D

Reg No.:_____

Name:____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third semester B.Tech examinations (S) September 2020

Course Code: CS205

Course Name: DATA STRUCTURES (CS,IT)

Max. Marks: 100

Duration: 3 Hours

Ivia	X. IVI	arks. 100 Duration.	nouis		
		PART A			
		Answer all questions, each carries 3 marks.	Marks		
1		Differentiate between top down and bottom up approach of problem solving?	(3)		
2		What is frequency count? With the help of an example, explain how frequency	(3)		
		count is used to calculate the running time of an algorithm?			
3		Compare a Singly linked list and Doubly Linked List.	(3)		
4		Write an algorithm/pseudocode to delete a given element k from an array A of	(3)		
		n elements? Assume that the element k is always present in A.			
		PART B			
		Answer any two full questions, each carries 9 marks.			
5	a)	What do you mean by space complexity and time complexity of an algorithm?	(6)		
		Write an algorithm/pseudo code for linear search and mention the best case and			
		worst case time complexity of Linear Search algorithm?			
	b)	Explain modular programming with suitable example.	(3)		
6	a)	Write an algorithm/pseudocode to delete a node at the end of a doubly linked	(4.5)		
		list.			
	b)	Define Big-O notation. Derive the Big – O notation for $5n^3+2n^2+3n$.	(4.5)		
7	a)	Write an algorithm/pseudocode to count the number of nodes in a Singly Linked	(6)		
		List?			
	b)	How will you represent header node in a Linked List?	(3)		
		PART C			
Answer all questions, each carries 3 marks.					
8		What is Polish and Reverse polish notation? Give examples for each?	(3)		
9		How can you represent a Binary Tree in memory using array?	(3)		
10		Write down the inorder, preorder and postorder traversal of the following	(3)		

binary tree

02000CS205092002

11		Evaluate the following postfix expression ABC*D/+ where A=2 B=3 C=4 D=6	(3)
12	a)	PART D Answer any two full questions, each carries 9 marks. Write an algorithm/pseudocode to convert a given infix expression to postfix	(7)
12	u)	expression? Trace the steps involved in converting the given infix expression	(')
		$((A + B)^{C})-((D^{*}C)/F)$ to postfix expression.	
	b)	What is DEQUEUE?	(2)
13	a)	Write a non recursive algorithm/pseudocode for pre-order traversal of a Binary	(3)
		Tree.	
	b)	Write an algorithm/pseudocode to perform the following operations on a binary	(6)
		search tree	
		(i) insert an element k	
		(ii) search for an element k	
14	a)	What is a Binary Search Tree (BST)? Show the structure of the binary search	(5)
		tree after adding each of the following values in that order: 10, 25, 2, 4, 7, 13,	
		11, 22. What is the height of the created binary search tree?	
	b)	How can you represent a multiple stack using array?	(4)
		PART E	
		Answer any four full questions, each carries 10 marks.	
15	a)	Give any two representations of graphs? What do you mean by in-degree and	(4)
		out-degree of a graph?	
	b)	Give algorithm/pseudocode for DFS. Demonstrate DFS using suitable example?	(6)
16	a)	Design an algorithm/ pseudocode for selection sort. Illustrate the working of	(6)
		selection sort on the following array with 7 elements : 30,45,25,32,55,60,49	
	• 、		

b) What you mean by Open Addressing and Closed Addressing? (4)

02000CS205092002

- 17 a) Explain Merge Sort algorithm/pseudocode with the help of an example? (6)Mention the best case and worst case time complexity of Merge sort algorithm?
 - b) Why Binary Search algorithm is more efficient that linear search? Depict your (4) answer with suitable example? Mention the time complexity level of two algorithms.
- 18 a) Write an algorithm/pseudocode to sort elements using Heap sort technique? (7)
 Illustrate the working of Heap sort algorithm on the following input :
 35,15,0,1,60
 - b) Define hashing, hash function and collision.
- 19 a) List any three applications of BFS algorithm.(3)
 - b) A hash table contains 7 buckets and uses linear probing to solve collision. The (7) key values are integers and the hash function used is key%7. Draw the table that results after inserting in the given order the following values: 16,8,4,13,29,11,22.
- a) With the help of an algorithm/pseudocode and suitable example, explain how (7) would you perform binary search on an array of n elements. Find the time complexity of binary search algorithm.
 - b) Write short notes on separate chaining.

(3)

(3)