
OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 1

MODULE 1
CHAPTER 2 – COMPUTER 

SYSTEM STRUCTURES

Prepared By Mr. EBIN PM, AP, IESCE 35

EDULINE

SYSTEM STRUCTURE
• A modern, general-purpose computer system consists of a CPU and

a number of device controllers that are connected through a
common bus that provides access to shared memory.

• Each device controller is in charge of a specific type of device (for
example, disk drives, audio devices, and video displays).

• The CPU and the device controllers can execute concurrently,
competing for memory cycles.

• To ensure orderly access to the shared memory, a memory
controller is provided whose function is to synchronize access to
the memory.

Prepared By Mr.EBIN PM, AP, IESCE 36



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 2

EDULINE

• When a computer is powered up or rebooted, it needs to have an
initial program to run. This initial program, or bootstrap program,
tends to be simple. Typically, it is stored in read-only memory
(ROM) such as firmware or EEPROM within the computer
hardware. It initializes all aspects of the system, from CPU registers
to device controllers to memory contents.

Prepared By Mr.EBIN PM, AP, IESCE 37

EDULINE

• The bootstrap program locate and load into memory the
operating-system kernel.

• The operating system then starts executing the first process, such
as "init“, and waits for some event to occur.

• The occurrence of an event is usually signaled by an interrupt from
either the hardware or the software.

• Hardware may trigger an interrupt at any time by sending a signal
to the CPU, usually by way of the system bus.

• Software may trigger an interrupt by executing a special operation
called a system call (also called a monitor call).

Prepared By Mr.EBIN PM, AP, IESCE 38



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 3

EDULINE

• Modern operating systems are interrupt driven. If there are no
processes to execute, no I/O devices to service, and no users to
whom to respond, an operating system will sit quietly, waiting for
something to happen.

• A trap (or an exception) is a software-generated interrupt caused
either by an error (for example, division by zero or invalid memory
access) or by a specific request

• For each type of interrupt, separate segments of code in the
operating system determine what action should be taken.

• An Interrupt Service Routine(ISR) is provided that is responsible
for dealing with the interrupt.

Prepared By Mr.EBIN PM, AP, IESCE 39

EDULINE

• When the CPU is interrupted, it stops what it is doing and
immediately transfers execution to a fixed location.

• The fixed location usually contains the starting address where the
service routine for the interrupt is located.

• The interrupt service routine executes; on completion, the CPU
resumes the interrupted computation.

• Each computer design has its own interrupt mechanism, but
several functions are common.

• The interrupt must transfer control to the appropriate interrupt
service routine.

Prepared By Mr.EBIN PM, AP, IESCE 40



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 4

EDULINE

• The straightforward method for handling this transfer would be to
invoke a generic routine to examine the interrupt information; the
routine, in turn, would call the interrupt-specific handler.

• However, interrupts must be handled quickly, and, given that only a
predefined number of interrupts is possible, a table of pointers to
interrupt routines can be used instead.

• The interrupt routine is then called indirectly through the table,
with no intermediate routine needed.

• Generally, the table of pointers is stored in low memory (the first
100 or so locations).

• These locations hold the addresses of the interrupt service routines
for the various devices.

Prepared By Mr.EBIN PM, AP, IESCE 41

EDULINE

• This array, or interrupt vector, of addresses is then indexed by a
unique device number, given with the interrupt request, to provide
the address of the interrupt service routine for the interrupting
device.

• After the interrupt is serviced, the saved return address is loaded
into the program counter, and the interrupted computation
resumes as though the interrupt had not occurred.

Prepared By Mr.EBIN PM, AP, IESCE 42



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 5

EDULINE

I/O INTERRUPTS
• To start an I/O operation, the CPU loads the appropriate registers

within the device controller. The device controller, in turn,
examines the contents of these registers to determine what action
to take. Once the transfer of data is complete, the device controller
informs the CPU that it has finished its operation. It accomplishes
this communication by triggering an interrupt.

• Once the I/O is started, two courses of action are possible. In the
simplest case, the I/O is started; then, at I/O completion, control is
returned to the user process. This case is known as synchronous
I/O.

Prepared By Mr.EBIN PM, AP, IESCE 43

EDULINE

• The other possibility, called asynchronous I/O, returns control to
the user program without waiting for the I/O to complete. The I/O
then can continue while other system operations occur.
Waiting for I/O completion may be accomplished in one of two

ways.
Special wait instruction that idles the CPU until the next interrupt.
Wait loop
• If no user programs are ready to run, and the operating system has

no other work to do, we still require the wait instruction or idle
loop.

Prepared By Mr.EBIN PM, AP, IESCE 44



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 6

EDULINE

We also need to be able to keep track of many I/O requests at the
same time.
For this purpose, the operating system uses a table containing an

entry for each I/O device called the device-status table .
Each table entry indicates the device's type, address, and state (not

functioning, idle, or busy).
 If the device is busy with a request, the type of request and other

parameters will be stored in the table entry for that device.
Since it is possible for other processes to issue requests to the

same device, the operating system will also maintain a wait queue
— a list of waiting requests — for each I/O device.

Prepared By Mr.EBIN PM, AP, IESCE 45

EDULINE

Device-status table

Prepared By Mr.EBIN PM, AP, IESCE 46



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 7

EDULINE

• An I/O device interrupts when it needs service.
• When an interrupt occurs, the operating system first determines

which I/O device caused the interrupt.
• It then indexes into the I/O device table to determine the status of

that device, and modifies the table entry to reflect the occurrence
of the interrupt.

• The main advantage of asynchronous I/O is increased system
efficiency.

Prepared By Mr.EBIN PM, AP, IESCE 47

EDULINE

HARDWARE PROTECTION
• In early computers, programmers had complete control over the

system. As operating systems developed, this control was given to
the operating system.

• To improve system utilization, the operating system began to share
system resources among several programs simultaneously.

• Multiprogramming put several programs in memory at the same
time.

• Errors can occur in a multiprogramming system, where one
erroneous program might modify the program or data of another
program, or even the resident monitor itself.

Prepared By Mr.EBIN PM, AP, IESCE 48



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 8

EDULINE

• Many programming errors are detected by the hardware. These
errors are normally handled by the operating system.

• If a user program fails in some way — such as by making an
attempt either to execute an illegal instruction, or to access
memory that is not in the users address space — then the
hardware will trap to the operating system.

• The trap transfers control through the interrupt vector to the
operating system, just like an interrupt.

• Whenever a program error occurs, the operating system must
abnormally terminate the program.

Prepared By Mr.EBIN PM, AP, IESCE 49

EDULINE

Dual-Mode Operation
• To ensure proper operation, we must protect the operating system

and all other programs and their data from any malfunctioning
program. Protection is needed for any shared resource.
The two separate modes of operations are:
User mode
Monitor mode (also called Kernel mode, supervisor mode, system

mode, or privileged mode).
• A bit, called the mode bit, is added to the hardware of the

computer to indicate the current mode: monitor (0) or user (1).

Prepared By Mr.EBIN PM, AP, IESCE 50



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 9

EDULINE

• At system boot time, the hardware starts in monitor mode. The
operating system is then loaded, and starts user processes in user
mode.

• Whenever a trap or interrupt occurs, the hardware switches from
user mode to monitor mode (that is, changes the state of the
mode bit to 0).

• Thus, whenever the operating system gains control of the
computer, it is in monitor mode.

• The system always switches to user mode (by setting the mode bit
to 1) before passing control to a user program.

Prepared By Mr.EBIN PM, AP, IESCE 51

EDULINE

• The dual mode of operation provides us with the means for
protecting the operating system from errant users.

• We accomplish this protection by designating some of the machine
instructions that may cause harm as privileged instructions.

• The hardware allows privileged instructions to be executed only in
monitor mode.

• If an attempt is made to execute a privileged instruction in user
mode, the hardware does not execute the instruction, but rather
treats the instruction as illegal and traps it to the operating system.

Prepared By Mr.EBIN PM, AP, IESCE 52



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 10

EDULINE

dual

Prepared By Mr.EBIN PM, AP, IESCE 53

EDULINE

I/O PROTECTION
• A user program may disrupt the normal operation of the system by

issuing illegal I/O instructions, by accessing memory locations
within the operating system itself, or by refusing to relinquish the
CPU.

• We can use various mechanisms to ensure that such disruptions
cannot take place in the system.

• To prevent users from performing illegal I/O, we define all I/O
instructions to be privileged instructions. Thus, users cannot issue
I/O instructions directly; they must do it through the operating
system. For I/O protection to be complete, we must be sure that a
user program can never gain control of the computer in monitor
mode.

Prepared By Mr.EBIN PM, AP, IESCE 54



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 11

EDULINE

MEMORY PROTECTION
• To ensure correct operation, we must protect the interrupt vector

from modification by a user program.
• In addition, we must also protect the Interrupt Service Routines

(ISR) in the operating system from modification.
• Even if the user did not gain unauthorized control of the computer,

modifying the interrupt service routines would probably disrupt
the proper operation of the computer system and of its spooling
and buffering

• We must provide memory protection at least for the interrupt
vector and the interrupt-service routines of the operating system.

Prepared By Mr.EBIN PM, AP, IESCE 55

EDULINE

• To separate each program's memory space, we need the ability to
determine the range of legal addresses that the program may
access.

• We can provide this protection by using two registers, usually a
base and a limit.

• Base register holds the smallest legal physical memory address;
the limit register contains the size of the range.

• For example, if the base register holds 300040 and limit register is
120900, then the program can legally access all addresses from
300040 through 420940 inclusive.

• The base and limit registers can be loaded by only the operating
system, which uses a special privileged instruction.

Prepared By Mr.EBIN PM, AP, IESCE 56



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 12

EDULINE

• Since privileged instructions can be executed in only monitor
mode, and since only the operating system executes in monitor
mode, only the operating system can load the base and limit
registers. This scheme allows the monitor to change the value of
the registers, but prevents user programs from changing the
registers' contents.

Prepared By Mr.EBIN PM, AP, IESCE 57

EDULINE

CPU PROTECTION
• We must prevent a user program from getting stuck in an infinite

loop or not calling system services, and never returning control to
the operating system.

• To accomplish this goal, we can use a timer. A timer can be set to
interrupt the computer after a specified period.

• The period may be fixed (for example, 1/60 second) or variable (for
example, from 1 millisecond to 1 second).

• A variable timer is generally implemented by a fixed-rate clock and
a counter.

Prepared By Mr.EBIN PM, AP, IESCE 58



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 13

EDULINE

• The operating system sets the counter. Every time the clock ticks,
the counter is decremented. When the counter reaches 0, an
interrupt occurs.

• Before turning over control to the user, the operating system
ensures that the timer is set to interrupt. Thus, we can use the
timer to prevent a user program from running too long.

• A more common use of a timer is to implement time sharing.
• In the most straightforward case, the timer could be set to

interrupt every N millisecond, where N is the time slice that each
user is allowed to execute before the next user gets control of the
CPU.

• Another use of the timer is to compute the current time.

Prepared By Mr.EBIN PM, AP, IESCE 59

EDULINE

OPERATING SYSTEMS COMPONENTS
1. Process Management
• process - program in execution.
• Eg: compiler , word-processing program , A system task, such as

sending output to a printer
• A process needs certain resources — including CPU time, memory,

files, and I/O devices — to accomplish its task.
• These resources are either given to the process when it is created,

or allocated to it while it is running.
• a program is a passive entity, whereas a process is an active entity,

with a program counter specifying the next instruction to execute.
Prepared By Mr.EBIN PM, AP, IESCE 60



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 14

EDULINE

• The execution of a process must be sequential. The CPU executes
one instruction of the process after another; until the process
completes .A process is the unit of work in a system.

The operating system is responsible for the following activities in
connection with process management:
Creating and deleting both user and system processes
Suspending and resuming processes
Providing mechanisms for process synchronization
Providing mechanisms for process communication
Providing mechanisms for deadlock handling

Prepared By Mr.EBIN PM, AP, IESCE 61

EDULINE

2. Main-Memory Management
• Main memory is a large array of words or bytes. Main memory is a

repository of quickly accessible data shared by the CPU and I/O
devices.

• The central processor reads instructions from main memory during
the instruction-fetch cycle, and it both reads and writes data from
main memory during the data-fetch cycle.

• The I/O operations implemented via DMA also read and write data
in main memory.

• For the CPU to process data from disk, those data must first be
transferred to main memory by CPU-generated I/O calls.

Prepared By Mr.EBIN PM, AP, IESCE 62



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 15

EDULINE

• To improve both the utilization of the CPU and the speed of the
computer's response to its users, we must keep several programs
in memory.
The operating system is responsible for the following activities in

connection with memory management:
Keeping track of which parts of memory are currently being used

and by whom
Deciding which processes are to be loaded into memory when

memory space becomes available
Allocating and deallocating memory space as needed

Prepared By Mr.EBIN PM, AP, IESCE 63

EDULINE

3. File Management
• File management is one of the most visible components of an

operating system.
• For convenient use of the computer system, the operating system

provides a uniform logical view of information storage.
• The operating system abstracts from the physical properties of its

storage devices to define a logical storage unit called the file.
• The operating system maps files onto physical media, and accesses

these files via the storage devices.

Prepared By Mr.EBIN PM, AP, IESCE 64



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 16

EDULINE

The operating system is responsible for the following activities in
connection with file management:
Creating and deleting files
Creating and deleting directories
Supporting primitives for manipulating files and directories
Mapping files onto secondary storage
Backing up files on stable (nonvolatile) storage media

Prepared By Mr.EBIN PM, AP, IESCE 65

EDULINE

4. I/O System Management
• One of the purposes of an operating system is to hide the

peculiarities of specific hardware devices from the user.
The I/O subsystem consists of
A memory-management component that includes buffering,

caching, and spooling
A general device-driver interface
Drivers for specific hardware devices
• Only the device driver knows the peculiarities of the specific device

to which it is assigned.

Prepared By Mr.EBIN PM, AP, IESCE 66



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 17

EDULINE

5. Secondary-Storage Management
• Because main memory is too small to accommodate all data and

programs, and because the data that it holds are lost when power
is lost, the computer system must provide secondary storage to
back up main memory.
The operating system is responsible for the following activities in

connection with disk management:
Free-space management
Storage allocation
Disk scheduling

Prepared By Mr.EBIN PM, AP, IESCE 67

EDULINE

6. Networking
• A distributed system is a collection of processors that do not share

memory, peripheral devices, or a clock.
• Instead, each processor has its own local memory and clock, and

the processors communicate with one another through various
communication lines, such as high-speed buses or networks.

• The processors in a distributed system vary in size and function.
They may include small micro- processors, workstations,
minicomputers, and large, general-purpose computer systems.

• The processors in the system are connected through a
communication net- work, which can be configured in a number of
different ways

Prepared By Mr.EBIN PM, AP, IESCE 68



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 18

EDULINE

7. Protection System
• If a computer system has multiple users and allows the concurrent

execution of multiple processes, then the various processes must
be protected from one another's activities.

• For that purpose, mechanisms ensure that the files, memory
segments, CPU, and other resources can be operated on by only
those processes that have gained proper authorization from the
operating system.

• Protection is any mechanism for controlling the access of
programs, processes, or users to the resources defined by a
computer system.

Prepared By Mr.EBIN PM, AP, IESCE 69

EDULINE

USER-SYSTEM INTERFACE
There are several ways for users to interact with the operating

system. The two fundamental approaches are
Command interpreter
Graphical User Interface (GUI)
Command interpreters
• Some operating systems include the command interpreter in the

kernel. Others, such as Windows and UNIX, treat the command
interpreter as a special program that is running when a job is
initiated or when a user first logs on (on interactive systems).

Prepared By Mr.EBIN PM, AP, IESCE 70

Menu based interface

Iconic interface



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 19

EDULINE

• On systems with multiple command interpreters to choose from,
the interpreters are known as shells.

• For example, on UNIX and Linux systems, a user may choose
among several different shells, including the Bourne shell, Cshell,
Bourne-Again shell, Korn shell, and others.

• The main function of the command interpreter is to get and
execute the next user-specified command.

• Many of the commands given at this level manipulate files: create,
delete, list, print, copy, execute, and so on.

• The MS-DOS and UNIX shells operate in this way.
Implementation of commands

Prepared By Mr.EBIN PM, AP, IESCE 71

EDULINE

1. In one approach, the command interpreter itself contains the
code to execute the command.

• Here the number of commands is fixed and it is predefined.

2. An alternative approach—used by UNIX, among other operating
systems—implements most commands through system
programs.

• Commands are not fixed and it is expandable.
• New commands can be added.

Prepared By Mr.EBIN PM, AP, IESCE 72



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 20

EDULINE

Graphical User Interfaces (GUI)
• A second strategy for interfacing with the operating system is

through a user friendly graphical user interface, or GUI.
• Here, rather than entering commands directly via a command-line

interface, users employ a mouse-based window and-menu system
characterized by a desktop metaphor.

• The user moves the mouse to position its pointer on images, or
icons, on the screen (the desktop) that represent programs, files,
directories, and system functions.

• Depending on the mouse pointer‘s location, clicking a button on
the mouse can invoke a program, select a file or directory—known
as a folder—or pull down a menu that contains commands.

Prepared By Mr.EBIN PM, AP, IESCE 73

EDULINE

OPERATING SYSTEM SERVICES
An operating system provides an environment for the execution of

programs.
Program execution: The system must be able to load a program

into memory and to run that program. The program must be able
to end its execution, either normally or abnormally (indicating
error).
 I/O operations: A running program may require I/O. This I/O may

involve a file or an I/O device. For efficiency and protection, users
usually cannot control I/O devices directly. Therefore, the operating
system must provide a means to do I/O.

Prepared By Mr.EBIN PM, AP, IESCE 74



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 21

EDULINE

File-system manipulation: Obviously, programs need to read and
write files. Programs also need to create and delete files by name.
Communications: one process needs to exchange information with

another process. Communications may be implemented via shared
memory, or by the technique of message passing, in which packets
of information are moved between processes by the operating
system.
Error detection: Errors may occur in the CPU and memory

hardware (memory error or a power failure), in I/O devices
(connection failure on a network, or lack of paper in the printer),
and in the user program (an arithmetic overflow, an attempt to
access an illegal memory location). For each type of error, the
operating system should take the appropriate action

Prepared By Mr.EBIN PM, AP, IESCE 75

EDULINE

Resource allocation: When multiple users are logged on the
system or multiple jobs are running at the same time, resources
must be allocated to each of them. Many different types of
resources are managed by the operating system.
Accounting: We want to keep track of which users use how much

and what kind of computer resources. This record keeping may be
used for accounting or simply for accumulating usage statistics.
User interface: One is a command-line interface (CLI), which uses

text commands and a method for entering them. Most commonly,
a graphical user interface (GUI) is used. Here, the interface is a
window system with a pointing device to direct I/O, choose from
menus, and make selections and a keyboard to enter text.

Prepared By Mr.EBIN PM, AP, IESCE 76



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 22

EDULINE

Protection and security: When several separate processes execute
concurrently, it should not be possible for one process to interfere
with the others or with the operating system itself. Protection
involves ensuring that all access to system resources is controlled.
Security of the system from outsiders is also important.

Prepared By Mr.EBIN PM, AP, IESCE 77

EDULINE

SYSTEM CALLS
• System calls provide the interface between a process and the

operating system.
• The purpose of system call is to request the operating system to

perform some activity.
• The execution of a system call requires the user process to save its

current state, let the operating system take control of the CPU and
perform some function. Then OS should save its state and give
control of the CPU back to the user process

• System calls are generally available as assembly language
instructions.

Prepared By Mr.EBIN PM, AP, IESCE 78



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 23

EDULINE

• But assembly language programming is considered difficult,
therefore, high level languages such as C, C++, PERL etc, allow
these system calls to be made directly.
System calls can be grouped roughly into five major categories:
1. Process Control
• end, abort
• load, execute
• create process, terminate process
• get process attributes, set process attributes
• wait for time
• wait event, signal event
• allocate and free memory

Prepared By Mr.EBIN PM, AP, IESCE 79

EDULINE

2. File management
• create file, delete file
• open, close
• read, write, reposition
• get file attributes, set file attributes
3. Device management
• request device, release device
• read, write, reposition
• get device attributes, set device attributes
• logically attach or detach devices

Prepared By Mr.EBIN PM, AP, IESCE 80



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 24

EDULINE

4. Information maintenance
• get time or date, set time or date
• get system data, set system data
• get process, file, or device attributes
• set process, file, or device attributes
5. Communications
• create, delete communication connection
• send, receive messages
• transfer status information
• attach or detach remote devices

Prepared By Mr.EBIN PM, AP, IESCE 81

EDULINE

• The following Figure , which illustrates how the operating system
handles a user application invoking the open() system call.

Prepared By Mr.EBIN PM, AP, IESCE 82



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 25

EDULINE

Three general methods are used to pass parameters to the
operating system.

• The simplest approach is to pass the parameters in registers.
• In some cases, however, there may be more parameters than

registers. In these cases, the parameters are generally stored in a
block, or table, in memory, and the address of the block is passed
as a parameter in a register. This is the approach taken by Linux
and Solaris.

• Parameters also can be placed, or pushed, onto the stack by the
program and popped off the stack by the operating system.

Prepared By Mr.EBIN PM, AP, IESCE 83

EDULINE

OPERATING SYSTEM STRUCTURES
1. Simple Structure
• Here, no modular approach is done.
• Each component has no specific function.
• It was written to provide the most functionality in least space,

because of the limited hardware on which it run.
• So it was not divided in to modules carefully.
• MS-DOS is an example of such a system.

Prepared By Mr.EBIN PM, AP, IESCE 84



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 26

EDULINE

P

Prepared By Mr.EBIN PM, AP, IESCE 85

EDULINE

Disadvantages
• There is no hardware protection and I/O protection
• No system call concept
• Direct interaction causes errors or malfunctions.
UNIX initially was limited by hardware functionality. It consists of

two separable parts: the kernel and the system programs. The
kernel is further separated into a series of interfaces and device
drivers, which have been added and expanded over the years as
UNIX has evolved. The kernel provides the file system, CPU
scheduling, memory management, and other operating-system
functions through system calls.

Prepared By Mr.EBIN PM, AP, IESCE 86



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 27

EDULINE

2. Layered Approach
• Layered approach introduces the modularization of the system.
• Here the operating system is broken up into a number of layers (or

levels), each built on top of lower layers.
• The bottom layer (layer 0) is the hardware; the highest (layer N) is

the user interface.
• Each layer has a specific function.
• Each layer has its own Data structures and operations.
• Highest level has high functionality, i.e., the services for highest

level are provided by the lowest level.

Prepared By Mr.EBIN PM, AP, IESCE 87

EDULINE

L

Prepared By Mr.EBIN PM, AP, IESCE 88



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 28

EDULINE

Advantages
• The main advantage of the layered approach is modularity.
• Each layers are independent, so debugging is simple
• Independent error checking is possible
• Design and implementation are simplified when the system is

broken down into layers.
• Each layer hides the existence of certain data structures,

operations, and hardware from higher-level layers.
Disadvantages
• It is a difficult task to define the functions of each layer. Layer 1 can

access only the lowest layer (Layer 0)
• Less efficient because when user give a request, that process is

passes through each layer. So more time is consumed.
Prepared By Mr.EBIN PM, AP, IESCE 89

EDULINE

3. Microkernel Approach
• In this method, the structure of the OS is changed by removing all

nonessential components from the kernel, and implementing them
as system- and user-level programs.

• The result is a smaller kernel. The removed components are
implemented using user programs. The kernel only gives
communication support.
Advantages
• Ease of extending the operating system without modifying the

kernel.
• The OS is portable.
• Provides more security and reliability.

Prepared By Mr.EBIN PM, AP, IESCE 90



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 29

EDULINE

I

Prepared By Mr.EBIN PM, AP, IESCE 91

EDULINE

4. Modular Approach
• The best current methodology for operating-system design involves

using loadable kernel modules.
• Here, the kernel has a set of core components and links in

additional services via modules, either at boot time or during
runtime.

• This type of design is common in modern implementations of
UNIX, such as Solaris, Linux, and Mac OS X, as well as Windows.

• Object oriented Programming (OOP) technique is used to create a
modular kernel.

Prepared By Mr.EBIN PM, AP, IESCE 92



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 30

EDULINE

LL

Prepared By Mr.EBIN PM, AP, IESCE 93

EDULINE

SYSTEM BOOT PROCESS
• The procedure of starting a computer by loading the kernel is

known as booting the system.
• On most computer systems, a small piece of code known as the

bootstrap program or bootstrap loader locates the kernel, loads it
into main memory, and starts its execution.

• Some computer systems, such as PCs, use a two-step process in
which a simple bootstrap loader fetches a more complex boot
program from disk, which in turn loads the kernel.

Prepared By Mr.EBIN PM, AP, IESCE 94



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 31

EDULINE

• When a CPU is powered up or rebooted—the instruction register is
loaded with a predefined memory location, and execution starts
there.

• At that location is the initial bootstrap program.
• This program is in the form of read-only memory (ROM), because

the RAM is in an unknown state at system startup.
• ROM is convenient because it needs no initialization and cannot

easily be infected by a computer virus.
• The bootstrap program can perform a variety of tasks. Usually, one

task is to run diagnostics to determine the state of the machine.
• If the diagnostics pass, the program can continue with the booting

steps.
Prepared By Mr.EBIN PM, AP, IESCE 95

EDULINE

• It can also initialize all aspects of the system, from CPU registers to
device controllers and the contents of main memory.

• Sooner or later, it starts the operating system. GRUB is an example
of an open-source bootstrap program for Linux systems.

• Modern computer system is to store the small loader for bootstrap
program in ROM.

• All the rest of this program is written to a dedicated area on the
hard disk. This area of the disk is known as boot sector.

• If a disk has a boot partition, it is called boot disk or system disk.
Then to start computer, the loader in ROM is started.

Prepared By Mr.EBIN PM, AP, IESCE 96



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 32

EDULINE

• This loader finds the boot sector on the disk, loads bootstrap
program from the boot sector in to memory and then transfers the
control to the bootstrap program (now loaded in memory), which
in turn does the initialization job. This procedure is called Booting
from the Disk.

Prepared By Mr.EBIN PM, AP, IESCE 97


