MODULE 2

FINITE STATE MACHINES WITH OUTPUT

MOORE MACHINE AND MEALY MACHINE
$>$ These machines can be described by $\left(\mathrm{Q}, \boldsymbol{\Sigma}, \boldsymbol{\delta}, \mathrm{q}_{0}, \boldsymbol{\Delta}, \boldsymbol{\lambda}\right)$
Q - Finite set of states
Σ - Input alphabet
δ - Transition function $(\mathrm{Q} \times \Sigma \rightarrow \mathrm{Q})$
qo - Initial state
Δ - Output alphabet
λ-Output function
$>$ The only difference between Moore and Mealy is in $\boldsymbol{\lambda}$

MOORE MACHINE

$\lambda: Q \rightarrow \Delta$
$>$ Here for every state an output is associated
$>\Delta$ is a symbol which will be outputted by the machine.
$>$ The state q_{o} produce an output 1
$>$ The state q_{1} produce an output 0

MOORE MACHINE (WORKING)

$>$ If we give input $a b$

- Without seeing anything, qo will produce some output
- On seeing the input ab , this moore machine produce the output 110
- In general, if the string of length n is input, then output produced is string of $n+1$ length.

MEALY MACHINE

$$
\boldsymbol{\lambda : Q \times \Sigma \rightarrow \Delta} \quad \begin{array}{ll}
& \left(q_{o}, a\right) \rightarrow 1 \\
& \left(q_{0}, b\right) \rightarrow 0 \\
& \left(q_{1}, b\right) \rightarrow 0 \\
& \left(q_{1}, a\right) \rightarrow 1
\end{array}
$$

$>$ For a state and a given input, there will be some output $>$ For state q_{o}, if input is a, then output is 1

MEALY MACHINE (WORKING)

$>$ Let the input is ab

$>$ The output is associated with input
$>$ If we give n bit input, the output will be n bit

MYHILL - NERODE THEOREM

- It implies that there is a unique minimal DFA with minimum number of states
- Minimization of DFA - DFA minimization stands for converting a given DFA to its equivalent DFA with minimum number of states. Here

Input - DFA
Output - Minimized DFA

- Table filling method is also called, Myhill - Nerode theorem.

STEP

1. Draw a table for all pairs of states (P, Q)
2. Mark all pairs where $P \in F$ and $Q \notin F$
3. If there are many unmarked pairs (P, Q) such that $[\delta(P, x)$, $\delta(\mathrm{Q}, \mathrm{x})$] is marked, then mark [P, Q] (where x is an input symbol) . Repeat this until no more markings can be made.
4. Combine all the unmarked pairs and make them a single state in the minimized DFA.

Step 2: Mark all pairs where $P \in F$ and $Q \notin F$ (One state should be final and other should be non final state)

$$
\begin{gathered}
(\mathrm{B}, \mathrm{~A})-\delta(\mathrm{B}, 0)-\mathrm{A} \\
\delta(\mathrm{~A}, 0)-\mathrm{B} \text { unmarked } \\
\delta(\mathrm{B}, 1)-\mathrm{D} \\
\\
\delta(\mathrm{~A}, 1)-\mathrm{C} \text { unmarked }
\end{gathered}
$$

(D,C) - $\delta(\mathrm{D}, 0)-E$
$\delta(\mathrm{C}, 0)-\mathrm{E}$ no such column
$\delta(\mathrm{D}, 1)-\mathrm{F}$
$\delta(\mathrm{C}, 1)-\mathrm{F}$ no such column

$$
\begin{aligned}
(\mathrm{E}, \mathrm{C})- & \delta(\mathrm{E}, 0)-\mathrm{E} \\
& \delta(\mathrm{C}, 0)-\mathrm{E} \text { no such column } \\
& \delta(\mathrm{E}, 1)-\mathrm{F} \\
& \delta(\mathrm{C}, 1)-\mathrm{F} \text { no such column }
\end{aligned}
$$

(E,D) - $\delta(\mathrm{E}, 0)-\mathrm{E}$
$\delta(\mathrm{D}, 0)-\mathrm{E}$ no such column
$\delta(\mathrm{E}, 1)-\mathrm{F}$
$\delta(\mathrm{D}, 1)-\mathrm{F}$ no such column
Step 3 continuation

$$
\begin{aligned}
&(\mathrm{F}, \mathrm{~A})- \delta(\mathrm{F}, 0)-\mathrm{F} \\
& \delta(\mathrm{~A}, 0)-\mathrm{B} \text { unmarked } \\
& \delta(\mathrm{F}, 1)-\mathrm{F} \\
& \delta(\mathrm{~A}, 1)-\mathrm{C} \text { marked. So we } \\
& \text { should mark FA }
\end{aligned}
$$

$$
\begin{aligned}
&(F, B)- \delta(F, 0)-F \\
& \delta(B, 0)-A \quad \text { FA is marked .so } \\
& \text { we should mark FB also. }
\end{aligned}
$$

Final table

Minimal DFA

DFA MINIMIZATION USING EQUIVALENCE THEOREM

$>$ Suppose we have 2 states (P, Q)
$>$ We can say that P and Q are equivalent, when

$$
\begin{aligned}
& \delta(P, w) \in F \Rightarrow \delta(Q, w) \in F \\
& \delta(P, w) ¢ F \Rightarrow \delta(Q, w) ¢ F
\end{aligned}
$$

$>$ If the above condition is satisfied, we can combine the states P and Q in to one state.
$>$ The above condition can be used for combine the two states in to a single state.

- If $|w|=0$, then states P and Q are called 0 equivalent
- If $|w|=1$, then states P and Q are called 1 equivalent
- If $|w|=2$, then states P and Q are called 2 equivalent In general,
- If $|w|=n$, then states P and Q are called n equivalent

Q: Minimize the following DFA

- Here the start state is q_{o} and final state is q_{4}.
- Step 1 - Identify the unreachable states (The states which are not reachable from initial state). If such state exist, delete it.
- Step 2 - Draw state transition table

Step 3 - Find 0 equivalent states (ie, separate non final and final states) [$\left.q_{0}, q_{1}, q_{2}, q_{3}\right] \quad\left[q_{4}\right]$
$>$ Find 1 equivalent states.

- Check 1 equivalent of $\left(q_{0}, q_{1}\right)$
- Check 1 equivalent of $\left(q_{0}, q_{2}\right)$
- Check 1 equivalent of $\left(q_{2}, q_{3}\right)$

1 equivalent states
$q_{0} \quad q_{1} \quad q_{2}$
q_{3}

$$
\mathrm{q}_{4}
$$

State Transition Table

	a	b
$\rightarrow q_{0}$	q_{1}	q_{2}
q_{1}	q_{1}	q_{3}
q_{2}	q_{1}	q_{2}
q_{3}	q_{1}	${ }^{*} q_{4}$
${ }^{*} q_{4}$	q_{1}	q_{2}

$>$ Find 3 equivalent states

- 3 equivalent state can be find using 2 equivalent states. ie, [$\left.q_{0}, q_{2}\right]$ [$\left.q_{1}\right]\left[q_{3}\right]\left[q_{4}\right]$
- Check 3 equivalent of (q_{0}, q_{2})

3 equivalent states

[q_{o}, q_{2}] [$\left.q_{1}\right]\left[q_{3}\right]\left[q_{4}\right]$
ie, No further division is possible

Step 4- Draw minimal DFA using the states

(This is our question)

(minimized DFA - Answer)

Q: Minimize the following DFA using equivalence theorem

$>q_{3}$ is not reachable from starting state. Then we should delete q_{3}

Find 0 equivalent states

 [$\left.q_{0}\right] \quad\left[\begin{array}{ll}q_{1} & q_{2}\end{array}\right]$$>$ Find 1 equivalent states

- Check 1 equivalent of ($q_{1} q_{2}$)

1 equivalent states
$\left[\begin{array}{ll}q_{1} & q_{2}\end{array}\right] \quad\left[q_{0}\right]$
No further division is possible

Given DFA -Question

Minimized DFA - Answer

Minimization of DFA (Example 3)

$>$ Step1 - Identify the unreachable states
$>$ Step 2- Draw state transition table

>Step 2- Draw state transition table


```
>Step 3 - Find equivalent states
O equivalent
[ qo q1 q_ [ [ [q3]
1 equivalent
- Check }1\mathrm{ equivalent of (qo q}\mp@subsup{q}{1}{}
- Check }1\mathrm{ equivalent of (qo q2)
1 equivalent states
    qo q1 lll
```


2 equivalent

- To find 2 equivalent states, we use 1 equivalent states. le,
$\left[\begin{array}{ll}q_{o} & \left.q_{1}\right] \quad\left[q_{2}\right] \quad\left[q_{3}\right]\end{array}\right.$
- Check 2 equivalent of ($q_{\circ} q_{1}$)

2 equivalent states
$\begin{array}{llll}q_{0} & q_{1} & q_{2} & q_{3}\end{array}$
So, 2 equivalent states are
 $\left[q_{0}\right]\left[q_{1}\right] \quad\left[q_{2}\right] \quad\left[q_{3}\right]$

Given DFA in the question

After removing unreachable states

$>$ Minimized DFA, which is also Same as the above

GRAMMAR

$>$ A grammar describes how to form strings from a language's alphabet that are valid according to the language's syntax.
$>$ A grammar is usually thought of as a language generator.

Formal Definition

- A Grammar is a 4-tuple such that $\mathbf{G}=(\mathrm{V}, \mathrm{T}, \mathrm{P}, \mathrm{S})$ where
$\mathrm{V}=$ Finite non-empty set of non-terminal symbols (Variables)
$\mathrm{T}=$ Finite set of terminal symbols
$P=$ Finite non-empty set of production rules
S = Start symbol

A Grammar is mainly composed of two basic elements

- Terminal Symbols - are denoted by using small case letters such as a, b, c etc.
- Non-Terminal Symbols - are denoted by using capital letters such as A, B, C etc. It is also called variables.

Example 1 of Grammar

- Consider a grammar $G=(V, T, P, S)$ where-
$V=\{S\}$
// Set of Non-Terminal symbols
$T=\{a, b\} \quad / /$ Set of Terminal symbols
$P=\{S \rightarrow a S b S, S \rightarrow b S a S, S \rightarrow \varepsilon\} \quad / /$ Set of production rules
$S=\{S\}$ // Start symbol
This grammar generates the strings having equal number of a's and b's

> Example 2 of Grammar

Consider a grammar $G=(V, T, P, S)$ where-

$$
\begin{aligned}
& V=\{S, A, B\} \quad \text { // Set of Non-Terminal symbols } \\
& T=\{a, b\} \quad / / \text { Set of Terminal symbols } \\
& P=\{S \rightarrow A B a, A \rightarrow B B, B \rightarrow a b, A A \rightarrow b\} / / \text { Set of production rules } \\
& S=\{S\} \quad / / \text { Start symbol }
\end{aligned}
$$

Chomsky Hierarchy

$>$ Noam Chomsky gave a mathematical model of grammar in 1956 which is effective for writing computer languages.
According to Chomsky hierarchy, grammars are divided of 4 types:

* Type 0 known as unrestricted grammar
* Type 1 known as context sensitive grammar

Type 2 known as context free grammar
Type 3 Known as Regular Grammar

Chomsky Hierarchy

Type 3: Regular Grammar

Regular grammars generate regular languages.
$>$ These languages are exactly all languages that can be accepted by a finite state automaton.

- Type 3 is most restricted form of grammar.

Regular grammar contains the production of the form $\alpha \rightarrow \beta$ where $|\alpha| \leq|\beta|, \alpha \in v$ and β has the form aB or a.

Eg: S \rightarrow aS, S \rightarrow b

Derivations

$>$ The process of deriving a string is called as derivation.
$>$ The geometrical representation of a derivation is called as a parse tree or derivation tree.

Leftmost Derivation - It is the process of deriving a string by expanding the leftmost non-terminal at each step
Rightmost Derivation - It is the process of deriving a string by expanding the rightmost non-terminal at each step

Leftmost Derivation

Find Leftmost derivation of the
Following Grammar ?

$$
S \rightarrow A B \mid \varepsilon
$$

$$
\mathrm{A} \rightarrow \mathrm{aB}
$$

$$
\mathrm{B} \rightarrow \mathrm{Sb}
$$

$$
\begin{aligned}
\mathrm{S} & \rightarrow \mathrm{AB} \\
& \rightarrow \mathrm{aBB} \\
& \rightarrow \mathrm{aSbB} \\
& \rightarrow \mathrm{a} b \mathrm{bB} \\
& \rightarrow \mathrm{abB} \\
& \rightarrow \mathrm{abSb} \\
& \rightarrow \mathrm{ab} \mathrm{\varepsilon b} \\
& \rightarrow \mathrm{abb}
\end{aligned}
$$

Derive the string abb

Rightmost Derivation

>Find Rightmost derivation of the
Following Grammar ?
$S \rightarrow A B$
\rightarrow ASb
$\mathrm{S} \rightarrow \mathrm{AB} \mid \varepsilon$
\rightarrow Acb
$\mathrm{A} \rightarrow \mathrm{aB}$
$\rightarrow \mathrm{aBb}$
$B \rightarrow S b$
Derive the string $a b b$
\rightarrow aSbb
\rightarrow acbb
\rightarrow abb

REGULAR EXPRESSIONS

$>$ The language accepted by finite automata can be easily described by simple expressions called Regular Expressions.
$>$ It is the most effective way to represent any language.
$>$ The languages accepted by some regular expression are referred to as Regular languages.

- A regular expression can also be described as a sequence of pattern that defines a string.
$>$ Regular expressions are used to match character combinations in strings.

Regular Expressions are used to denote regular languages. An expression is regular if

- ϕ is a regular expression for regular language ϕ.
- ε is a regular expression for regular language $\{\varepsilon\}$
- If a $\in \Sigma$ (Σ represents the input alphabet), a is regular expression with language $\{a\}$.
- If a and b are regular expression, $a+b$ is also a regular expression with language $\{a, b\}$.
- If a and b are regular expression, $a b$ (concatenation of a and b) is also regular.
- If a is regular expression, a^{*} (0 or more times a) is also regular.

Regular Languages: A language is regular if it can be expressed in terms of regular expression.
$>$ In a regular expression, x^{*} means zero or more occurrence of x. It can generate $\{\varepsilon, x, x x, x x x, x x x x, \ldots .$.
$>$ In a regular expression, x^{+}means one or more occurrence of x. It can generate $\{x, x x, x x x, x x x x, \ldots .$.

Example 1:

Write the regular expression for the language accepting all combinations of a's, over the set $\Sigma=\{a\}$

Solution:

- All combinations of a's means a may be zero, single, double and so on.
- If a is appearing zero times, that means a null string. That is we expect the set of $\{\varepsilon, a, a a, ~ a a a, \ldots$.$\} .$
- So we give a regular expression for this as:

$$
\text { RE = } a^{*}
$$

Example 2:

Write the regular expression for the language accepting all combinations of a's except the null string, over the set $\sum=\{a\}$

Solution:

- The regular expression has to be built for the language

$$
\mathrm{L}=\{\mathrm{a}, \mathrm{aa}, \text { aaa, } . . .\}
$$

- This set indicates that there is no null string. So we can denote regular expression as:

$$
\mathrm{RE}=\mathbf{a}^{+}
$$

Example 3:

Write the regular expression for the language accepting all the string containing any number of a's and b's.

Solution:

The regular expression will be:

$$
R E=(a+b)^{*}
$$

- This will give the set as $L=\{\varepsilon, a, a a, b, b b, a b, b a, a b a, b a b, \ldots .$.$\} ,$ any combination of a and b.
- The $(a+b)^{*}$ shows any combination with a and b even a null string.

Example 4:

Write the regular expression for the language accepting all the string which are starting with 1 and ending with 0 , over $\sum=\{0,1\}$

Solution:

- In a regular expression, the first symbol should be 1, and the last symbol should be 0.

$$
R E=1(0+1) * 0
$$

Conversion of RE to FA

Rules:

1. $a+b(a$ or $b, a \mid b)$

2. (ab)

3. \mathbf{a}^{*} (Repetition / a closure)

Example: 1

Convert the regular expression ba*b to Finite Automata $L=\{b b, b a b, b a a b,$.

Example: 2

Convert the regular expression (a+b)c to Finite Automata $L=\{a c, b c\}$

Example: 3

Convert the regular expression $\mathbf{a}(\boldsymbol{b c})^{*}$ to Finite Automata $L=\{a, a b c, a b c b c, a b c b c b c,$.

Example: 3

Convert the regular expression $(\boldsymbol{a} \mid \boldsymbol{b})^{*}\left(\mathrm{abb} \mid \boldsymbol{a}^{+} \mathrm{b}\right)$ to Finite Automata

REGULAR EXPRESSION TO NFA

$>$ The following are the rules to convert a RE to NFA. They are called Thompson's Rule

Rule: 1

- Let i be the initial state and f be the final state. The NFA for the regular expression (RE) that accept null string (ε) is given by

Rule: 2

- The NFA for the regular expression (RE) that accept an input symbol a is given by

Rule : 3

- If N1 and N2 are NFA for the regular Expression R1 and R2,then
(i) NFA for R1+R2 (R1|R2)

(i) NFA for R1R2

(ii) NFA for \mathbf{R}^{*}

Example : 1

Construct NFA for the RE (a|b)*a

$R 2=b$
R3 $=$ R1 | R2
for b
$R 4=R 3 *$
R5 $=$ R4.R1
We can construct NFA for each one

for (a|b)*a

Example 2

- Draw NFA to represent the regular expression $\mathrm{ab\mid}|\mathrm{a}| \mathrm{b}) \mathrm{a}$
for a

for b

for ab

for a / b

Conversion of FA to RE

$>$ Here we are using state elimination method

Rule 1

>Initial state should not have any incoming edge from other state. If incoming edge is present, then create new initial state

Rule 2a

$>$ Final state should not have any outgoing edge. If outgoing edge is present, then create new final state

Rule 2b

$>$ If more than one Final state is present, then convert it into one state

Rule 3

\Rightarrow Eliminate the state one by one other than the initial \& final state

Example 1

No incoming edge from other state to initial state
No outgoing edges from final state.

$$
R E=(a+b+c)
$$

Example 2

No incoming edge from other state to initial state No outgoing edges from final state.

$R E=a b$

Example 3

No incoming edge from other state to initial state
No outgoing edges from final state.

$$
R E=a b * c
$$

Step-1
Incoming edge is present from other state to initial state. So , create new initial state

