
OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 1

MODULE 3

CHAPTER 1 – PROCESSES 
SYNCHRONIZATION

Prepared By Mr. EBIN PM, AP 1

CO – Students will be able to outline process
synchronization mechanisms and deadlock
handling methods.

EDULINE

COOPERATING PROCESS
• The processes which execute concurrently and affect or get

affected by other processes executing in the system are called
cooperating processes.

• The processes can affect or get affected by other processes by
sharing data or by sharing other resources in the system.

• Thus any process which shares data with other process is a
cooperating process.

• The need of such processes is obvious. They will be required to
speed up the computation, sharing of information, user
convenience etc.

Prepared By Mr. EBIN PM, AP 2



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 2

EDULINE

• Breaking up of one task into subtasks such that each of them can
run in parallel and thus give faster computation results may be one
of the requirements.

• In a multi programming environment, processes executing
concurrently.

• Concurrent execution of cooperating process requires mechanisms
that allow processes to communicate with one another and to
synchronize their actions.

• Examples of cooperating processes are transaction processes in
airline reservation system. They share a common database, update
and read same data on a sharing basis.

Prepared By Mr. EBIN PM, AP 3

EDULINE

RACE CONDITION
• Consider two cooperating processes, sharing variables A and B and

having the following set of instructions in each of them:

• Suppose our intention is to get A as 3 and B as 6 after the
execution of both the processes. The interleaving of these
instructions should be done in order to avoid race condition.

• If the order of execution is like:
Prepared By Mr. EBIN PM, AP 4



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 3

EDULINE

A=1
B=2
A= B+1
B=B+1
B=B*2

whereas if the order of execution is like:
A=1
B=2
B=B*2
A= B+1
B=B+1

Prepared By Mr. EBIN PM, AP 5

A will contain 3 and B will contain 6, as desired. 

A will contain 5 and B will contain 5 which is not 
desired. 

EDULINE

• Thus the output of the interleaved execution depends on the
particular order in which the access takes place.

• If several processes access and manipulate the same data
concurrently, the outcome of the execution depends on the
Particular order in which the access takes place. This is called Race
condition.

• To solve this problem, shared variables A and B should not be
updated simultaneously by process 1 and 2.

• Only one process at a time should manipulate the shared variable.
• For that purpose we can use synchronization mechanism.

Prepared By Mr. EBIN PM, AP 6



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 4

EDULINE

CRITICAL SECTION PROBLEM
• Consider a system consisting of n processes {P0, P1, ..., Pn−1}.
• Each process has a segment of code, called a critical section in

which the process may be changing common variables, updating a
table, writing a file, and so on.

• The important feature of the system is that, when one process is
executing in its critical section, no other process is allowed to
execute in its critical section.

• That is, no two processes are executing in their critical sections at
the same time.

Prepared By Mr. EBIN PM, AP 7

EDULINE

• The critical-section problem is to design a protocol that the
processes can use to cooperate.

• Each process must request permission to enter its critical
section.The section of code implementing this request is the entry
section.

• The critical section may be followed by an exit section.
• The remaining code is the remainder section.
• Thus the critical section of a process should not be executed

concurrently with the critical section of another process.
• This should be ensuring by the synchronization mechanism.

Prepared By Mr. EBIN PM, AP 8



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 5

EDULINE

• The general structure of a typical process Pi is shown in Figure:

Prepared By Mr. EBIN PM, AP 9

EDULINE

A solution to the critical-section problem must satisfy the
following three requirements:

• Mutual exclusion: If process Pi is executing in its critical section,
then no other processes can be executing in their critical
sections.(no two processes will simultaneously be inside their
critical section)

• Progress: If no process is executing in its critical section and some
processes wish to enter their critical sections, then only those
processes that are not executing in their remainder sections can
participate in deciding which will enter its critical section next, and
this selection cannot be postponed indefinitely.

Prepared By Mr. EBIN PM, AP 10



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 6

EDULINE

• Bounded waiting: There exists a bound, or limit, on the number of
times that other processes are allowed to enter their critical
sections after a process has made a request to enter its critical
section and before that request is granted.

Prepared By Mr. EBIN PM, AP 11

P1
P2

P4

P3
P1

EDULINE

PETERSON’S SOLUTION
 It is a classic software-based solution to the critical-section

problem.

Prepared By Mr. EBIN PM, AP 12



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 7

EDULINE

• Peterson‘s solution is restricted to two processes that alternate
execution between their critical sections and remainder sections.

• The processes are numbered P0 and P1. For convenience, when
presenting Pi, we use Pj to denote the other process; that is, j
equals 1 − i.

• Peterson‘s solution requires the two processes to share two data
items:

int turn;
boolean flag[2];

• The variable turn indicates whose turn it is to enter its critical
section. That is, if turn == i, then process Pi is allowed to execute
in its critical section.

Prepared By Mr. EBIN PM, AP 13

EDULINE

• The flag array is used to indicate if a process is ready to enter
(intention) its critical section. For example, if flag[i] is true, this
value indicates that Pi is ready to enter its critical section.

• To enter the critical section, process Pi first sets flag[i] to be true
and then sets turn to the value j, thereby asserting that if the other
process wishes to enter the critical section, it can do so.

• If both processes try to enter at the same time, turn will be set to
both i and j at roughly the same time. Only one of these
assignments will last; the other will occur but will be overwritten
immediately.

• The final value of turn determines which of the two processes is
allowed to enter its critical section first.

Prepared By Mr. EBIN PM, AP 14



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 8

EDULINE

Here,
• Mutual exclusion is preserved.
• The progress requirement is satisfied.
• The bounded-waiting requirement is met
• To prove property 1, we note that each Pi enters its critical section

only if either flag[j] == false or turn == i.
• To prove properties 2 and 3, we note that a process Pi can be

prevented from entering the critical section only if it is stuck in the
while loop with the condition flag[j] == true and turn == j; this loop
is the only one possible.

Prepared By Mr. EBIN PM, AP 15

EDULINE

• If Pj is not ready to enter the critical section, then flag[j] == false,
and Pi can enter its critical section.

• If Pj has set flag[j] to true and is also executing in its while
statement, then either turn == i or turn == j. If turn == i, then Pi will
enter the critical section. If turn == j, then Pj will enter the critical
section.

• However, once Pj exits its critical section, it will reset flag[j] to false,
allowing Pi to enter its critical section. If Pj resets flag[j] to true, it
must also set turn to i. Thus, since Pi does not change the value of
the variable turn while executing the while statement, Pi will enter
the critical section (progress) after at most one entry by Pj
(bounded waiting).

Prepared By Mr. EBIN PM, AP 16



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 9

EDULINE

SYNCHRONIZATION HARDWARE
The software-based solution to the critical-section Problem such

as Peterson‘s are not guaranteed to work on modern computer
architectures. The following solutions are based on the premise of
locking —that is, protecting critical regions through the use of
locks.
Disable interrupts
• The critical-section problem could be solved simply in a single-

processor environment if we could prevent interrupts from
occurring while a shared variable was being modified by a process.

Prepared By Mr. EBIN PM, AP 17

EDULINE

• In this way, we could be sure that the current sequence of
instructions would be allowed to execute in order without
preemption.

• No other instructions would be run, so no unexpected
modifications could be made to the shared variable. This is often
the approach taken by non-preemptive kernels.

• Unfortunately, this solution is not as feasible in a multiprocessor
environment
Mutex Locks
• Operating-systems designers build software tools to solve the

critical-section problem

Prepared By Mr. EBIN PM, AP 18



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 10

EDULINE

• The simplest of these tools is the mutex lock. (In fact, the term
mutex is short for mutual exclusion.)

• We use the mutex lock to protect critical regions and thus prevent
race conditions.

• That is, a process must acquire the lock before entering a critical
section; it releases the lock when it exits the critical section. The
acquire() function acquires the lock, and the release() function
releases the lock.

Prepared By Mr. EBIN PM, AP 19

EDULINE

• A mutex lock has a Boolean variable ―available whose value
indicates if the lock is available or not. If the lock is available, a call
to acquire() succeeds, and the lock is then considered unavailable.
A process that attempts to acquire an unavailable lock is blocked
until the lock is released

Prepared By Mr. EBIN PM, AP 20



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 11

EDULINE

• Calls to either acquire() or release() must be performed atomically.
The main disadvantage of the implementation given here is that it
requires busy waiting.

• While a process is in its critical section, any other process that tries
to enter its critical section must loop continuously in the call to
acquire().

• In fact, this type of mutex lock is also called a spinlock because the
process spins while waiting for the lock to become available.

• This continual looping is clearly a problem in a real
multiprogramming system, where a single CPU is shared among
many processes.

Prepared By Mr. EBIN PM, AP 21

EDULINE

• Busy waiting wastes CPU cycles that some other process might be
able to use productively.

• Spinlocks do have an advantage that no context switch is required
when a process must wait on a lock, and a context switch may take
considerable time.

• Thus, when locks are expected to be held for short times, spinlocks
are useful.

• They are often employed on multiprocessor systems where one
thread can spin on one processor while another thread performs
its critical section on another processor.

Prepared By Mr. EBIN PM, AP 22



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 12

EDULINE

SEMAPHORES
• Semaphore is used to solve critical section problem. A semaphore S

is an integer variable that, apart from initialization, is accessed only
through two standard atomic operations: wait() and signal()

• The wait() operation was originally termed P , signal() was
originally called V .

Prepared By Mr. EBIN PM, AP 23

EDULINE

The wait() operation decrements the semaphore value. If the value
becomes negative, then the process executing the wait is blocked.
The signal() operation increments the semaphore value. If the

value is not positive, then the process blocked by a wait()
operation is unblocked.
Semaphore may be initialized to a non-negative value.
Semaphores are executed automatically.

Prepared By Mr. EBIN PM, AP 24



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 13

EDULINE

Semaphore Implementation
The implementation of mutex locks suffers from busy waiting. The

definitions of the wait() and signal() semaphore operations just
described present the same problem.
To overcome the need for busy waiting, we can modify the

definition of the wait() and signal()operations as follows:
• When a process executes the wait() operation and finds that the

semaphore value is not positive, it must wait.
• However, rather than engaging in busy waiting, the process can

block itself.

Prepared By Mr. EBIN PM, AP 25

EDULINE

• The block operation places a process into a waiting queue
associated with the semaphore, and the state of the process is
switched to the waiting state.

• Then control is transferred to the CPU scheduler, which selects
another process to execute.

• A process that is blocked, waiting on a semaphore S, should be
restarted when some other process executes a signal() operation.

• The process is restarted by a wakeup() operation, which changes
the process from the waiting state to the ready state.

• The process is then placed in the ready queue. (The CPU may or
may not be switched from the running process to the newly ready
process, depending on the CPU-scheduling algorithm.)

Prepared By Mr. EBIN PM, AP 26



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 14

EDULINE

To implement semaphores under this definition, we define a
semaphore as follows:

typedef struct
{
int value;
struct process *list;

} semaphore;
• Each semaphore has an integer value and a list of processes list.

When a process must wait on a semaphore, it is added to the list of
processes. A signal() operation removes one process from the list
of waiting processes and awakens that process.

Prepared By Mr. EBIN PM, AP 27

EDULINE

• The block() operation suspends the process that invokes it. The
wakeup(P)operation resumes the execution of a blocked process P.
These two operations are provided by the operating system as basic
system calls.

Prepared By Mr. EBIN PM, AP 28



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 15

EDULINE

• Note that in this implementation, semaphore values may be
negative. If a semaphore value is negative, its magnitude is the
number of processes waiting on that semaphore
Some properties of semaphore are:
Semaphores are machine independent
Semaphores are simple to implement
Correctness is easy to determine
Can have many different critical sections with different semaphores
Semaphore acquire many resources simultaneously

Prepared By Mr. EBIN PM, AP 29

EDULINE

MONITORS
The incorrect use of semaphores can result in timing errors.
Suppose that a process interchanges the order in which the wait()

and signal() operations on the semaphore mutex are executed,
resulting in the following execution:

signal(mutex);
...

critical section
...

wait(mutex);

Prepared By Mr. EBIN PM, AP 30

In this situation, several processes
may be executing in their critical
sections simultaneously, violating
the mutual-exclusion requirement.



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 16

EDULINE

• Suppose that a process replaces signal(mutex) with wait(mutex).
That is, it executes

wait(mutex);
...

critical section
...

wait(mutex);
In this case, a deadlock will occur.

• Suppose that a process omits the wait(mutex), or the
signal(mutex), or both. In this case, either mutual exclusion is
violated or a deadlock will occur.

Prepared By Mr. EBIN PM, AP 31

EDULINE

• To deal with such errors, researchers have developed high-level
language constructs- the MONITOR

• Monitors are based on abstract data types.
• A monitor is a programming language construct that provides

equivalent functionality to that of semaphores but is easier to
control.

• Monitor provides high-level of synchronization.
Monitor is a module that encapsulates
• Shared data structures
• Procedures that operates on shared data
• Synchronization between concurrent procedure invocations.
Only one process is allowed to enter in Monitor at a time

Prepared By Mr. EBIN PM, AP 32



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 17

EDULINE

HH

Prepared By Mr. EBIN PM, AP 33

EDULINE

Syntax of a monitor

Prepared By Mr. EBIN PM, AP 34



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 18

EDULINE

• The monitor construct ensures that only one process at a time is
active within the monitor.

• Consequently, the programmer does not need to code this
synchronization constraint explicitly.

• However, the monitor construct, is not sufficiently powerful for
modeling some synchronization schemes.

• For this purpose, we need to define additional synchronization
mechanisms.

• These mechanisms are provided by the condition construct.
condition x, y;

Prepared By Mr. EBIN PM, AP 35

EDULINE

• The only operations that can be invoked on a condition variable are
wait() and signal().

• The operation x.wait(); means that the process invoking this
operation is suspended until another process invokes x.signal();

• The x.signal() operation resumes exactly one suspended process.
• If no process is suspended, then the signal() operation has no

effect; that is, the state of x is the same as if the operation had
never been executed

Prepared By Mr. EBIN PM, AP 36



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 19

EDULINE

Schematic view of a monitor

Prepared By Mr. EBIN PM, AP 37

EDULINE

• Suppose that, when the x.signal () operation is invoked by a
process P, there exists a suspended process Q associated with
condition x.

• Clearly, if the suspended process Q is allowed to resume its
execution, the signaling process P must wait. Otherwise, both P
and Q would be active simultaneously within the monitor. Note,
however, that conceptually both processes can continue with their
execution. Two possibilities exist:
Signal and wait. P either waits until Q leaves the monitor or waits

for another condition.
Signal and continue. Q either waits until P leaves the monitor or

waits for another condition.

Prepared By Mr. EBIN PM, AP 38



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 20

EDULINE

READERS-WRITERS PROBLEM
• Suppose that a database is to be shared among several concurrent

processes.
• Some of these processes may want only to read the database
(called Readers)

• Others may want to update (that is, to read and write) the
database (called Writers)

• If two readers access the shared data simultaneously, no adverse
effects will result. However, if a writer and some other process
(either a reader or a writer) access the database simultaneously,
chaos may come.

Prepared By Mr. EBIN PM, AP 39

EDULINE

• To ensure that these difficulties do not arise, we require that the
writers have exclusive access to the shared database while writing
to the database. This synchronization problem is referred to as the
readers–writers problem.
Solution
Data structures used
• semaphore wrt = 1;
• semaphore mutex = 1;
• int readcount = 0;
The semaphore wrt is common to both reader and writer

processes.
The mutex semaphore is used to ensure mutual exclusion when

the variable read count is updated.
Prepared By Mr. EBIN PM, AP 40



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 21

EDULINE

The structure of a writer process

initially , wrt=1

Prepared By Mr. EBIN PM, AP 41

EDULINE

The structure of a reader process
initial value of mutex=1

read count=0
wrt =1

Prepared By Mr. EBIN PM, AP 42



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 22

EDULINE

DINING PHILOSOPHERS PROBLEM
The situation of the dining philosophers

Prepared By Mr. EBIN PM, AP 43

EDULINE

• Table is a bowl of rice, and the table is laid with five single
chopsticks. When a philosopher thinks, she does not interact with
her colleagues.

• From time to time, a philosopher gets hungry and tries to pick up
the two chopsticks that are closest to her (the chopsticks that are
between her and her left and right neighbors).

• A philosopher may pick up only one chopstick at a time.
Obviously, she cannot pick up a chopstick that is already in the
hand of a neighbor.

• When a hungry philosopher has both her chopsticks at the same
time, she eats without releasing the chopsticks. When she is
finished eating, she puts down both chopsticks and starts thinking
again.

Prepared By Mr. EBIN PM, AP 44



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 23

EDULINE

• One simple solution is to represent each chopstick with a
semaphore.

• A philosopher tries to grab a chopstick by executing a wait()
operation on that semaphore.

• She releases her chopsticks by executing the signal() operation on
the appropriate semaphores. Thus, the shared data are

semaphore chopstick[5];

Prepared By Mr. EBIN PM, AP 45

EDULINE

The structure of philosopher I

Prepared By Mr. EBIN PM, AP 46



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 24

EDULINE

• where all the elements of chopstick are initialized to 1. The
structure of philosopher i is shown in Figure.

• Although this solution guarantees that no two neighbors are
eating simultaneously, it nevertheless must be rejected because it
could create a deadlock.

• Suppose that all five philosophers become hungry at the same
time and each grabs her left chopstick.

• All the elements of chopstick will now be equal to 0. When each
philosopher tries to grab her right chopstick, she will be delayed
forever.

Prepared By Mr. EBIN PM, AP 47

EDULINE

Several possible remedies to the deadlock problem are replaced
by:
Allow at most four philosophers to be sitting simultaneously at

the table.
Allow a philosopher to pick up her chopsticks only if both

chopsticks are available (to do this, she must pick them up in a
critical section).
Use an asymmetric solution—that is, an odd-numbered

philosopher picks up first her left chopstick and then her right
chopstick, whereas an even numbered philosopher picks up her
right chopstick and then her left chopstick

Prepared By Mr. EBIN PM, AP 48


