MODULE 2
 BOOLEAN ALGEBRA

POSTULATES OF BOOLEAN ALGEBRA

BOOLEAN ALGEBRA

- There are 2 types of algebras existed. One is ordinary algebra and other is Boolean algebra.
- Logical operations are implemented only in Boolean algebra
- In Boolean algebra , $A+A=A$ and $A . A=A$ because, the variable A has only a logical value. It doesn't have any numerical significance.
- In ordinary algebra, $A+A=2 A$ and $A . A=A^{2}$, because variable A has a numerical value here.
- Boolean algebra constants are 0 and 1
- Truth table is used for verification

In Boolean algebra 1+1 = 1

In binary number system $1+1=10$
In ordinary algebra 1+1 = 2

- There is nothing like subtraction or division in Boolean algebra
- There is no negative or fractional numbers in Boolean Algebra
- Any functional relations in Boolean algebra can be proved by the method of "Perfect Induction"

POSTULATES

A set B of elements (a, b, c,) with an equivalence relation (=), two binary operations(+ and .) and unary operation (complement) is a Boolean algebra if and only if the following postulates are satisfied.

1) Associativity

- The + and . operations are associative

$$
\begin{aligned}
& (a+b)+c=a+(b+c) \\
& (a \cdot b) \cdot c=a \cdot(b \cdot c)
\end{aligned}
$$

2) Commutativity

- The + and . Operations are commutative

$$
\begin{aligned}
& a+b=b+a \\
& a \cdot b=b \cdot a
\end{aligned}
$$

3) Distributivity

- The two operations are distributive over each other

$$
\begin{aligned}
& a+b c=(a+b)(a+c) \\
& a(b+c)=a b+a c
\end{aligned}
$$

4) Identity Elements

$>$ An identity element denoted by 0 , called zero for the + operation and another denoted by 1 called one for the. Operation

$$
\begin{aligned}
& a+0=a \\
& a .1=a
\end{aligned}
$$

5) Complement

$$
\begin{aligned}
& a+a^{\prime}=1 \\
& a \cdot a^{\prime}=0
\end{aligned}
$$

FUNDAMENTAL THEOREMS

1. Closure of identity elements - For all $a \in B$,
a + 1 = 1

Proof

$a+1=(a+1) \cdot 1 \quad$ (by identity element)
$=(a+1) \cdot\left(a+a^{\prime}\right) \quad$ (by complement)
$=a\left(a+a^{\prime}\right)+1\left(a+a^{\prime}\right) \quad$ (by distributive)
$=a+0+a+a^{\prime}$
$=a+a^{\prime}$ (by identity element)
=1 (by complement)
a. $0=0$

Proof

$$
\begin{array}{rlrl}
a \cdot 0 & =a \cdot 0+0 & & \text { (by identity element) } \\
& =a \cdot 0+a \cdot a^{\prime} & \text { (by complement) } \\
& =a\left(0+a^{\prime}\right) & & \text { (by distributive) } \\
& =a \cdot a^{\prime} & \text { (by identity element) } \\
& =0 \quad \text { (by complement) }
\end{array}
$$

2. Equality Theorem - for all $a, b, c \in B$ if

$a+b=a+c$
$a b=a c \quad$ Proof
Then $\mathbf{b}=\mathbf{c} \quad \mathbf{b}=\mathbf{b} . \mathbf{1}$

$$
\begin{aligned}
& =\mathbf{b}\left(\mathbf{a}+\mathbf{a}^{\prime}\right) \quad\left[\because a+a^{\prime}=1\right] \\
& =a b+a^{\prime} b \\
& =\mathbf{a c}+\mathbf{a}^{\prime} \mathbf{b} \quad[\because a b=a c] \\
& =a c+a^{\prime} b+0 \\
& =\mathbf{a c}+\mathbf{a}^{\prime} \mathbf{b}+\mathbf{a a} \quad\left[\because a a^{\prime}=0\right] \\
& \therefore \mathrm{b}=\mathrm{c} \\
& =a c+a^{\prime}(b+a)
\end{aligned}
$$

3. Complementarity Theorem - for all $a, b \in B$,if

$$
\begin{aligned}
& a+b=1 \text { and } \\
& \text { Proof } \\
& a b=0 \text {, Then } \\
& a^{\prime}=b \\
& \mathrm{a}=\mathbf{b}^{\prime} \\
& \text { and , } \mathbf{b}+\mathbf{a}=\mathbf{b}+\mathbf{b}^{\prime} \quad\left[\because \mathbf{b}+\mathbf{b}^{\prime}=1\right] \\
& \mathbf{b a}=\mathbf{b} \mathbf{b}^{\prime} \quad\left[\because \mathrm{bb} \mathbf{b}^{\prime}=0\right] \\
& \therefore \text { by equality theorem } \\
& a=b^{\prime} \\
& \therefore \text { by equality theorem } \\
& a+b=a+a^{\prime} \\
& a b=a a^{\prime} \\
& \therefore \mathrm{b}=\mathrm{a}^{\prime}
\end{aligned}
$$

4. Identity elements 0 and 1 are complement to each other Proof
 Since 0 and $1 \in B$
 $$
1+0=1 \text { and } 1.0=0
$$
 Then by complementarity theorem
 $$
\begin{aligned} & 0^{\prime}=1 \\ & 1^{\prime}=0 \end{aligned}
$$

LAWS OF BOOLEAN ALGEBRA

1. Involution

For all $a \in B,\left(a^{\prime}\right)^{\prime}=a$

$$
\begin{aligned}
& \text { Let } \mathrm{a}^{\prime}=\mathrm{b} \\
& \text { Then }(\mathrm{b})^{\prime}=\mathrm{a} \\
& \mathrm{a}+\mathrm{a}^{\prime}=1 \\
& \therefore \mathrm{a}+\mathrm{b}=1 \\
& \mathrm{a} a^{\prime}=0 \\
& \therefore \mathrm{ab}=0 \text { Then by complementarity theorem } \\
& \mathrm{a}=\mathrm{b}^{\prime} \text { and } \mathrm{b}=\mathrm{a}^{\prime} \\
& \text { Then } \mathrm{b}^{\prime}=\mathrm{a} \\
& \therefore\left(\mathrm{a}^{\prime}\right)^{\prime}=\mathrm{a}
\end{aligned}
$$

2. Law of Idempotence

For all a $\in B$,
$a+a=a$ and
a. $\mathrm{a}=\mathrm{a}$

$a+a$	$=a .1+a .1$
	$=a(1+1)$
	$=a .1$
	$=a$

$a \cdot a=a \cdot a+0$
$=a \operatorname{aa}+$
$=a\left(a+a^{\prime}\right)$
= a .1
= a

3. Law of Absorption

For all $a, b \in B$

$$
\begin{aligned}
& a+a b=a \\
& a(a+b)=a
\end{aligned}
$$

Proof \quad| $a+a b$ | $=a .1+a b$ |
| ---: | :--- |
| | $=a(1+b)$ |
| | $=a .1$ |
| | $=a$ |
| $a(a+b)$ | $=a a+a b$ |
| | $=a+a b$ |
| | $=a$ |

DEMORGAN'S THEOREM

$$
\begin{aligned}
& (a+b)^{\prime}=a^{\prime} \cdot b^{\prime} \\
& (a \cdot b)^{\prime}=a^{\prime}+b^{\prime}
\end{aligned}
$$

Proof

$$
\left.\left.\begin{array}{rl}
(a+b)+a^{\prime} b^{\prime} & =\left(a+a^{\prime} b^{\prime}\right)+b \\
& =\left(a+a^{\prime}\right)\left(a+b^{\prime}\right)+b \quad[D i s t r i b u t i v i t y] \\
& =\left(a+b^{\prime}\right)+b \\
& =a+\left(b^{\prime}+b\right) \\
& =a+1 \quad[\text { complement] } \\
& =1
\end{array} \quad \begin{array}{rl}
(a+b)\left(a^{\prime} b^{\prime}\right) & =a\left(a^{\prime} b^{\prime}\right)+b\left(a^{\prime} b^{\prime}\right) \\
& =\left(a a^{\prime}\right) b^{\prime}+a^{\prime}\left(b b^{\prime}\right) \\
& =0 . b^{\prime}+a^{\prime} .0 \\
& =0
\end{array}\right] \begin{array}{rl}
\therefore(a+b)+a^{\prime} b^{\prime}=1 \\
(a+b)\left(a^{\prime} b^{\prime}\right)=0 \\
\therefore(a+b)^{\prime}=a^{\prime} b^{\prime}
\end{array}\right] \text { [complementarity theorem] }
$$

Eg: Simplify the following using Boolean theorems

1. $A+A^{\prime} B$

$$
\begin{aligned}
A+A^{\prime} B & =\left(A+A^{\prime}\right)(A+B) \\
& =1 \cdot(A+B) \\
& =A+B
\end{aligned}
$$

2. $(A+B)\left(A^{\prime}+C\right)$

$$
(A+B)\left(A^{\prime}+C\right)=A A^{\prime}+A C+B A^{\prime}+B C
$$

$$
=0+A C+B A^{\prime}+B C
$$

$$
=A C+B A^{\prime}+B C
$$

BOOLEAN FUNCTIONS

Literal - A Boolean variable in the true form or in the complemented form is called a literal.

Eg: $a, a^{\prime}, b, b^{\prime}$ are literals

- The Boolean product of two or more literals is called a product term.
- The Boolean sum of two or more literals is called a sum term.
* Normal Form

There are 2 types of normal forms

1. Sum of Product (SOP)
2. Product of Sum (POS)

Sum of Product - SOP form is also called Disjunctive Normal Form (DNF). It is in the form

$$
f(a b c d)=a^{\prime}+b c^{\prime}+c d
$$

Product of Sum - POS form is also called Conjunctive Normal Form (CNF). It is in the form

$$
f(a b c d)=(a+b)(b+c+d)
$$

- A Boolean function that is neither in the DNF nor in CNF Eg1: $f 1=a^{\prime} b^{\prime}+b\left(c+d^{\prime}\right)$. Convert the function in normal form?

$$
f 1=a^{\prime} b^{\prime}+b c+b d^{\prime}
$$

Eg2: $f 2=\left(a^{\prime}+b\right)(a+c d)$. Convert the function in normal form?

$$
f 1=\left(a^{\prime}+b\right)(a+d)(a+c)
$$

CANONICAL FORM

- When each of the terms of a Boolean function expressed either in SOP or POS form has all the variables in it, it is said to be expressed in canonical form.
- Canonical form cannot have the same term more than once.
- Canonical SOP is called Disjunctive Canonical Form (DCF)
- Canonical POS is called Conjunctive Canonical Form (CCF)

Eg 1: Express the function $f 1=a b^{\prime} c+b c^{\prime}+a c$ in canonical form?

$$
\begin{aligned}
f 1 & =a b^{\prime} c+b c^{\prime} .1+a c .1 \\
& =a b^{\prime} c+b c^{\prime}\left(a+a^{\prime}\right)+a c\left(b+b^{\prime}\right) \\
& =a b^{\prime} c+b c^{\prime} a+b c^{\prime} a^{\prime}+a c b
\end{aligned}
$$

Eg 2: Express the function $f 2=(a+b)\left(b+c^{\prime}\right)$ in canonical form?

$$
\begin{aligned}
(a+b) & \left(b+c^{\prime}\right) \\
& =\left(a+b+c \cdot c^{\prime}\right)\left(b+c^{\prime}+a \cdot a^{\prime}\right) \\
& =(a+b+c)\left(a+b+c^{\prime}\right)\left(b+c^{\prime}+a\right)\left(b+c^{\prime}+a^{\prime}\right) \\
& =(a+b+c)\left(a+b+c^{\prime}\right)\left(b+c^{\prime}+a^{\prime}\right)
\end{aligned}
$$

Eg 3: Express the function $f 3=a+a^{\prime}\left(b+c^{\prime}\right)$ in canonical form?
$a+a^{\prime}\left(b+c^{\prime}\right)$
$=a+a^{\prime} b+a^{\prime} c^{\prime}$
$=a\left(b+b^{\prime}\right)\left(c+c^{\prime}\right)+a^{\prime} b\left(c+c^{\prime}\right)+a^{\prime} c^{\prime}\left(b+b^{\prime}\right)$
$=\left(a b+a b^{\prime}\right)\left(c+c^{\prime}\right)+a^{\prime} b c+a^{\prime} b c^{\prime}+a^{\prime} c^{\prime} b+a^{\prime} c^{\prime} b^{\prime}$
$=a b c+a b c^{\prime}+a b^{\prime} c+a b^{\prime} c^{\prime}+a^{\prime} b c+a^{\prime} b c^{\prime}+a^{\prime} c^{\prime} b+a^{\prime} b^{\prime} c^{\prime}$
$=a b c+a b c^{\prime}+a b^{\prime} c+a b^{\prime} c^{\prime}+a^{\prime} b c+a^{\prime} b c^{\prime}+a^{\prime} b^{\prime} c^{\prime}$

FUNDAMENTAL PRODUCT (MINTERM)

- The number of all possible minterms of n variables is 2^{n}
- 0 is written for a complemented variable ($a^{\prime}=0$)
- 1 is written for the uncomplemented variable ($a=1$)
- Each minterm is designated as m_{i}, the subscript i is the decimal value of the binary number.

Minterm	Binary number	Symbolic Representation
$a^{\prime} b^{\prime} c^{\prime}$	000	m_{0}
$a^{\prime} b^{\prime} c$	001	m_{1}
$a^{\prime} b c^{\prime}$	010	m_{2}
$a^{\prime} b c$	011	m_{3}
$a^{\prime} b^{\prime} c^{\prime}$	100	m_{4}

Minterm	Binary number	Symbolic Representation
$a^{\prime} c$	101	m_{5}
$a^{\prime} c^{\prime}$	110	m_{6}
$a b c$	111	m_{7}

FUNDAMENTAL SUM (MAXTERM)

- The number of all possible maxterms of n variables is 2^{n}
- 0 is written for a uncomplemented variable ($a=0$)
- 1 is written for the complemented variable ($a^{\prime}=1$)
- Each maxterm is designated as $\mathbf{M}_{\mathbf{i}}$, the subscript \mathbf{i} is the decimal value of the binary number.

Maxterm	Binary number	Symbolic Representation
$a+b+c$	000	M_{0}
$a+b+c^{\prime}$	001	M_{1}
$a+b^{\prime}+c$	010	M_{2}
$a+b^{\prime}+c^{\prime}$	011	M_{3}
$a^{\prime}+b+c$	100	M_{4}

Maxterm	Binary number	Symbolic Representation
$a^{\prime}+b+c^{\prime}$	101	M_{5}
$a^{\prime}+b^{\prime}+c$	110	M_{6}
$a^{\prime}+b^{\prime}+c^{\prime}$	111	M_{7}

$>\sum$ indicate that the terms are minterms and the function is a

 summation.$>\Pi$ indicate that the terms are maxterms and the function is a product.
$>$ The complement of $\boldsymbol{m}_{\mathbf{i}}$ is $\mathbf{M}_{\mathbf{i}}$ and vice versa. That is,

$$
\begin{aligned}
& \mathbf{m}_{\mathbf{i}}^{\prime}=\mathbf{M}_{\mathbf{i}} \\
& \mathbf{M}_{\mathbf{i}}^{\prime}=\mathrm{m}_{\mathbf{i}}
\end{aligned}
$$

$$
\begin{array}{rlrl}
f 1 & =a^{\prime} b^{\prime} c^{\prime}+a^{\prime} b^{\prime} c+a b c & f 2 & =(a+b+c)\left(a^{\prime}+b^{\prime}+c\right)\left(a^{\prime}+b^{\prime}+c^{\prime}\right) \\
& =m_{0}+m_{1}+m_{7} & & =M_{0} M_{6} M_{7} \\
& =\sum(0,1,7) & & =\Pi(0,6,7)
\end{array}
$$

Examples

1. Reduce $x\left(x^{\prime}+y z\right)$

$$
\begin{aligned}
& x\left(x^{\prime}+y z\right) \\
= & x x^{\prime}+x y z \\
= & x y z
\end{aligned}
$$

2. Reduce $x\left(x^{\prime} y+x^{\prime} z\right)$

$$
\begin{aligned}
& x\left(x^{\prime} y+x^{\prime} z\right) \\
= & x x^{\prime} y+x x^{\prime} z \\
= & 0
\end{aligned}
$$

3. prove that $a b^{\prime}(c+b d)+a^{\prime} b^{\prime}=b^{\prime} c+a^{\prime} b^{\prime}$

$$
a b^{\prime}(c+b d)+a^{\prime} b^{\prime}
$$

$$
=a b^{\prime} c+a b^{\prime} b d+a^{\prime} b^{\prime}
$$

$$
=a b^{\prime} c+a^{\prime} b^{\prime}
$$

$$
=b^{\prime}\left(a c+a^{\prime}\right)
$$

$$
=b^{\prime}\left(a^{\prime}+c\right)\left(a^{\prime}+a\right)
$$

$$
=a^{\prime} b^{\prime}+b^{\prime} c
$$

Disjunctive \& Conjunctive Canonical Forms (DCF \& CCF)

- DCF is same as sum of minterms (canonical SOP)
- CCF is same as product of maxterms (canonical POS)
- If a Boolean function is expressed in the DCF, it can also be expressed in the CCF
- Eg1: Express the function $f 1=a^{\prime} b c+a b^{\prime} c^{\prime}+a b c$ in the other type of canonical form?

$$
\begin{aligned}
& a^{\prime} b c+a b^{\prime} c^{\prime}+a b c \\
& =011 \quad 100 \quad 111 \quad \text { So, } f_{i}=m_{3}+m_{4}+m_{7} \text { (minterms) }
\end{aligned}
$$

Then Maxterms are $f_{j}=\mathbf{M}_{\mathbf{0}} \cdot \mathbf{M}_{1} \cdot \mathbf{M}_{\mathbf{2}} \cdot \mathbf{M}_{5} \cdot \mathbf{M}_{6}$

Eg 2: Express the function $f 2=a^{\prime} b^{\prime} c^{\prime} d^{\prime}+a^{\prime} b c^{\prime} d+a^{\prime} b c d^{\prime}$ in the other type of canonical form?

$$
\begin{aligned}
& a^{\prime} b^{\prime} c^{\prime} d^{\prime}+a^{\prime} b c^{\prime} d+a^{\prime} b c d^{\prime} \\
= & 0000 \quad 0101 \quad 0110 \quad \text { So, } f_{i}=m_{0}+m_{5}+m_{6} \text { (minterms) }
\end{aligned}
$$

Then Maxterms are

$$
f_{j}=M_{1} \cdot M_{2} \cdot M_{3} \cdot M_{4} \cdot M_{7} \cdot M_{8} \cdot M_{9} \cdot M_{10} \cdot M_{11} \cdot M_{12} \cdot M_{13} \cdot M_{14} \cdot M_{15}
$$

$>$ A Boolean function expressed as a sum of minterms or as a product of maxterms can be converted in to the other form as given by

$$
\sum m_{i}=\Pi M_{j} \quad \& \quad \Pi M_{i}=\sum m_{j}
$$

- Where, the subset i and j are two partitions of the entire set of 2^{n} subscripts of either m's or M's

$$
\begin{aligned}
& Q: \text { Expand } A^{\prime}+B^{\prime} \text { to minterms and maxterms? } \\
& A^{\prime}+B^{\prime} \\
&= A^{\prime} .1+B^{\prime} .1 \\
&= A^{\prime}\left(B+B^{\prime}\right)+B^{\prime}\left(A+A^{\prime}\right) \\
&= A^{\prime} B+A^{\prime} B^{\prime}+B^{\prime} A+B^{\prime} A^{\prime} \\
&= A^{\prime} B+A^{\prime} B^{\prime}+A B^{\prime} \\
&= 01+00+10 \\
&= m_{1}+m_{0}+m_{2} \\
&= \Sigma(0,1,2)
\end{aligned}
$$

Corresponding maxterms is M_{3}
$=\Pi(3)$

DUAL \& COMPLEMENT

DUAL

To obtain the dual of an expression

1. Change the ORs to ANDs , ANDs to ORs
2. Change the 0 s to $1 \mathrm{~s}, 1 \mathrm{~s}$ to 0 s
3. Do not complement the variables

Eg: $A^{\prime} B+A^{\prime} B C^{\prime}+A^{\prime} B C D+A^{\prime} B C^{\prime} D^{\prime} E$
$D U A L=\left(A^{\prime}+B\right) \cdot\left(A^{\prime}+B+C^{\prime}\right) \cdot\left(A^{\prime}+B+C+D\right) \cdot\left(A^{\prime}+B+C^{\prime}+D^{\prime}+E\right)$

COMPLEMENT

To obtain the complement of an expression

1. Change the ANDs to ORs, ORs to ANDs
2. Change the 0 s to $1 \mathrm{~s}, 1 \mathrm{~s}$ to 0 s
3. Complement each variable

Eg: $A B+A(B+C)+B^{\prime}(B+D)$
COMPLEMENT $=\left(A^{\prime}+B^{\prime}\right) \cdot\left(A^{\prime}+B^{\prime} \cdot C\right) \cdot\left(B+B^{\prime} \cdot D^{\prime}\right)$

IMPORTANT QUESTIONS

1. Find the SOP form of $(A+C)\left(A B^{\prime}+A C\right)\left(A^{\prime} C^{\prime}+B^{\prime}\right)$?
$(A+C)\left(A B^{\prime}+A C\right)\left(A^{\prime} C^{\prime}+B^{\prime}\right)$ simply multiply
$=\left(A A B^{\prime}+A A C+C A B^{\prime}+C A C\right)\left(A^{\prime} C^{\prime}+B^{\prime}\right)$
$=\left(A A B^{\prime} A^{\prime} C^{\prime}+A A C A^{\prime} C^{\prime}+C A B^{\prime} A^{\prime} C^{\prime}+C A C A^{\prime} C^{\prime}+A A B^{\prime} B^{\prime}+A A C B^{\prime}+C A B^{\prime} B^{\prime}+C A C B^{\prime}\right)$
$=A B^{\prime}+A C B^{\prime}+A C B^{\prime}+A C B^{\prime}$
$=A B^{\prime}+A B^{\prime} C$
2. For the function $f=A B^{\prime} D+A^{\prime} B C+B C^{\prime} D^{\prime}$. Obtain this f in SOP form?

$$
\begin{aligned}
f & =A B^{\prime} D+A^{\prime} B C+B C^{\prime} D^{\prime} \\
& =A B^{\prime} D\left(C+C^{\prime}\right)+A^{\prime} B C\left(D+D^{\prime}\right)+B C^{\prime} D^{\prime}\left(A+A^{\prime}\right) \\
& =A B^{\prime} D C+A B^{\prime} D C^{\prime}+A^{\prime} B C D+A^{\prime} B C D^{\prime}+B C^{\prime} D^{\prime} A+B C^{\prime} D^{\prime} A^{\prime}
\end{aligned}
$$

3. Express the Boolean function $f=x y+x^{\prime} z$ in a product of maxterms form?

$$
\begin{aligned}
f & =x y+x^{\prime} z \\
& =x y\left(z+z^{\prime}\right)+x^{\prime} z\left(y+y^{\prime}\right) \\
& =x y z+x y z^{\prime}+x^{\prime} z y+x^{\prime} z y^{\prime} \\
& =m_{7}+m_{6}+m_{3}+m_{2} \\
& =M_{0} \cdot M_{1} \cdot M_{4} \cdot M_{5}=\Pi(0,1,4,5)
\end{aligned}
$$

4. Find the minterms of $A+B$?

$$
\begin{aligned}
& A+B \\
= & A\left(B+B^{\prime}\right)+B\left(A+A^{\prime}\right) \\
= & A B+A B^{\prime}+B A+B A^{\prime} \\
= & A B+A B^{\prime}+B A^{\prime} \\
= & m_{3}+m_{2}+m_{1} \\
= & \sum(1,2,3)
\end{aligned}
$$

5. Convert $f=A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B^{\prime} C+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}+A B C^{\prime}+A B C$ into POS form?

$$
\begin{aligned}
f & =A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B^{\prime} C+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}+A B C^{\prime}+A B C \\
& =\sum(0,1,2,4,6,7) \\
& =\prod(3,5) \\
& =\left(A+B^{\prime}+C^{\prime}\right)\left(A^{\prime}+B+C^{\prime}\right) \\
& =\begin{array}{lllll}
0 & 1 & 1 & 1 & 0
\end{array} \\
& 3
\end{aligned}
$$

THE KARNAUGH MAP (K-MAP)

- The K-map is a very convenient way of representing a switching function.
- A two variable K-map will have $2^{2}=4$ cells
- A three variable K-map will have $2^{3}=8$ cells
- A four variable K-map will have $2^{4}=16$ cells

2 variable K-map

3 variable K-map

4 variable K-map

- We can group the elements in to pairs, quads and octect
- In a pair, one variable is reduced.
- In a quad, two variables can be eliminated
- In an octect, three variables can be eliminated

Eg: Reduce the expression $A B+A B^{\prime} C+A^{\prime} B C^{\prime}+B C^{\prime}$ using K-map?

Ans: ac + bc'

Eg: Convert $A+B^{\prime} C^{\prime}$ to minterms using K-map?

$$
\begin{aligned}
\text { minterms } & =\Sigma(0,4,5,6,7) \\
& =A^{\prime} B^{\prime} C^{\prime}+A B^{\prime} C^{\prime}+A B^{\prime} C+A B C^{\prime}+A B C
\end{aligned}
$$

Eg: Reduce $A B+A C+C+A D+A B^{\prime} C+A B C$ using K-map?

Prepared By Mr.EBIN PM, AP, IESCE

Eg: Reduce $\sum(5,6,7,9,10,11,13,14,15)$ using K-map?

Ans: BD+DA+CB+CA

Eg: Reduce $A B^{\prime} C+B+B D^{\prime}+A B D^{\prime}+A^{\prime} C$ using K-map?

Ans: C + BC'

Eg: Reduce the expression $(a+b)\left(a+b^{\prime}+c\right)\left(a+c^{\prime}\right)$ using K-map?

Ans: a

Eg: Reduce $A\left(B+C^{\prime}\right)\left(A+B^{\prime}\right)\left(B+C+D^{\prime}\right)$ using K-map?

Ans: $A\left(A^{\prime}+B\right)$

DON'T CARE CONDITIONS

Eg: Reduce $\sum(0,1,4,5,6,7,9,11,15)+d(10,14)$ using K-map?

DON'T CARE CONDITIONS

Eg: Reduce $\Pi(3,6,8,11,13,14) . d(1,5,7,10)$ using K-map?

Ans: $\left(A+D^{\prime}\right) .\left(B^{\prime}+C^{\prime}+D\right)$. $\left(A^{\prime}+B+C^{\prime}\right) \cdot\left(B^{\prime}+C+D^{\prime}\right)$. ($\left.A^{\prime}+B+D\right)$

5 variable K-map - Here , number of minterms $=2^{5}=32$
Eg: $f(A, B, C, D, E)=\sum(0,2,3,10,11,12,13,16,17,18,19,20,21,26,27)$

Ans: $C^{\prime} D+A B^{\prime} C^{\prime} D^{\prime} E^{\prime}+A B^{\prime} C^{\prime} D^{\prime}+A^{\prime} B C D^{\prime}+A B^{\prime} C D^{\prime}$

LOGIC GATES

- Logic Gates are the basic building blocks of any digital system.
- It is an electronic circuit having one or more than one input and only one out put.
- The relationship between the input and the output is based on a certain logic.
- Based on this, logic gates are named as

AND gate
OR gate
NOT gate

Elementary (Basic) Logic Gates							
Name	Inverter (NOT Gate)		AND Gate		OR Gate		
Symbol	$A>O^{2}$				$\frac{A}{B} \square Z$		
			A B	Z	A	B	Z
Truth Table	A	Z	0	0	0	0	0
	0	1	1	0	0	1	1
	1	0	0	0	1	0	1
Logic Equation	$\mathrm{Z}=\mathrm{A}^{\prime}=\overline{\mathrm{A}}$		11	1	1	1	1
			$\mathrm{Z}=\mathrm{A} \cdot \mathrm{B}=\mathrm{AB}$		$\mathrm{Z}=\mathrm{A}+\mathrm{B}$		

NAND GATE

- NAND means Not AND. Ie, AND gate is NOTed
- NAND gate is equivalent to bubbled OR gate
- Bubbled OR gate is also called negative OR gate
- Bubbled NAND gate is equivalent to OR gate

NOR GATE

- NOR means Not OR. le, OR output is NOTed
- NOR gate is equivalent to bubbled AND gate
- Bubbled AND gate is also called negative AND gate
- Bubbled NOR gate is equivalent to AND gate

(NOR gate)

(NOR as an inverter)

X-OR GATE

- It is called anti-coincidence gate or inequality detector
- It is an odd function
- Fan -in of XOR is 2
- $A \oplus B=A^{\prime} B+A B^{\prime}$

XOR as an inverter

X-NOR GATE

- Combination of X-OR and NOT gate
- It is also called Coincidence gate
- It can be used as an equality detector
- Its output is 1 only when its input are equal
- $A \bigodot B=A B+A^{\prime} B^{\prime}$

Prepared By Mr.EBIN PM, AP, IESCE
EDULINE

FUNCTIONALLY COMPLETE SETS

- A set of operations is called a functionally complete set if and only if any Boolean function can be expressed by operations belonging to the set only
- It can be seen that the NAND and NOR operations alone form a functionally complete set
- It is there fore possible to implement any switching function using only one type of gate, either NAND or NOR.
- Hence these two operations are known as universal operations

NAND REALIZATION

*Implementation of Basic Gates using NAND only
AND

OR

NOR REALIZATION

*Implementation of Basic Gates using NOR only

BINARY NUMBERS

* Simple way to write Binary numbers:

Decimal Number	Binary Number
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110

7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

TABULAR MINIMIZATION PROCEDURE

- Tabular minimization method is used to solve more than 6 variable functions
- Commonly used tabular method is Quine-Mc Cluskey (QM)method Eg1: simplify using $Q M$ method $f(a b c d)=\sum m(0,1,2,3,4,6,8,9,10,11)$
- Weight of a cube is said to be in terms of one's present in the minterm.
- For example, 1100 has weight 2.
- First we create a table T_{0}, which contains only zero cubes. Then we construct T_{1} which contains only one cubes and so on.

Prime cube table

Prime Cubes	0	1	2	3	4	6	8	9	10	11
$A(0,2,4,6)$	x		x		x	x				
$B(0,1,2,3,8,9,10,11)$	x	x	x	x			x	x	x	x

$$
\begin{aligned}
\text { Essential Prime cubes } & =A, B \\
& =0220+2022 \\
& =A^{\prime} D^{\prime}+B^{\prime}
\end{aligned}
$$

To

	$x 1$	$x 2$	$x 3$	$x 4$
8	1	0	0	0
6	0	1	1	0
9	1	0	0	1
10	1	0	1	0
12	1	1	0	0
7	0	1	1	1
11	1	0	1	1
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1

Eg 2: $f=\sum(6,7,8,9)+d(10,11,12$,
$13,14,15)$
T_{1}

	x 1	x 2	x 3	x 4
$(8,9)$	1	0	0	2
$(8,10)$	1	0	2	0
$(8,12)$	1	2	0	0
$(6,7)$	0	1	1	2
$(6,14)$	2	1	1	0
$(9,11)$	1	0	2	1
$(9,13)$	1	2	0	1
$(10,11)$	1	0	1	2
$(10,14)$	1	2	1	0
$(12,13)$	1	1	0	2
$(12,14)$	1	1	2	0

Prime cube table

Prime Cubes	6	7	8	9
$A(6,7,14,15)$	x	x		
$B(8,9,10,11,12,13,14,15)$			x	x

- For creating prime cube table, we will not consider Don't care terms

Essential Prime cubes $=A, B$

$$
\begin{aligned}
& =2112+1222 \\
& =B C+A
\end{aligned}
$$

Prime cube table

Prime Cube	$\mathbf{2}$	$\mathbf{6}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 8}$	$\mathbf{2 6}$	$\mathbf{3 0}$
$\mathrm{A}(2,6)$	X	X						
$\mathrm{B}(2,18)$	X					X		
$\mathrm{C}(6,14)$		X		X				
$\mathrm{D}(18,26)$						X	X	
$\mathrm{E}(13,15)$			X		X			
$\mathrm{F}(14,15)$				X	X			
$\mathrm{G}(14,30)$				X				X
$\mathrm{H}(26,30)$							X	X

Essential prime cube= E

Selective Prime cube table

Prime Cube	$\mathbf{2}$	$\mathbf{6}$	$\mathbf{1 4}$	$\mathbf{1 8}$	$\mathbf{2 6}$	$\mathbf{3 0}$
$\mathrm{A}(2,6)$	X	X				
$\mathrm{B}(2,18)$	X			X		
$\mathrm{C}(6,14)$		X	X			
$\mathrm{D}(18,26)$				X	X	
$\mathrm{E}(13,15)$						
$\mathrm{F}(14,15)$			X			
$\mathrm{G}(14,30)$			X			X
$\mathrm{H}(26,30)$					X	X

- Here, we cannot apply the dominance relation. This type of function is called Cyclic function. For solving cyclic functions, we use branching method.
- In the above table, $\mathrm{F}(14,15)$ gets deleted, being dominated by both G and C
- In branching method, we select say A, so that we delete $A(2,6)$ and $(2,6)$ minterms from the above table.

Prime Cube	$\mathbf{1 4}$	$\mathbf{1 8}$	$\mathbf{2 6}$	$\mathbf{3 0}$
$\mathrm{B}(2,18)$		x		
$\mathrm{C}(6,14)$	X			
$\mathrm{D}(18,26)$		x	x	
$\mathrm{G}(14,30)$	x			x
$\mathrm{H}(26,30)$			x	x

D and G are selected

$$
=E+\{A+D+G\}
$$

- Another solution, when we select B, we delete $B(2,18)$ and $(2,18)$ minterms from the table

Prime Cube	$\mathbf{6}$	$\mathbf{1 4}$	$\mathbf{2 6}$	$\mathbf{3 0}$
$\mathrm{A}(2,6)$	x			
$\mathrm{C}(6,14)$	x	x		
$\mathrm{D}(18,26)$			x	
$\mathrm{G}(14,30)$		x		x
$\mathrm{H}(26,30)$			x	x

C and H are selected

$$
=E+\{B+C+H\}
$$

\mathbf{T}_{2}		x1	x2	x3	x4	x5			
	$(0,1,8,9)$	0	2	0	0	2	D		
	$(1,3,5,7)$	0	0	2	2	1	E		
	$(1,5,9,13)$	0	2	2	0	1			
	(1,5,17,21)	2	0	2	0	1			
	(1,9,17,25)	2	2	0	0	1			
	$(5,7,13,15)$	0	2	1	2	1	F		
	$(5,13,21,29)$		2			1			
	$(9,13,25,29)$		1	2	0	1			
	$(17,21,25,29)$					1			
	Prepared By Mr.EBIN PM, AP, IESCE							EDULINE	73

T3

	$x 1$	$x 2$	$x 3$	$x 4$	$x 5$
$(1,5,9,13,17,21,25,29)$	2	2	2	0	1

Prime cubes = A, B, C, D, E, F, G

- Next we create prime cube table.

Prime cube table

Prime Cube	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 7}$	$\mathbf{2 1}$	$\mathbf{2 5}$	$\mathbf{2 9}$
$\mathrm{A}(8,10)$						x		x							
$\mathrm{B}(10,14)$								x		x					
$\mathrm{C}(14,15)$										x	x				
$\mathrm{D}(0,1,8,9)$	x	x				x	x								
$\mathrm{E}(1,3,5,7)$		x	x	x	x										
$\mathrm{F}(5,7,13,15)$				x	x				x		x				
$\mathrm{G}(1,5,9,13,17,21,25,29)$		x		x			x		x			x	x	x	x

Essential prime cube= D,E,G

Selective Prime cube table

Prime Cube	$\mathbf{1 0}$	$\mathbf{1 4}$	$\mathbf{1 5}$
$\mathrm{A}(8,10)$	x		
$\mathrm{B}(10,14)$	x	x	
$\mathrm{C}(14,15)$		x	x
$\mathrm{F}(5,7,13,15)$			x

Now we apply row domination
Selective prime cube= B, F
Final solution $=\mathrm{D}+\mathrm{E}+\mathrm{G}+\{\mathrm{B}+\mathrm{F}\}$
$=02002+00221+22201+01210+02121$
$=A^{\prime} C^{\prime} D^{\prime}+A^{\prime} B^{\prime} E+D^{\prime} E+A^{\prime} B D E^{\prime}+A^{\prime} C E$

