
DATA STRUCTURE http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 1

MODULE 3
LINKED LIST & MEMORY

MANAGEMENT

Prepared By Mr. EBIN PM, AP, IESCE 1

EDULINE

SELF REFERENTIAL STRUCTURE
• Self Referential Structure is the Data Structure in which the pointer

refers (points) to the structure of the same type.
• In other words, structures pointing to the same type of structures

are self-referential in nature.
• A self referential structure is used to create data structures like

linked lists, tree, graph etc.

Prepared By Mr.EBIN PM, AP, IESCE 2

DATA STRUCTURE http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 2

EDULINE

Eg: In singly linked list

• In the above declaration next is the pointer to the structure of type
node. Here next is the pointer which will contains the address of
the structure of the same type (i.e address of next node) and data
will contain the actual data.

Prepared By Mr.EBIN PM, AP, IESCE 3

EDULINE

Eg: In Doubly linked list

• In the above declaration prev & next are the pointer to the
structure of type node. Here prev pointer contains the address of
the previous node and next pointer contains the address of the
next node.

Prepared By Mr.EBIN PM, AP, IESCE 4

DATA STRUCTURE http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 3

EDULINE

DYNAMIC MEMORY ALLOCATION
Memory Allocation Process
• Global variables, static variables and program instructions get their

memory in permanent storage area whereas local variables are
stored in a memory area called Stack.

• The memory space between these two region is known as Heap
area. This region is used for dynamic memory allocation during
execution of the program. The size of heap keep changing.

• The process of allocating memory at runtime is known as dynamic
memory allocation. Library routines known as memory
management functions are used for allocating and freeing memory
during execution of a program.

Prepared By Mr.EBIN PM, AP, IESCE 5

EDULINE

Program memory layout

Prepared By Mr.EBIN PM, AP, IESCE 6

DATA STRUCTURE http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 4

EDULINE

• There are 4 library functions provided by C defined under
<stdlib.h> header file to facilitate dynamic memory allocation in C
programming. They are:

malloc()
calloc()
free()
realloc()

malloc() function is used for allocating block of memory at
runtime. This function reserves a block of memory of the given size
and returns a pointer of type void. This means that we can assign it
to any type of pointer using typecasting.

Prepared By Mr.EBIN PM, AP, IESCE 7

EDULINE

Syntax:
void* malloc(byte-size)

Eg:
int *x;
x = (int*)malloc(50*sizeof(int)); //memory space allocated to

variable x
free(x); //releases the memory allocated to variable x

calloc() is another memory allocation function that is used for
allocating memory at runtime. calloc function is normally used for
allocating memory to derived data types such as arrays and
structures.

Prepared By Mr.EBIN PM, AP, IESCE 8

DATA STRUCTURE http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 5

EDULINE

Syntax:
void *calloc(number of items, element-size)

Eg:
struct employee
{

char *name;
int salary;

};
typedef struct employee emp;
emp *e1;
e1 = (emp*)calloc(30,sizeof(emp));

Prepared By Mr.EBIN PM, AP, IESCE 9

EDULINE

realloc() changes memory size that is already allocated
dynamically to a variable.

Syntax:
void* realloc(pointer, new-size)

Eg:
int *x;
x = (int*)malloc(50 * sizeof(int));
x = (int*)realloc(x,100); //allocated a new memory to variable x
The free() function is used to de-allocate the previously allocated

memory using malloc() or calloc() functions.
Syntax : free (ptr_var);

Prepared By Mr.EBIN PM, AP, IESCE 10

DATA STRUCTURE http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 6

EDULINE

LINKED LIST
• A linked list is a linear data structure, in which the elements are not

stored at contiguous memory locations. The elements in a linked
list are linked using pointers as shown in the below image:

• In simple words, a linked list consists of nodes where each node
contains a data field and a reference(link) to the next node in the
list.

Prepared By Mr.EBIN PM, AP, IESCE 11

EDULINE

Comparison Between Array & Linked List

Prepared By Mr.EBIN PM, AP, IESCE 12

No ARRAY LINKED LIST
1 Difficult to perform insertion & deletion

operation
Easy to perform insertion & deletion
operation

2 It is easy to access an element from an array To access an element from a list, we must
start from beginning of the list and then take
address of next element from current node

3 Array element access is random access and
it is fast

In linked list , access is sequential and it is
slow

4 Array need space to store only the data
element. No extra space is required

In linked list additional space is required to
store the pointers

5 Array elements are stored in contiguous
memory locations.

List elements need not be stored in
contiguous memory location

6 For insertion & deletion, it takes more time.
For dictionary operation array take less time

Insertion and deletion take less time. But
dictionary operation take very less time.

DATA STRUCTURE http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 7

EDULINE

Inserting a node on the front

Prepared By Mr.EBIN PM, AP, IESCE 13

y

f

x

0

y

x

f

f

EDULINE

Inserting a node at the end of list

Prepared By Mr.EBIN PM, AP, IESCE 14

y

x

0A

f b

B C D

b

0

If a list exist, we must traverse that list for finding the
end of the list. For that purpose we create a dummy
pointer b which is also point to the first node. This b
become move and f points first node at all times.
If b.link=nil, then we points b.link to x

DATA STRUCTURE http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 8

EDULINE

Inserting a node between two nodes after a given data value

Prepared By Mr.EBIN PM, AP, IESCE 15

EDULINEPrepared By Mr.EBIN PM, AP, IESCE 16

x
y

0

f p

d

qp

p. link x. link= q

DATA STRUCTURE http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 9

EDULINE

• If a list exist, then a pointer p is set which points to f. Then we
traverse this pointer p upto p.data=d.

• Then we check, if p.link=nil. If yes, the new node x will assign as the
last node and convert its link part using nil value.

• Else , we create a new variable q and p.link is assigned to that q.
• P.link is assigned to x and x.link is also given to q

Prepared By Mr.EBIN PM, AP, IESCE 17

EDULINE

Delete first node from linked list

Prepared By Mr.EBIN PM, AP, IESCE 18

D

p

A 0

f

CB

f

DATA STRUCTURE http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 10

EDULINE

Delete last node from linked list

Prepared By Mr.EBIN PM, AP, IESCE 19

D

p

A 0

f

CB

s s

E 0

p

EDULINE

Delete a node from middle, after a given data value.

Prepared By Mr.EBIN PM, AP, IESCE 20

pf

d 0

pq

DATA STRUCTURE http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 11

EDULINE

DOUBLY LINKED LIST
• In a single linked list, every node has a link to its next node in the

sequence. So, we can traverse from one node to another node only
in one direction and we can not traverse back.

• We can solve this kind of problem by using a double linked list.
• In a double linked list, every node has a link to its previous node

and next node.
• So, we can traverse forward by using the next field and can

traverse backward by using the previous field.
• Every node in a double linked list contains three fields and they are

shown in the following figure

Prepared By Mr.EBIN PM, AP, IESCE 21

EDULINE

• In double linked list, the first node must be always pointed by head.
• Always the previous field of the first node must be NULL.
• Always the next field of the last node must be NULL.

In C, structure of a node in
doubly linked list can be given as :

Prepared By Mr.EBIN PM, AP, IESCE 22

DATA STRUCTURE http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 12

EDULINE

Memory Representation of a doubly linked list
• Generally, doubly linked list consumes more space for every node

and therefore, causes more expansive basic operations such as
insertion and deletion.

• However, we can easily manipulate the elements of the list since
the list maintains pointers in both the directions (forward and
backward).

• In the following image, the first element of the list that is i.e. 13
stored at address 1. The head pointer points to the starting address
1.

• Since this is the first element being added to the list therefore the
prev of the list contains null. The next node of the list resides at
address 4 therefore the first node contains 4 in its next pointer.

Prepared By Mr.EBIN PM, AP, IESCE 23

EDULINE

• We can traverse the list in this way until we find any node
containing null or -1 in its next part.

Prepared By Mr.EBIN PM, AP, IESCE 24

DATA STRUCTURE http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 13

EDULINE

CIRCULAR SINGLY LINKED LIST
• In a circular Singly linked list, the last node of the list contains a

pointer to the first node of the list. We can have circular singly
linked list as well as circular doubly linked list.

• We traverse a circular singly linked list until we reach the same
node where we started.

• The circular singly liked list has no beginning and no ending.
• There is no null value present in the next part of any of the nodes.
• The following image shows a circular singly linked list.

Prepared By Mr.EBIN PM, AP, IESCE 25

EDULINE

• Circular linked list are mostly used in task maintenance in operating
systems.

• There are many examples where circular linked list are being used
in computer science including browser surfing where a record of
pages visited in the past by the user, is maintained in the form of
circular linked lists and can be accessed again on clicking the
previous button.

Prepared By Mr.EBIN PM, AP, IESCE 26

DATA STRUCTURE http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 14

EDULINE

Memory Representation of circular linked list
• The last node of the list contains the address of the first node of the

list.

Prepared By Mr.EBIN PM, AP, IESCE 27

EDULINE

CIRCULAR DOUBLY LINKED LIST
• Circular doubly linked list is a more complex type of data structure

in which a node contain pointers to its previous node as well as the
next node.

• Circular doubly linked list doesn't contain NULL in any of the node.
• The last node of the list contains the address of the first node of

the list.
• The first node of the list also contain address of the last node in its

previous pointer.
• A circular doubly linked list is shown in the following figure.

Prepared By Mr.EBIN PM, AP, IESCE 28

DATA STRUCTURE http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 15

EDULINE

• Due to the fact that a circular doubly linked list contains three parts
in its structure therefore, it demands more space per node and
more expensive basic operations.

• However, a circular doubly linked list provides easy manipulation of
the pointers and the searching becomes twice as efficient.

Prepared By Mr.EBIN PM, AP, IESCE 29

EDULINE

Memory Management of Circular Doubly linked list

Prepared By Mr.EBIN PM, AP, IESCE 30

DATA STRUCTURE http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 16

EDULINE

• The variable head contains the address of the first element of the
list i.e. 1 hence the starting node of the list contains data A is stored
at address 1.

• Since, each node of the list is supposed to have three parts
therefore, the starting node of the list contains address of the last
node i.e. 8 and the next node i.e. 4.

• The last node of the list that is stored at address 8 and containing
data as 6, contains address of the first node of the list as shown in
the image i.e. 1.

• In circular doubly linked list, the last node is identified by the
address of the first node which is stored in the next part of the last
node therefore the node which contains the address of the first
node, is actually the last node of the list.

Prepared By Mr.EBIN PM, AP, IESCE 31

EDULINE

STACK USING LINKED LIST (LINKED STACK)
• In linked list implementation of stack, the nodes are maintained

non-contiguously in the memory. Each node contains a pointer to
its immediate successor node in the stack

Prepared By Mr.EBIN PM, AP, IESCE 32

DATA STRUCTURE http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 17

EDULINE

Algorithm to insert an element in to the stack (PUSH operation)

Prepared By Mr.EBIN PM, AP, IESCE 33

Top

0

y
x

Top

EDULINE

Algorithm to delete an item from a linked stack (POP operation)

Prepared By Mr.EBIN PM, AP, IESCE 34

Top

0

d
x

Top

DATA STRUCTURE http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 18

EDULINE

QUEUE USING LINKED LIST(LINKED QUEUE)
• In a linked queue, each node of the queue consists of two parts i.e.

data part and the link part. Each element of the queue points to its
immediate next element in the memory.

• In the linked queue, there are two pointers maintained in the
memory i.e. front pointer and rear pointer.

• The front pointer contains the address of the starting element of
the queue while the rear pointer contains the address of the last
element of the queue.

Prepared By Mr.EBIN PM, AP, IESCE 35

EDULINE

Enqueue an item in to linked queue (Insertion)

Prepared By Mr.EBIN PM, AP, IESCE 36

x
y 0

f r

r

DATA STRUCTURE http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 19

EDULINE

Dequeue an item from linked queue (deletion)

Prepared By Mr.EBIN PM, AP, IESCE 37

x

f r

s

f

EDULINE

MEMORY ALLOCATION SCHEME
FIRST FIT - In the first fit approach is to allocate the first free
partition or hole large enough which can accommodate the process.
It finishes after finding the first suitable free partition.
BEST FIT - The best fit deals with allocating the smallest free
partition which meets the requirement of the requesting process.
This algorithm first searches the entire list of free partitions and
considers the smallest hole that is adequate. It then tries to find a
hole which is close to actual process size needed.
WORST FIT - In worst fit approach is to locate largest available free
portion so that the portion left will be big enough to be useful. It is
the reverse of best fit.

Prepared By Mr.EBIN PM, AP, IESCE 38

DATA STRUCTURE http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 20

EDULINE

Q: Given five memory partitions of 100Kb, 500Kb, 200Kb, 300Kb,
600Kb (in order), how would the first-fit, best-fit, and worst-fit
algorithms place processes of 212 Kb, 417 Kb, 112 Kb, and 426 Kb (in
order)? Which algorithm makes the most efficient use of memory?

FIRST FIT
212K is put in 500K partition (remaining 500k-212k= 288k)
417K is put in 600K partition (remaining 600k-417k= 183k)
112K is put in 288K partition (new partition 288K = 500K - 212K)
426K must wait

Prepared By Mr.EBIN PM, AP, IESCE 39

100kb 500kb 200kb 300kb 600kb

EDULINE

BEST FIT
212K is put in 300K partition
417K is put in 500K partition
112K is put in 200K partition
426K is put in 600K partition

Prepared By Mr.EBIN PM, AP, IESCE 40

100kb 500kb 200kb 300kb 600kb

DATA STRUCTURE http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 21

EDULINE

WORST FIT
212K is put in 600K partition (remaining 600k-212k= 388k)
417K is put in 500K partition
112K is put in 388K partition
426K must wait

In this example, best-fit turns out to be the best.

Prepared By Mr.EBIN PM, AP, IESCE 41

100kb 500kb 200kb 300kb 600kb

