $L=\{0^n1^n\}$	5
		$ n>0 \}$.	
20		Design the Turing machine to recognize the language: $\{0^n1^n0^n \mid n \ge 1\}$.	10

LIBRARY