

Relaxed Memory Consistency Memory consistency model is a set of rules that governs how memory systems will process memory operations (load/store) from multiple processors Consistency models are used in distributed systems like distributed shared memory systems or distributed data stores The following are the relaxed memory consistency models: Processor Consistency (PC) A system exhibits processor consistency if the order in which other processors see the writes from any individual processor is the same as the order they were issued. Because of this , processor consistency is only applicable to systems with multiple processors.

		1111.10	1000.04	_
		VV(X)3	vv(x)1	P ₁
R(x)3	R(x)1			P ₂
		W(y)2	W(y)1	P ₃
R(y)2	R(y)1			P ₄
sor	Proces ent	2: Not Consiste	Example (E
		W(x)3	W(x)1	P ₁
R(x)1	R(x)3			P ₂
		W(y)2	W(y)1	P ₃
	R(y)2			P

 \succ To analyze the performance of this network , 4 parameters are used. 1. Latency (L) – communication latency on a remote memory access. The value of L includes network delay, cache miss penalty etc. 2. Number of threads (N) – It is the number of threads that can be interleaved in each processor. Thread contains program counter, register set and context status words Context switching overhead (C) – Cycle lost in performing context switching in a processor 4. Interval between switches (R) – The cycles between switches triggered by remote reference. The inverse p=1/R is called the rate of requests for remote access. EDULINE Prepared By Mr.EBIN PM, AP, IESCE 13

CSA

- In coarse-grained parallelism, a program is split into large tasks. Due to this, a large amount of computation takes place in processors.
- This might result in load imbalance, wherein certain tasks process the bulk of the data while others might be idle.
- Coarse-grained parallelism fails to exploit the parallelism in the program as most of the computation is performed sequentially on a processor.
- Cray Y-MP is an example of coarse-grained parallel computer which has a grain size of about 20s

Prepared By Mr.EBIN PM, AP, IESCE

EDULINE

31

NO FINE-GRAINED SIMD COARSE-GRAINED		COARSE-GRAINED SIMD
1	Fine Grain SIMD have less computation time then the coarse grain architecture	Coarse Grain SIMD have more computation time then the Fine grain architecture.
2	Here, programs are broken into large number of small tasks.	Here, programs are broken into small number of large task.
3	Fine Grain SIMD have much higher level of parallelism then Coarse grain SIMD.	Coarse grain SIMD have lower level of parallelism then Fine Grain SIMD.
4	Here, Grain Size is over 1000 instructions.	Here, Grain Size in range of 2-500 instructions.
5	Here, the size of subcomponents is much smaller than the Coarse grained.	Here, the size of subcomponents is more than the Fine-Grained.
6	Here, two types of parallelism can be obtained – a) Instruction Level Parallelism b) Loop Level Parallelism	Here, these two types of parallelism can be obtained – a) Sub-program b) Program Level Parallelism
7	In Fine Grain SIMD, Load Balancing is proper.	In Coarse Grain SIMD, Load Balancing is improper.
	Prepared By Mr.E	BIN PM, AP, IESCE EDULINE 32

NO	FINE-GRAINED SIMD	COARSE-GRAINED SIMD
8	Here Parallelism can be detected using compiler.	Here Parallelism can't be detected using compiler.
9	Fine Grain SIMD is a much costlier process than the Coarse Grain SIMD.	Coarse Grain SIMD is much cheaper than the Fine Grain SIMD.
10	Fine Grain is the concept of future multi- threaded architectures to be used in the future also.	Coarse Grain is in one of the earlier concepts of single-threaded architectures.
11	The Detailed description is further divided into many small subcomponents and makes the processes less complex from the original one and from the coarse-grained also.	The Detailed description is divided into large subcomponents and makes the processes less complex than the original one but more complex than Fine-Grained.
12	Examples Connection Machine (CM-2), J-Machine, etc.	Examples CRAY Y, etc.

	Machine					
Characteristics	Cray Y-MP	Connection Machine CM-2	Intel iPSC/1	MIT J-Machine		
Communication latency, T _c	40 ns via shared memory	600 µs per 32-bit send operation	5 ms	2 µs		
Synchronization overhead, T_s	20 µs	125 ns per bit- slice operation in lock step	500 µs	1 μs		
Grain size, T_g	20 s	4 µs per 32-bit result per PE instruction	10 ms	5 µs		
Concurrency (DOP)	2-16	8K-64K	8-128	IK-64K		
Remark	Coarse-grain supercomputer	Fine-grain data parallelism	Medium-grain multicomputer	Fine-grain multicompute		