
CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 1

MODULE 5

PIPELINE DESIGN

Prepared By Mr. EBIN PM, AP, IESCE 1

EDULINE

INSTRUCTION PIPELINE DESIGN
A program consist of multiple instructions, and incase of pipeline
architecture each and every instructions will executed in multiple
different phases or stages or segments.
A typical instruction execution consist of a sequence of operations or
phases. They are
Instruction fetch
Decode (Identify the meaning)
Operand fetch (Data)
Execute
Write Back (Store result)

Prepared By Mr.EBIN PM, AP, IESCE 2



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 2

EDULINE

Consider the following instruction pipeline:

Fetch stage fetches instructions from a cache memory (one per
cycle)
Decode stage identifies the function to be performed and

identifies the resources needed. (Resources- GPRs, Functional unit)
Issue stage reserves the resources, and read operands from

registers
Execution – Instructions executed in several execute stages (3

execute stage are shown)
Write back stage used to write results into the registers.

Prepared By Mr.EBIN PM, AP, IESCE 3

EDULINE

The following figure shows the flow of machine instructions
through a typical pipeline. It shows the 8 instructions of the high-
level language statements X=Y+Z and A=B×C

Prepared By Mr.EBIN PM, AP, IESCE 4



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 3

EDULINE

With in-order instruction issuing, if an instruction is blocked from
issuing due to a data or resource dependence, all instructions
following it are blocked.

• The shaded boxes correspond to idle cycle when instruction issues
are blocked due to resource latency, conflicts or due to data
dependences.

• First two load instructions issue on consecutive cycles. The add is
dependent on both loads and must wait 3 cycles before the data (X
and Y) are loaded in

• The store of the sum to memory location X must wait 3 cycles for
the add to finish due to a flow dependence.

Prepared By Mr.EBIN PM, AP, IESCE 5

EDULINE

The following Fig: shows an improved timing after the instruction
issuing order is changed. The idea is to issue all 4 load operations
in the beginning.
Both the add and multiply instructions are blocked fewer cycles

due to this data prefetching. The reordering should not change the
end result.

Prepared By Mr.EBIN PM, AP, IESCE 6



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 4

EDULINE

MECHANISMS FOR INSTRUCTION 
PIPELINING

Prefetch buffers

Prepared By Mr.EBIN PM, AP, IESCE 7

EDULINE

• In one memory access time, a block of consecutive instructions are
fetched in to prefetch buffer.

• Block access can be achieved using interleaved memory modules
or using a cache.

• Sequential instructions are loaded in to sequential buffers
• Instructions from branched locations are loaded into target buffers
• Both buffers operate in FIFO fashion
• Another prefetch buffer is loop buffer. It holds sequential

instructions contained in a small loop.
• The CDC 6600 and cray1 use the loop buffer.

Prepared By Mr.EBIN PM, AP, IESCE 8



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 5

EDULINE

Multiple Functional Units

Prepared By Mr.EBIN PM, AP, IESCE 9

EDULINE

• Some times a certain pipeline stage becomes a bottleneck. This
problem can be removed by using multiple copies of the same
stage simultaneously.

• Consider the above figure: - to resolve data or resource
dependences among the successive instructions entering the
pipeline, the reservation stations(RS) are used with each functional
units.

• Operations wait in the RS until their data dependences have been
resolved.

• Each RS is uniquely identified by “tag”, which is monitored by
tagunit.

• The tagunit check the tags from all currently used registers or RSs.

Prepared By Mr.EBIN PM, AP, IESCE 10



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 6

EDULINE

• Register tagging technique allows the hardware to resolve conflicts
between source and destination registers assigned for multiple
instructions.

• Once the dependences are resolved, the multiple functional units
can operate in parallel.
Internal Data Forwarding
• Throughput of pipelined processor can be improved with internal

data forwarding among multiple functional units
• Memory access operations can be replaced by register transfer

operations
• Since register transfer is faster than memory access, this data

forwarding reduce memory traffic.
Prepared By Mr.EBIN PM, AP, IESCE 11

EDULINE

Hazard Avoidance
• Consider 2 instructions I and J. Instruction J is logically follow

instruction I. If the actual execution order of these two instructions
violates the program order, incorrect result may be read or written,
and produce hazards.

Prepared By Mr.EBIN PM, AP, IESCE 12



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 7

EDULINE

• Let D(I) is the domain of an instruction I. Domain contains the input
set (operands) used by instruction I.

• R(I) is the range of an instruction I. The range contains output set
of instruction I.

• The possible hazards are given below.

Prepared By Mr.EBIN PM, AP, IESCE 13

EDULINE

• The RAW hazard corresponds to the flow dependence
• WAR to the antidependence
• WAW to the output dependence

Prepared By Mr.EBIN PM, AP, IESCE 14



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 8

EDULINE

INSTRUCTION SCHEDULING
The methods for scheduling instructions through an instruction
pipeline are:
Static scheduling using an optimizing compiler
Dynamic scheduling

Tomasulo’s Algorithm
Score boarding scheme

Prepared By Mr.EBIN PM, AP, IESCE 15

EDULINE

Static Scheduling
• Data dependences of instructions create an interlock relationship

between instructions. It can be resolved through compiler base
static scheduling approach.

• Using a compiler or a post processor we can increase the
separation between interlocked instructions.

Prepared By Mr.EBIN PM, AP, IESCE 16



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 9

EDULINE

• Consider the above code. Here, the multiply instruction cannot be
initiated until the preceding load is complete. This data
dependence will stall the pipeline, for 3 clock cycles.

• The two Load instructions are independent of the add and move
instructions. So we can move these instructions to increase the
spacing between them and multiply instruction.

• After modification we get,

Prepared By Mr.EBIN PM, AP, IESCE 17

EDULINE

Dynamic Scheduling
• Here, the hardware rearranges the instruction execution to reduce

the stall.
• Dynamic scheduling simplifies the compiler.
• Dynamic scheduled processor cannot change the data flow, it tries

to avoid stalling when dependences are present.
• In contrast, static pipeline scheduling by the compiler, tries to

minimize stalls by separating dependent instructions so that they
will not lead to hazards.

Prepared By Mr.EBIN PM, AP, IESCE 18



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 10

EDULINE

Tomasulo’s Approach
• This scheme resolved resource conflict and data dependence using

register tagging to allocate and deallocate the source and
destination registers.

• It eliminates WAR and WAW hazards
• An issued instructions whose operands are not available is

forwarded to an RS (Reservation Station) associated with the
functional units it will use.

• It waits until its data dependence have been resolved and its
operands become available. The dependence is resolved by
monitoring the CDB (Common Data Bus)

Prepared By Mr.EBIN PM, AP, IESCE 19

EDULINE

• The dependence is resolved by monitoring the result bus. When
an instruction has completed the execution, the result along with
its tag appears on the result bus.

• The registers as well as the reservation stations monitor the result
bus and update their contents when a matching tag is found.

• It is used in high performance computers.
• It needs special hardware units including reservation stations &

multiple functional units.

Prepared By Mr.EBIN PM, AP, IESCE 20



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 11

EDULINE

Score boarding
• Unlike out of order execution, this technique issues instructions

inorder (in-order-issue).
• Score boarding is a hardware mechanism that maintains an

execution rate of one instructions per cycle, by executing an
instruction as soon as its operands are made available, and no
hazard conditions prevent it.

• Every instructions go through a score board where a record of data
dependences is constructed corresponding to instruction issue.

• A system with a scoreboard is assumed to have several functional
units with their status information reported to the score board.

Prepared By Mr.EBIN PM, AP, IESCE 21

EDULINE

• If the scoreboard determines that an instruction cannot execute
immediately, it executes another waiting instruction and keeps
monitoring hardware unit status and decides when the instruction
can proceed to execute.

• All hazard detection and resolution are centralized in
scoreboarding

Prepared By Mr.EBIN PM, AP, IESCE 22



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 12

EDULINE

TOMASULO’S APPROACH SCOREBOARDING

Register renaming is used to
eliminate WAR and WAW hazards

It must wait for WAR and WAW
hazards to clear

Hazard detection and execution
control is distributed to each
functional unit

Hazard detection and execution
control is centralized

Forwards results directly to the
functional units

Result is forwarded to the register
file

Prepared By Mr.EBIN PM, AP, IESCE 23

EDULINE

ARITHMETIC PIPELINE DESIGN
• In modem processors, fixed-point (integer) and floating-point

arithmetic operations are very often performed by separate
hardware on the same processor chip

• IEEE has developed standard formats for 32- and 64-bit floating
numbers known as the IEEE 754 Standard.

• This standard has been adopted for most of today's computers.

Prepared By Mr.EBIN PM, AP, IESCE 24



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 13

EDULINE

Fixed-Point Operations
• Most computers use the two’s complement notation because of its

unique representation of all numbers (including zero).
• Add, subtract, multiply and divide are the four primitive arithmetic

operations. The add or subtract of two n-bit integers produces an
n-bit result with at most one carry-out.

• The multiplication of two n-bit numbers produces a 2n-bit result
which requires the use of two memory words or two registers to
hold the full-precision result.

• The division of an n-bit number by another may create an
arbitrarily long quotient and a remainder.

Prepared By Mr.EBIN PM, AP, IESCE 25

EDULINE

Floating-Point Operations
• A floating-point number X is represented by a pair (m,e) , when: m

is the mantissa and e is the exponent.
• A 32-bit floating—point number is specified in the IEEE 754

Standard as follows

Prepared By Mr.EBIN PM, AP, IESCE 26



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 14

EDULINE

Static Arithmetic Pipelines
• The ALU perform fixed-point and floating-point operations

separately.
• The fixed-point unit is also called the integer unit. The floating-

point unit can be built either as part of the central processor or on
a separate coprocessor.

• These arithmetic units perform scalar operations. The pipelining in
scalar arithmetic pipelines is controlled by software loops. Vector
arithmetic units can be designed with pipeline hardware directly
under firmware or hardwired control

Prepared By Mr.EBIN PM, AP, IESCE 27

EDULINE

Arithmetic Pipeline Stages
• Since all arithmetic operations can be implemented with the basic

add and Shifting operations, the core arithmetic stages require
some form of hardware to add and to shift.

For example, a typical three stage floating-point adder
• first stage for exponent comparison and equalization which is

implemented with an integer adder and some shifting logic
• second stage for fraction addition using a high-speed carry

lookahead adder
• third stage for fraction normalization and exponent readjustment

using a shifter and another addition logic.

Prepared By Mr.EBIN PM, AP, IESCE 28



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 15

EDULINE

Arithmetic or logical shifts can be easily implemented with shift
registers.
High-speed addition requires
• either the use of a carry-propagation adder (CPA) which adds two

numbers and produces an arithmetic sum
• Or the use of a carry-save adder (CSA) to three input numbers and

produce one sum output and a carry output

Prepared By Mr.EBIN PM, AP, IESCE 29

EDULINE

Multiply Pipeline Design
Consider as an example the multiplication of two 8-bit integers
A×B=P where P is the 16 –bit product. This fixed-point multiplication
can be written as the summation of eight partial products as shown
below

Prepared By Mr.EBIN PM, AP, IESCE 30



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 16

EDULINE

Multiply Pipeline Design

Prepared By Mr.EBIN PM, AP, IESCE 31

EDULINE

• The first stage (S1) generates all eight partial products, ranging
from 8 bits to 15 bits, simultaneously.

• The second stage (S2) is made up of two levels of four CSAs, and it
essentially merges eight numbers into four numbers ranging from
I3 to I5 bits.

• The third stage (S3) consists of two CSAs, and it merges four
numbers from S1 into two l6-bit numbers. ‘

• The final stage (S4) is a CPA, which adds up the last two numbers to
produce the final product P.

Prepared By Mr.EBIN PM, AP, IESCE 32



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 17

EDULINE

SUPERSCALAR PIPELINE DESIGN
Pipeline Design Parameters
A comparison between scalar & superscalar processors

• The Instruction Level Parallelism (ILP) is the maximum number of
instructions that can be simultaneously executed in the pipeline.

Prepared By Mr.EBIN PM, AP, IESCE 33

EDULINE

Super Scalar Pipeline Structure

Prepared By Mr.EBIN PM, AP, IESCE 34



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 18

EDULINE

• In this design, the processor can issue two instructions per cycle if
there is no resource conflict and no data dependence problem.

• There are essentially two pipelines in the design.
• Both pipelines have four processing stages labeled fetch, decode,

execute, and store, respectively.
• Each pipeline essentially has its own fetch unit. decode unit. and

store unit.
• The two instruction streams flowing through the two pipelines are

retrieved from a single source stream (the I-cache).
• The fan-out from a single instruction stream is subject to resource

constraints and a data dependence relationship among the
successive instructions.

Prepared By Mr.EBIN PM, AP, IESCE 35

EDULINE

• Four functional units, multiplier, adder, logic unit, and load unit, are
available for use in the execute stage. These functional units are
shared by the two pipelines on a dynamic basis.

• The multiplier itself has three pipeline stages, the adder has two
stages, and the others each have only one stage.

• There is a lookahead window with its own fetch and decoding logic.
This window is used for instruction lookahead in case out-of-order
instruction issue is desired to achieve better pipeline throughput.

• It requires complex logic to schedule multiple pipelines
simultaneously. The aim is to avoid pipeline stalling and minimize
pipeline idle time

Prepared By Mr.EBIN PM, AP, IESCE 36



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 19

EDULINE

A sample program and its dependence graph shown below, where 
I₂ and I₃ share the adder and I₄ and I₆ share the multiplier

• Because the register content in R1 is loaded by I₁ and then used by
I₂, we have flow dependence: I₁—> I₂.

Prepared By Mr.EBIN PM, AP, IESCE 37

EDULINE

• Because the result in register R₄ after executing I₄ may affect the
operand register R₄ used by I₃, we have anti-dependence.

• Since both I₅ and I₆ modify the register R₆, and R₆ supplies an
operand for I₆, we have both flow and output dependence

• To schedule instructions through one or more pipelines, these data
dependences must not be violated. Otherwise, erroneous results
may be produced.

Prepared By Mr.EBIN PM, AP, IESCE 38



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 20

EDULINE

Pipeline Stalling
• This is a problem which may seriously lower pipeline utilization.
• Proper scheduling avoids pipeline stalling. The problem exists in

both scalar and superscalar processors.
• However, it is more serious in a superscalar pipeline. Stalling can be

caused by data dependences or by resource conflicts among
instructions already in the pipeline or about to enter the pipeline

• Following figure shows the case of no data dependence on the left
and flow dependence (I₁→I₂) on the right. Without data
dependence all pipeline stages are utilized without idling.

Prepared By Mr.EBIN PM, AP, IESCE 39

EDULINE

• With dependence, instruction I₂ entering the second pipeline must
wait for two cycles (shaded time slots) before entering the
execution stages. This delay may also pass to the next instruction I₄
entering the pipeline.

Prepared By Mr.EBIN PM, AP, IESCE 40



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 21

EDULINE

• The following fig: shows the effect of branching (instruction I₂). A
delay slot of four cycles results from a branch taken by I₂ at cycle 5.
Therefore, both pipelines must be flushed before the target.
instructions I₃ and I₄ can enter the pipelines from cycle 6.

Prepared By Mr.EBIN PM, AP, IESCE 41

EDULINE

• The following fig: shows a combined problem involving both
resource conflict and data dependence. Instructions I₁ and I₂ need
to use the same functional unit, and I₂→I₄ exists.

Prepared By Mr.EBIN PM, AP, IESCE 42



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 22

EDULINE

Superscalar Pipeline Scheduling
• The scheduling policies are introduced below.
• When instructions are issued in program order, we call it in-order

issue.
• When program order is violated, out-of-order issue is being

practiced.
• ln-order issue is easier to implement but may not yield the optimal

performance. In-order issue may result in either in-order or out-of-
order completion.

• The purpose of out-of-order issue and completion is to improve
performance

Prepared By Mr.EBIN PM, AP, IESCE 43

EDULINE

In-Order issue with In-Order Completion
• Figure shows a schedule for the six instructions being issued in

program order l₁,I₂,….I₆.
• Pipeline 1 receives I₁, I₃, and I₅, and pipeline 2 receives I₂, I₄, and I₆

in three consecutive cycles. Due to I₁ —> I₂, I₂ has to wait one cycle
to use the data loaded in by I₁.

Prepared By Mr.EBIN PM, AP, IESCE 44



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 23

EDULINE

• I₃ is delayed one cycle for the same adder used by I₂.
• I₆ has to wait for the result of 1₅ before it can enter the multiplier

stages.
• In order to maintain in-order completion, I₅ is forced to wait for

two cycles to come out of pipeline 1.
• In total, nine cycles are needed and five idle cycles (shaded boxes)

are observed

Prepared By Mr.EBIN PM, AP, IESCE 45

EDULINE

In-Order issue with Out-of-Order Completion
• The only difference between this out-of-order schedule and the in-

order schedule is that I₅ is allowed to complete ahead of I₃ and I₄,
which are totally independent of I₅. The total execution time does
not improve. However, the pipeline utilization rate does.

Prepared By Mr.EBIN PM, AP, IESCE 46



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 24

EDULINE

Out-of-Order issue with Out-of-Order Completion
• In order to shorten the total execution time, the window can be

used to reorder the instruction issues.

Prepared By Mr.EBIN PM, AP, IESCE 47

EDULINE

• By using the lookahead window, instruction I₅ can be decoded in
advance because it is independent of all the other instructions.

• The six instructions are issued in three cycles as shown: I₅ is fetched
and decoded by the window, while I₃ and I₄ are decoded
concurrently.

• Because the issue is out of order, the completion is also out of
order

• The total execution time has been reduced to seven cycles with no
idle stages during the execution of these six instructions.

• Out-of-order issue gives the processor more freedom to exploit
parallelism, and thus pipeline efficiency is enhanced.

Prepared By Mr.EBIN PM, AP, IESCE 48


