Important Problematic Questions for University Exam

MODULE 1

Q1:

A benchmark program is run on a 40 MHz processor. The executed program consists of 100,000 instruction executions, with the following instruction mix and clock cycle count:
Instruction Instruction Cycles per
Type
Integer
arithmetic
Data transfer 32.000
Floating point 15.000
2
Control
8000
2
transfer
Count Instruction

Determine the effective CPI, MIPS rate, and execution time for this program.

Clock speed of the Processor $=40 \mathrm{MHz}$			
Instruction Type	Instruction Count	Cycles per Instruction	cycles
Integer arithmetic	45,000	1	45000
Data transfer	32,000	2	64000
Floating point	15,000	2	30000
Control transfer	8000	2	16000

- Total no: of cycles required to execute complete program
$\rightarrow 45000+64000+30000+16000$
$\rightarrow 155000$ cycles
$\mathrm{C}=155000$ cycles
- Effective CPI= C/Ic
\rightarrow 155000/100000
CPI $=1.55$
- MIPS rate $=\mathrm{f} / \mathrm{CPI}^{\star} 10^{6}$

$$
=40 / 1.55 * 10^{6}
$$

$$
=40^{*} 10^{6} / 1.55^{*} 10^{6}
$$

$$
=25.8
$$

- Given $\mathrm{f}=40 \mathrm{MHz} \rightarrow \tau=1 / 40$

$$
\begin{aligned}
\mathrm{T} & =\mathrm{Ic} * \mathrm{CPI} * \tau \\
& =100000^{*} 1.55^{*} 1 / 40 \\
& =100000^{*} 1.55^{*} 0.025 \\
& =3875 \\
& =3.875 \mathrm{~ms}
\end{aligned}
$$

Q2:

3 enhancement with the following speed up are proposed for a new architecture

- Speedup ${ }_{1}=30$
- Speedup ${ }_{2}=20$
- Speedup $_{3}=15$

If enhancement 1 and 2 are each usable for 25% of the time, what fraction of the time must enhancement 3 be used to achieve an overall speed up of 10 ?
Ans:

$$
\begin{aligned}
& =\left\{\left(1-\left(F E_{1}+F E_{2}+F E_{3}\right)\right)+\left[\frac{F E_{1}}{S E_{1}}+\frac{F E_{2}}{S E_{2}}+\frac{F E_{3}}{S E_{3}}\right]\right\}^{-1} \\
& 10=\left\{\left(1-\left(0.25+0.25+F E_{3}\right)\right]+\left[\frac{0.25}{30}+\frac{0.25}{20}+\frac{F_{E}}{15}\right]\right\}^{-1} \\
& 10=\left\{\left(0.5-F E_{3}\right)+\left[\frac{0.5+0.75++F E_{3}}{60}\right]\right\}^{-1} \\
& 10=\frac{60}{30-60 F E_{3}+1.25+4 F E_{3}} \\
& -56 F E_{3}=6-31.25 \\
& F E_{3}=-25.25 /-56=0.45
\end{aligned}
$$

MODULE 2

Q: Consider the design of a 3 level memory hierarchy with following features

Memory level	Access time	Capacity	Cost/kbyte
Cache	$\mathrm{t} 1=25 \mathrm{~ns}$	$\mathrm{~s} 1=512$ Kbytes	$\mathrm{c} 1=\$ 1.25$
Main memory	$\mathrm{t} 2=$ unknown	$\mathrm{s} 2=32$ Mbytes	$\mathrm{c} 2=\$.2$
Disk array	$\mathrm{t} 3=4 \mathrm{~ms}$	$\mathrm{~s} 3=$ unknown	$\mathrm{c} 3=\$ 0.0002$

- Aim is to achieve effective memory access time Teff=850 ns

Cache hit ratio $h_{1}=0.98$
Main memory Hit ratio $h_{2}=0.99$
Disk array hit ratio $h_{3}=1$
Total cost is upper bounded by $\$ 15000$
Calculate the unknown specifications based on the given conditions?

$$
\begin{aligned}
& \cdot \mathrm{C}_{\text {total }}=c_{1} s_{1}+c_{2} s_{2}+c_{3} s_{3}<=15000 \\
& 15000=1.25 * 512+.2 * 32000+.0002 * \mathrm{~s} 3 \\
& 15000=640+6400+.0002 * \mathrm{~s} 3 \\
& .0002 * s 3=15000-640-6400 \\
& \\
& =7960 / .0002 \\
& \\
& =39800000 \times 10^{-6} \\
& \mathrm{~s} 3
\end{aligned}
$$

$$
\begin{aligned}
& T_{e f f}=h_{1} t_{1}+\left(1-h_{1}\right) h_{2} t_{2}+\left(1-h_{1}\right)\left(1-h_{2}\right) h_{3} t_{3} \\
& T_{\text {eff }}=\mathrm{h} 1 t_{1}+\left(1-h_{1}\right) h_{2} t_{2}+\left(1-h_{1}\right)\left(1-h_{2}\right) h_{3} t_{3}<=850 \mathrm{~ns} \\
& 850 \times 10^{-9}=.98^{*} 25 \times 10^{-9}+.02^{*} .99^{*} t_{2}+.02^{*} .01^{*} 1^{*} 4^{*} 10^{-3} \\
& 850 \times 10^{-9}=24.5 \times 10^{-9}+.0198 \mathrm{t} 2+.0008 \times 10^{-3} \\
& .0198 \mathrm{t} 2
\end{aligned} \begin{aligned}
& =850 \times 10^{-9}-24.5 \times 10^{-9}-.0008 \times 10^{-3} \\
& =825.5 \times 10^{-9}-.0008 \times 10^{-3} \\
& =825.5 \times 10^{-9}-800 \times 10^{-9} \\
& =25.5 \times 10^{-9} \\
& =25.5 \times 10^{-9} / .0198 \\
t_{2} & =1287 \times 10^{-9}
\end{aligned}
$$

Q2:

Consider the design of a three level memory hierarchy with the following specifications for memory characteristics:

Memory level	Access time	Capacity	Cost/Kbyte
Cache	$\mathrm{tl}=25 \mathrm{~ns}$	$\mathrm{~s} 1=512$ Kbytes	$\mathrm{cl}=\$ 1.25$
Main Memory	$\mathrm{t} 2=903 \mathrm{~ns}$	$\mathrm{~s} 2=32$ Mbytes	$\mathrm{c} 2=\$ 0.2$
Disk array	$\mathrm{t} 3=4 \mathrm{~ms}$	$\mathrm{~s} 3=39.8$ Gbytes	$\mathrm{c} 3=\$ 0.0002$

Hit ratio of cache memory is $\mathrm{hl}=0.98$ and a hit ratio of main memory is $\mathrm{h} 2=0.9$.
(i) Calculate the effective access time.
(ii) Calculate the total memory cost.

Effective access time

$$
\begin{aligned}
T_{e f f} & =\mathrm{h} 1 \mathrm{t} 1+(1-\mathrm{h} 1) \mathrm{h} 2 \mathrm{t} 2+(1-\mathrm{h} 1)(1-\mathrm{h} 2) \mathrm{h} 3 \mathrm{t} 3 \\
& =0.98^{*} 25 \times 10^{-9}+.02^{*} .9^{*} 903 \times 10^{-9}+.02^{*} .1^{*} 1^{*} 4 \times 10^{-3} \\
& =24.5 \times 10^{-9}+16.254 \times 10^{-9}+.008 \times 10^{-3} \\
& =40.754 \times 10^{-9}+.008 \times 10^{-3} \\
& =40.754 \times 10^{-9}+8000 \times 10^{-9} \\
& =8040.754 \times 10^{-9} \\
& =8.04 \mu \mathrm{sec} .
\end{aligned}
$$

$$
\begin{aligned}
\text { Total cost } & =c_{1} s_{1}+c_{2} s_{2}+c_{3} s_{3} \\
& =1.25 \times 512+0.2 \times 32 \times 10^{3}+39.8 \times 0.0002 \times 10^{6} \\
& =640+6400+7960 \\
& =\$ 15000
\end{aligned}
$$

MODULE 4

Q1:

Consider the execution of a program of $\mathbf{1 5 , 0 0 0}$ instructions by a linear pipeline processor with a clock rate of 25 Mhz . Assume that the instruction pipeline has five stages and that one instruction is issued per clock cycle. The penalties due to branch instructions and out-of sequence executions are ignored.

- Calculate the speedup factor using this pipeline to execute the program as compared with the use of an equivalent non-pipelined processor with an equal amount of flow-through delay.
- what are the efficiency and throughput of this pipelined processor?
Ans:
$\rightarrow \quad n=15,000$ instructions or tasks.
$\rightarrow \quad f=25 \mathrm{MHz}$
$\Rightarrow \quad k=5$ stages
- 1-issued processor
The Speedup $\left(S_{k}\right)$, Efficiency, $\left(E_{k}\right)$, and Throughput $\left(\boldsymbol{H}_{k}\right)$ factors are
$S_{k}=\frac{T_{1}}{T_{k}}=\frac{n k \tau}{k \tau+(n-1) \tau}$
$=\frac{n k}{k+(n-1)}$
$=\frac{(15,000)(5)}{5+(15,000-1)}$
$=\frac{75,000}{15,004}$
$=4,999$

$$
\begin{aligned}
H_{k} & =\frac{n f}{k+(n-1)} & E_{k} & =\frac{S_{k}}{k} \\
& =\frac{(15,000)(25)}{5+(15,000-1)} & & =\frac{4,999}{5} \\
& =\frac{375,000}{15,004} & & =0,999 \\
& =24,99 \text { MIPS } & &
\end{aligned}
$$

Q2:

Suppose the time delay of 4 stage are $\tau_{1}=60 \mathrm{~ns}, \tau_{2}=50 \mathrm{~ns}, \tau_{3}=$ $90 \mathrm{~ns}, \tau_{4}=80 \mathrm{~ns}$ and the interface latch has a delay of $\mathbf{d}=10 \mathrm{~ns}$. Find the clock period and frequency of this pipeline?

$$
\tau=\tau_{\max }+d=90^{*} 10^{-9}+10^{*} 10^{-9}=100^{*} 10^{-9}
$$

This means that the clock frequency of the pipeline can be set to

$$
\mathrm{f}=\frac{1}{\mathrm{~T}}=\frac{1}{100 * 10^{-9}}=10 \mathrm{MHz}
$$

Q3:

Determine the frequency of the pipeline if the stage delays are $\tau 1=$ $3 \mathrm{~ns}, \tau 2=\tau 3=5 \mathrm{~ns}$ and $\tau 4=8 \mathrm{~ns}$ and the latch delay is 1 ns .

$$
\begin{aligned}
& \tau_{\text {max }}=8 \mathrm{~ns} \\
& d=1 \mathrm{~ns} \\
& \tau=\tau_{\max }+\mathrm{d}=8^{*} 10^{-9}+1^{*} 10^{-9}=9^{*} 10^{-9} \\
& \mathrm{f}=\frac{1}{\tau}==\frac{1}{9 * 10^{-9}}=111.11 \mathrm{MHz}
\end{aligned}
$$

