Reg No.:__

Name:__

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fifth semester B.Tech degree examinations (S) September 2020

Course Code: CS301 Course Name: THEORY OF COMPUTATION

Max. Marks: 100

Duration: 3 Hours

PART A Answer all questions, each carries3 marks.

Marks

1 Formally define extended delta for an NFA. Show the processing of input (3) w = 0101 for the following NFA.

- 2 Differentiate between the transition function in DFA, NFA and ϵ -NFA (3)
- 3 Design a Moore machine to determine the residue of mod 2 of the input treated (3) as a binary string.
- 4 Give a regular expression for the set of all strings not containing 101 as a (3) substring

PART B Answer any two full questions, each carries 9 marks.

5 a) Convert the following NFA to DFA and describe the language it accepts. (5) $M = (\{P, Q, R, S, T\}, \{0, 1\}, \delta, P, \{S, T\})$ and δ is given as:

	0	1
Р	{P,Q}	{P}
Q	$\{R,S\}$	{T}
R	{P,R}	{T}
S	-	-
Т	-	-

b) Prove that "A language L is accepted by some ϵ -NFA if and only if L is (4) accepted by some NFA"

00000CS301121901

6 a) State Myhill-Nerode theorem, Minimize the following DFA.

- b) Find an equivalent ϵ -NFA for the following regular expression (4) (0 + 1)*011
- 7 a) Convert the following ϵ -NFA to NFA

	E	1	2	3
q0	Ø	{ q0}	{ q1 }	{ q2}
q1	{ q0}	{ q1}	{ q2}	Ø
q2	{ q1 }	{ q2}	Ø	{ q0}

b) Describe clearly the equivalent classes of the Canonical Myhill-Nerode relation (5) for the language of binary strings with second-last symbol as 0.

PART C Answer all questions, each carries3 marks.

8		State the closure properties of regular sets.	(3)
9		Define context free grammar. Consider the following CFG	(3)
		$S \rightarrow aS \mid Sb \mid a \mid b$	
		Prove by induction on the string length that no string in $L(G)$ has ba as	
		substring.	
10		Design a PDA to accept the set of strings with twice as many 0's as 1's.	(3)
11		List the decision problems related with type 3 Formalism.	(3)
		PART D	
		Answer any two full questions, each carries9 marks.	
12	a)	State pumping lemma for regular languages. Prove that the language $L =$	(5)
		$\{a^{n^2} n > 0\}$ is not regular.	
	1 \		

b) Convert the following grammar into Chomsky normal form (4)

 $S \rightarrow ASB | \in$, $A \rightarrow aAS | a$, $B \rightarrow SbS | A | bb$

(5)

(4)

00000CS301121901

- 13 a) Prove the equivalence of acceptance of a PDA by final state and empty stack. (6)
 - b) Define a deterministic PDA. How a DPDA differs from a non-deterministic (3) PDA?

(4)

14 a) Let G be the grammar

 $S \rightarrow aB|bA$, $A \rightarrow a|aS|bAA$, $B \rightarrow b|bS|aBB$

For the string aabbaabbba find

i) leftmost derivation, ii) parse tree, and iii) Is the grammar ambiguous?

b) Design a PDA to accept the language $L = \{ww^R | w \in \{0,1\}^*\}.$ (5)

PART E

Answer any four full questions, each carries10 marks.

- 15 a) Show that the language $L = \{ww | w \in \{a, b\}^*\}$ is not a CFL. (5)
 - b) Design a TM to compute the 2's complement of a binary string. (5)
- 16 a) State and prove pumping lemma for context free languages. Mention the (6) application of pumping lemma.
 - b) Design a Turing machine to accept, (4)

 $L = \{ w \in \{0,1\}^* | w \text{ has equal number of } 0's \text{ and } 1's \}.$

- 17 a) Compare context sensitive grammar and context free grammar. Can we design a (5)PDA for context sensitive languages? Justify your answer.
 - b) Design a TM to find the sum of two numbers m and n. Assume that initially the (5) tape contains m number of 0s followed by # followed by n number of 0s
- 18 a) Are there any languages which are not recursively enumerable, but accepted by (5) a multi-tape Turing machine? Justify your answer.
 - b) Define formally Type 0, Type 1, Type 2 and Type 3 grammar. Show the (5) corresponding automata for each class
- 19 a) List the closure properties of Recursive Languages(4)
 - b) Define a Universal Turing Machine (UTM). With the help of suitable arguments (6) show the simulation of other Turing machines by a UTM.
- 20 a) Compare recursive and recursively enumerable languages. (3)
 - b) Show that the class of recursive languages is closed under complementation. (3)
 - c) Show that the class of recursively enumerable languages are not closed under (4) complementation.
