
CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 1

MODULE 6
MULTITHREADED & DATA FLOW 

ARCHITECTURE

Prepared By Mr. EBIN PM, AP, IESCE 1

EDULINE

LATENCY HIDING TECHNIQUES
• Parallel computers uses shared memory. The access of remote

memory increases memory latency; because processor speed rate
is faster than memory speed rate.

• So, a scalable multiprocessor or large scale multi-computer needs a
latency reducing or hiding mechanism

• The latency hiding techniques are:
Prefetching techniques
Distributed coherent caches
Relaxed memory consistency
Multiple context Switches

Prepared By Mr.EBIN PM, AP, IESCE 2



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 2

EDULINE

Prefetching Techniques
• Prefetching means, bring instructions or data close to the

processor before they are actually needed. Prefetching
classifications are
1. Binding prefetch

• It put prefetched value into register.
• The problem is the value become stale if another processor

modifies the same location during the interval between prefetch
and reference.

Prepared By Mr.EBIN PM, AP, IESCE 3

EDULINE

2. Non- binding prefetch
• It put prefetched values in to cache.
• It aims at reducing the basic cache miss rate by fetching the data

from remote memory in to the cache before it is required by the
processor

• The data is visible to the cache coherence protocol and is thus kept
consistent until the processor actually reads the value.

3. Software controlled prefetching
• Here the prefetching operation is initiated by processor executing a

prefetch instruction
• It can extends the possible prefetch-reference interval.

Prepared By Mr.EBIN PM, AP, IESCE 4



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 3

EDULINE

• Prefetching to be done selectively based on program knowledge.
• It simplifies the hardware
• The disadvantage is , needs extra instruction overhead to generate

the prefetch.
4. Hardware controlled prefetching
• Here the hardware prefetches at run time.
• It provides better dynamic information
• No instruction overhead to issue prefetches
• Difficult to detect memory access patterns
• Instruction lookahead is limited by branches and buffer size.

Prepared By Mr.EBIN PM, AP, IESCE 5

EDULINE

Distributed Coherent Caches
• It is supported by hardware to reduce cache misses.
• In bus-base multi-processors, coherence problem is easily solved

using snoopy bus protocols
• In large scale multi-processors, some did not provide caches,

others provided caches that must be kept coherent by software.
Benefits:

• Reduction in the number of cycles wasted due to read-misses
• The cycles wasted due to write misses were also reduced

Prepared By Mr.EBIN PM, AP, IESCE 6



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 4

EDULINE

Relaxed Memory Consistency
• Memory consistency model is a set of rules that governs how

memory systems will process memory operations (load/store) from
multiple processors

• Consistency models are used in distributed systems like distributed
shared memory systems or distributed data stores

• The following are the relaxed memory consistency models:
1. Processor Consistency (PC)
• A system exhibits processor consistency if the order in which other

processors see the writes from any individual processor is the same
as the order they were issued. Because of this , processor
consistency is only applicable to systems with multiple processors.

Prepared By Mr.EBIN PM, AP, IESCE 7

EDULINE

Example:

Prepared By Mr.EBIN PM, AP, IESCE 8



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 5

EDULINE

• In the first example, all the writes by each processor are seen in the
order they occurred in by the other processors; and the
transactions are coherent.

• Second example is not processor consistent, as the writes by P1
and P3 are seen out of order by P2 and P4 respectively.

2. Release consistency
• Memory consistency must be maintained to avoid undesirable

outcomes.
• To achieve better performance , some relaxed models are explored

and the release consistency is an aggressive relaxing attempt.

Prepared By Mr.EBIN PM, AP, IESCE 9

EDULINE

• Release consistency acquire synchronization variables or locks.
Locks can be acquire and release. An acquire is a read operation,
that gains permission to access a set of data. A release is a write
operation that gives away such permission.

• For a lock “L”, acquire and release operations can be denoted by
acquire(L)
release(L)

• The conditions for release consistency are:
a) Before a read or write access is allowed to perform with respect

to any other process, all previous acquires accesses must be
performed.

Prepared By Mr.EBIN PM, AP, IESCE 10



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 6

EDULINE

b). Before a release access is allowed to perform with respect to any
other process ,all previous read or write access must be performed.
c). Special access are processor consistent with one another. Release
consistency requires processor consistency.

Prepared By Mr.EBIN PM, AP, IESCE 11

EDULINE

PRINCIPLES OF MULTITHREADING
• Multi-threading means the processor should handle multiple

contexts simultaneously on a context-switching basis.
• One of the multi-threaded architecture is shown below. It is a

network of processor(P) and memory (M) nodes.

Prepared By Mr.EBIN PM, AP, IESCE 12



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 7

EDULINE

To analyze the performance of this network , 4 parameters are
used.

1. Latency (L) – communication latency on a remote memory
access. The value of L includes network delay , cache miss penalty
etc.

2. Number of threads (N) – It is the number of threads that can be
interleaved in each processor. Thread contains program counter,
register set and context status words

3. Context switching overhead (C) – Cycle lost in performing context
switching in a processor

4. Interval between switches (R) – The cycles between switches
triggered by remote reference. The inverse p=1/R is called the
rate of requests for remote access.

Prepared By Mr.EBIN PM, AP, IESCE 13

EDULINE

• To increase efficiency, reduce the rate of requests by using
distributed coherent caches, and eliminate processor waiting
through multithreading.

• Parallel processors operate asynchronously in a network
environment. These asynchrony creates 2 types of latency
problems. “Remote loads” and “synchronizing loads”

Multithreading Issues & Solutions
Remote load problem
• In the following figure , variable A and B are located on nodes N2

and N3. They need to be brought to node N1 to compute the
difference A-B in variable C. So we need to execute 2 remote load
(rload) and then subtraction.

Prepared By Mr.EBIN PM, AP, IESCE 14



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 8

EDULINE

• The main issue in remote load is how to avoid idling in node N1
during the load operation. The latency caused by remote load is
architectural property.

Remote load problem

Prepared By Mr.EBIN PM, AP, IESCE 15

EDULINE

• In figure, PA and PB are the pointers to A and B. The two rload can
be issued from the same thread or from two different threads. The
context of the computation on N1 is represented by the variable
CTXT.
Synchronizing loads problem

• The following figure shows the idling due to synchronizing loads. A
and B are computed by concurrent processes and not sure exactly
when they will be ready for node N1 to read. The ready signal may
reach node N1 asynchronously.

• The latency caused by synchronizing loads also depends on
scheduling and the time it take to compute A and B.

Prepared By Mr.EBIN PM, AP, IESCE 16



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 9

EDULINE

Synchronizing loads problem

Prepared By Mr.EBIN PM, AP, IESCE 17

EDULINE

• Synchronization latency is often unpredictable while the remote
load latencies are often predictable.

• The solution to the asynchrony problem is to multiplex among
many threads. When one thread issues a remote load request, the
processor begins work on another thread and so on.

• Make sure that messages carry continuations. Suppose after
issuing a remote load from thread T1, we switch to thread T2,
which also issues a remote load. The responses may not return in
the same order. This may be caused by travelling distance of
messages , congestion etc. To avoid this problem, associate each
remote load and response with an identifier for the appropriate
thread; so that it can be re-enabled on the arrival of a response.
These identifiers are also called “Continuations”

Prepared By Mr.EBIN PM, AP, IESCE 18



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 10

EDULINE

• Another solution for overcoming the asynchrony problem is ,
distributed caching. Every memory location has an owner node.

• For example, N3 owns B and N2 owns A.
• The directories are used to contain import, export list and state

whether the data is shared or exclusive.
• Distributed caching offers a solution for the remote load problem,

but not for the synchronizing load problem.

Prepared By Mr.EBIN PM, AP, IESCE 19

EDULINEPrepared By Mr.EBIN PM, AP, IESCE 20



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 11

EDULINE

MULTIPLE CONTEXT PROCESSORS
• Multithreaded systems are constructed with multiple-context (or

multi-threaded) processors.
• Multithreaded processors are known as multiple context

processors.
• A single thread processor will wait during a remote reference, and

it is idle for a period of time “L”. A multi threaded processor will
suspend the current context and switch to another, so that some
fixed number of cycles it will again be busy doing useful work ,
even though the remote reference is outstanding.

• The objective is to maximize the fraction of time that the processor
is busy.

Prepared By Mr.EBIN PM, AP, IESCE 21

EDULINE

Efficiency = busy / (busy+switching+idle) 
• The basic idea behind the multithreaded machine is to interleave

the execution of several contexts in order to dramatically reduce
the value of idle.

• The various context states are – Ready, Running, Leaving and
Blocked.

• At most one context running or leaving. If all context are blocked ,
we say the processor is “idle”.

• The following figure is a multi-threaded model , one thread per
context. Each context is represented by its own program counter
(PC), register set and process status word (PSW)

Prepared By Mr.EBIN PM, AP, IESCE 22



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 12

EDULINE

Multithreaded Model

Prepared By Mr.EBIN PM, AP, IESCE 23

EDULINE

Context-Switching policies : Different multithreaded architectures
are distinguished by the context switching policies adopted. The
four switching policies are given below

• Switch on cache miss – A context is preempted when it causes a
cache miss. Here ‘R’ is the average interval between misses; and ’L’
is the time required to satisfy the miss

• Switch on every load – Allows switching on every load. Here, ‘R’ is
the average interval between loads. There are two sources of
latency ; L1 and L2. L1 represents the latency on cache miss. L2
represents zero – cycle memory latency.

• Switch on every instruction – Allows switching on every instruction,
whether it is a load or not

Prepared By Mr.EBIN PM, AP, IESCE 24



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 13

EDULINE

• Switch on block of instruction – Blocks of instructions from
different threads are interleaved. This will improve the cache hit
ratio due to locality.
Processor efficiency

• A single thread processor executes a context until a remote
reference is issued; and then is idle until the reference is
completed. There is no context switch and switch overhead.

• Let R be the amount of time the processor is busy. L be the amount
of time the processor is idle.

The efficiency of a single threaded machine is given by
E₁ = R/(R+L)

Prepared By Mr.EBIN PM, AP, IESCE 25

EDULINE

• With multiple context, memory latency can be hidden by switching
to a new context, and the switch take C cycles of overhead. There is
always a “context ready” to execute when a switch occurs, so the
processor is never idle.

Efficiency curve

Prepared By Mr.EBIN PM, AP, IESCE 26



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 14

EDULINE

• The processor efficiency is analyzed in two different conditions. In
the above figure shows the context switching and processor
efficiency as a function of the number of contexts.

• Saturation region – Here the processor operates with maximum
utilization. Efficiency is

𝑬𝒔𝒂𝒕 = R/(R+C)
Here , the efficiency is independent of latency

Prepared By Mr.EBIN PM, AP, IESCE 27

EDULINE

FINE GRAIN MULTI-COMPUTERS
• In parallel computing, granularity (or grain size) of a task is a

measure of the amount of work (or computation) which is
performed by that task

• Granularity is usually measured in terms of the number of
instructions executed in a particular task. Alternately, granularity
can also be specified in terms of the execution time of a program

• Depending on the amount of work which is performed by a parallel
task, parallelism can be classified into three categories:

Fine-grained parallelism
Medium-grained parallelism
Coarse-grained parallelism

Prepared By Mr.EBIN PM, AP, IESCE 28



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 15

EDULINE

Fine-grained parallelism
• In fine-grained parallelism, a program is broken down to a large

number of small tasks. These tasks are assigned individually to
many processors.

• The amount of work associated with a parallel task is low and the
work is evenly distributed among the processors. Hence, fine-
grained parallelism facilitates load balancing

• As each task processes less data, the number of processors
required to perform the complete processing is high. This in turn,
increases the communication and synchronization overhead.

Prepared By Mr.EBIN PM, AP, IESCE 29

EDULINE

• Fine-grained parallelism is best exploited in architectures which
support fast communication. Shared memory architecture which
has a low communication overhead is most suitable for fine-
grained parallelism.

• It is difficult for programmers to detect parallelism in a program,
therefore, it is usually the compilers' responsibility to detect fine-
grained parallelism

• Connection Machine (CM-2) and J-Machine (Jellybean-Machine) 
are examples of fine-grain parallel computers that have grain size in 
the range of 4-5 μs

Prepared By Mr.EBIN PM, AP, IESCE 30



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 16

EDULINE

Coarse-grained parallelism
• In coarse-grained parallelism, a program is split into large tasks.

Due to this, a large amount of computation takes place in
processors.

• This might result in load imbalance, wherein certain tasks process
the bulk of the data while others might be idle.

• Coarse-grained parallelism fails to exploit the parallelism in the
program as most of the computation is performed sequentially on
a processor.

• Cray Y-MP is an example of coarse-grained parallel computer which 
has a grain size of about 20s

Prepared By Mr.EBIN PM, AP, IESCE 31

EDULINEPrepared By Mr.EBIN PM, AP, IESCE 32

NO FINE-GRAINED SIMD COARSE-GRAINED SIMD

1 Fine Grain SIMD have less computation time then the 
coarse grain architecture

Coarse Grain SIMD have more computation time then the 
Fine grain architecture.

2 Here, programs are broken into large number of 
small tasks.

Here, programs are broken into small number of large task.

3 Fine Grain SIMD have much higher level of 
parallelism then Coarse grain SIMD.

Coarse grain SIMD have lower level of parallelism then Fine 
Grain SIMD.

4 Here, Grain Size is over 1000 instructions. Here, Grain Size in range of 2-500 instructions.

5 Here, the size of subcomponents is much smaller 
than the Coarse grained.

Here, the size of subcomponents is more than the Fine-
Grained.

6 Here, two types of parallelism can be obtained –
a) Instruction Level Parallelism
b) Loop Level Parallelism

Here, these two types of parallelism can be obtained –
a) Sub-program
b) Program Level Parallelism

7 In Fine Grain SIMD, Load Balancing is proper. In Coarse Grain SIMD, Load Balancing is improper.



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 17

EDULINEPrepared By Mr.EBIN PM, AP, IESCE 33

NO FINE-GRAINED SIMD COARSE-GRAINED SIMD

8 Here Parallelism can be detected using
compiler.

Here Parallelism can’t be detected using compiler.

9 Fine Grain SIMD is a much costlier process
than the Coarse Grain SIMD.

Coarse Grain SIMD is much cheaper than the Fine
Grain SIMD.

10 Fine Grain is the concept of future multi-
threaded architectures to be used in the
future also.

Coarse Grain is in one of the earlier concepts of
single-threaded architectures.

11 The Detailed description is further divided
into many small subcomponents and makes
the processes less complex from the original
one and from the coarse-grained also.

The Detailed description is divided into large
subcomponents and makes the processes less
complex than the original one but more complex
than Fine-Grained.

12 Examples
Connection Machine (CM-2), J-Machine, etc.

Examples
CRAY Y, etc.

EDULINE

Caltech Mosaic C - The Caltech Mosaic C was an experimental fine-
grain multicomputer

Prepared By Mr.EBIN PM, AP, IESCE 34



CSA http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 18

EDULINE

Fine-Grain, Medium-Grain, and Coarse-Grain Machine Characteristics 
of Some Example Systems.

Prepared By Mr.EBIN PM, AP, IESCE 35


