

	Ν	IODUI	LE 1			
Q1:	A benchmark p processor. The 100,000 instru following instru Instruction Type Integer arithmetic Data transfer Floating point Control transfer Determine the execution time	erogram is run executed pro- ction executio uction mix and Instruction Count 45.000 32.000 15.000 8000 effective CPI, for this progra	on a 40 MHz gram consists of ns, with the clock cycle count: Cycles per Instruction 1 2 2 2 MIPS rate, and am.			
	Pre	epared By Mr.EBIN PN	1, AP, IESCE	ED	ULINE	2

nstruction Type	Instruction Count	Cycles per Instruction	cycles
Integer arithmetic	45,000	1	45000
Data transfer	32,000	2	64000
Floating point	15,000	2	30000
Control transfer	8000	2	16000

		MOD	ULE 2						
Q: Conside	r the desigr	n of a 3 lev	el memory	hierarchy w	ith following				
features	Memory level	Access time	Capacity	Cost/kbyte					
	Cache	t1= 25 ns	s1= 512 Kbytes	c1= \$1.25					
	Main memory	t2= unknown	s2= 32 Mbytes	c2= \$.2					
	Disk array	t3= 4 ms	s3= unknown	c3= \$0.0002					
 Aim is to achieve effective memory access time Teff=850 ns 									
Cache	hit ratio h_1	=0.98							
Main	memory Hit	ratio $h_2 = 0.9$	9						
Disk a	rray hit ratio	$h_3 = 1$							
Total cost is upper bounded by \$15000									
Calculate the unknown specifications based on the given conditions ?									
		Prepared By Mr.I	EBIN PM, AP, IESCE	EDUL	INE 8				

specifications for memory characteristics:					
Memory level	Access time	Capacity	Cost/Kbyte		
Cache	t1=25 ns	s1=512 Kbytes	c1=\$1.25		
Main Memory	t2=903 ns	s2=32 Mbytes	c2=\$0.2		
Disk array	t3=4 ms	s3 =39.8 Gbytes	c3=\$0.0002		
 Hit ratio of cache memory is h1=0.98 and a hit ratio of main memory is h2=0.9. (i) Calculate the effective access time. (ii) Calculate the total memory cost. 					

Q1:

Consider the execution of a program of **15,000 instructions** by a **linear pipeline** processor with a **clock rate of 25 Mhz**. Assume that the instruction pipeline has **five stages** and that **one instruction is issued per clock cycle**. The penalties due to branch instructions and out-of sequence executions are ignored.

- Calculate the speedup factor using this pipeline to execute the program as compared with the use of an equivalent non-pipelined processor with an equal amount of flow-through delay.
- what are the efficiency and throughput of this pipelined processor?

Prepared By Mr.EBIN PM, AP, IESCE

14

Q3:

Determine the frequency of the pipeline if the stage delays are $\tau 1 = 3ns$, $\tau 2 = \tau 3 = 5ns$ and $\tau 4 = 8 ns$ and the latch delay is 1 ns.

$$\tau_{max} = 8ns$$

d = 1ns
$$\tau = \tau_{max} + d = 8^* \ 10^{-9} + 1^* 10^{-9} = 9^* \ 10^{-9}$$

f = $\frac{1}{\tau} = \frac{1}{9^* 10^{-9}} = 111.11 \text{ MHz}$
EVLINE 21
Prepared By Mr.EBIN PM. AP. LESC