

CSA

• Data de betwee static se	ependences in instruction cheduling ap	of instruction ns. It can be proach.	s create an interlock resolved through com	elationship npiler base
• Using	a compiler	or a post p	processor we can ind	crease the
separat	ion between	tion:	nstructions.	
separat	ion between Instruc Add	tion: R0, R1	$/R0 \leftarrow (R0) + (R1)/$	
separat	ion between Instruc Add Move	tion: R0, R1 R1, R5	/R0 \leftarrow (R0) + (R1)/ /R1 \leftarrow (R5)/	
separat	ion between Instruc Add Move Load	tion: R0, R1 R1, R5 R2, Μ(α)	/R0 \leftarrow (R0) + (R1)/ /R1 \leftarrow (R5)/ /R2 \leftarrow (Memory (α))/	
separat	ion between Instruc Add Move Load Load	tion: R0, R1 R1, R5 R2, M(α) R3, M(β)	/R0 \leftarrow (R0) + (R1)/ /R1 \leftarrow (R5)/ /R2 \leftarrow (Memory (α))/ /R3 \leftarrow (Memory (β))/	

 Consider the above code. H initiated until the prece dependence will stall the pip 	ere, the mu ding load peline, for 3	Itiply instru is comple clock cycles	ction cannot be ete. This data
 The two Load instructions a instructions. So we can mo spacing between them and r 	are indeper ove these i multiply inst	ndent of the nstructions truction.	e add and move to increase the
• After modification we get,	Load Load Add Move Multiply	R2, M(α) R3, M (β) R0, R1 R1, R5 R2, R3	
Prepare	ed By Mr.EBIN PM, AP, I	ESCE	EDULINE 17

Score boarding

- Unlike out of order execution, this technique issues instructions inorder (in-order-issue).
- Score boarding is a hardware mechanism that maintains an execution rate of one instructions per cycle, by executing an instruction as soon as its operands are made available, and no hazard conditions prevent it.
- Every instructions go through a score board where a record of data dependences is constructed corresponding to instruction issue.
- A system with a scoreboard is assumed to have several functional units with their status information reported to the score board.

Prepared By Mr.EBIN PM, AP, IESCE EDULINE	21	

 If the scoreboard detering immediately, it executed monitoring hardware up can proceed to executed 	ermines es anot nit statu	that an instr her waiting ıs and decide	uction instru s whe	cannot exection and kend the instruction of the ins	cute eps tion
 All hazard detection scoreboarding 	n and	resolution	are	centralized	in
	Prepared By N	Mr.EBIN PM, AP, IESCE		EDULINE	22

Register renaming is used to eliminate WAR and WAW hazardsIt must wait for WAR and WAW hazards to clearHazard detection and execution control is distributed to each functional unitHazard detection and execution control is centralizedForwards results directly to the functional unitResult is forwarded to the register	TOMASULO'S APPROACH	SCOREBOARDING
Hazard detection and execution Hazard detection and execution control is distributed to each control is centralized functional unit Forwards results directly to the Result is forwarded to the register functional unit	Register renaming is used to eliminate WAR and WAW hazards	It must wait for WAR and WAW hazards to clear
Forwards results directly to the Result is forwarded to the register	Hazard detection and execution control is distributed to each functional unit	Hazard detection and execution control is centralized
Tunctional units Tile	Forwards results directly to the functional units	Result is forwarded to the register file
	Prepared By Mr.E	BIN PM, AP, IESCE EDULINE 23

*****Static Arithmetic Pipelines

- The ALU perform fixed-point and floating-point operations separately.
- The fixed-point unit is also called the integer unit. The floatingpoint unit can be built either as part of the central processor or on a separate coprocessor.
- These arithmetic units perform scalar operations. The pipelining in scalar arithmetic pipelines is controlled by software loops. Vector arithmetic units can be designed with pipeline hardware directly under firmware or hardwired control

Prepared By Mr.EBIN PM, AP, IESCE

EDULINE

27

Consida	r ac	ər		vo	mr	ماد	+1	20	m		inl	ica	tia	n c	∖f I	+	0	8-h	it intogo
				:. 1-	111µ - 1	ле				alu	.ipi				י ול		0	0-0	It integer
A×R=N N	vnere	3 P	IS	τη	е т	6 -	-01	τρ	oro	au	CT.	In	IS T	ixe	a-p	0	nτ	mu	itiplicatio
an be v	vritte	en	as	th	e s	un	nm	ati	ion	0	fei	igh	t pa	arti	al	pro	od	ucts	s as show
below									1	0	1	1	0	1	0	1	-	A]
								×)	1	0	0	1	0	0	1	1	=	В	
	n an								1	0	1	1	0	1	0	1	ш	P_0	-
								1	0	I	1	0	1	0	I	0	ы	P_1	
							0	0	0	0	0	0	0	0	0	0	m	P_2	
						0	0	0	0	0	0	0	0	0	0	0	=	<i>P</i> ₃	
					1	0	I	I	0	1	0	1	0	0	0	0	=	P_4	
				0	0	0	0	0	0	0	0	0	0	0	0	0	10	P ₅	
			0	0	0	0	0	0	0	0	0	0	0	0	0	0	=	P_6	
	+)	1	0	1	1	0	1	0	1	0	0	0	0	0	0	0	-	P7	-
	0	1	1	0	0	1	1	1	1	1	1	0	1	1	1	1	=	P	

Machine type	Scalar base machine of k pipeline stages	Superscalar machine of degree n
Machine pipeline cycle	1 (base cycle)	1
Instruction issue rate		m
Instruction issue latency	1	1
Simple operation latency	1	
ILP to fully utilize the pipeline	-1	m

EDULINE

35

- In this design, the processor can issue two instructions per cycle if there is no resource conflict and no data dependence problem.
- There are essentially two pipelines in the design.
- Both pipelines have four processing stages labeled fetch, decode, execute, and store, respectively.
- Each pipeline essentially has its own fetch unit. decode unit. and store unit.
- The two instruction streams flowing through the two pipelines are retrieved from a single source stream (the I-cache).
- The fan-out from a single instruction stream is subject to resource constraints and a data dependence relationship among the successive instructions.

Prepared By Mr.EBIN PM, AP, IESCE

```
Four functional units, multiplier, adder, logic unit, and load unit, are available for use in the execute stage. These functional units are shared by the two pipelines on a dynamic basis.
The multiplier itself has three pipeline stages, the adder has two stages, and the others each have only one stage.
There is a lookahead window with its own fetch and decoding logic. This window is used for instruction lookahead in case out-of-order instruction issue is desired to achieve better pipeline throughput.
It requires complex logic to schedule multiple pipelines simultaneously. The aim is to avoid pipeline stalling and minimize pipeline idle time
```


