
OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 1

MODULE 3

CHAPTER 2 – DEAD LOCKS

Prepared By Mr. EBIN PM, AP 49

EDULINE

DEADLOCK
• In a multiprogramming environment, several processes may

compete for a finite number of resources.
• A process requests resources; if the resources are not available at

that time, the process enters a wait state.
• Waiting processes may never again change state, because the

resources they have requested are held by other waiting processes.
This situation is called a deadlock.

Prepared By Mr. EBIN PM, AP 50



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 2

EDULINE

• A system consists of a finite number of resources to be distributed
among a number of competing processes.

• The resources consist of some number of identical instances.
• Memory space, CPU cycles, files, and I/O devices (such as printers

and tape drives) are examples of resource types.
• If a system has two CPUs, then the resource type CPU has two

instances.
• Under the normal mode of operation, a process may utilize a

resource in only the following sequence:
Request: If the request cannot be granted immediately (for

example, the resource is being used by another process), then the
requesting process must wait until it can acquire the resource.

Prepared By Mr. EBIN PM, AP 51

EDULINE

Use: The process can operate on the resource (for example, if the
resource is a printer, the process can print on the printer).
Release: The process releases the resource.

Prepared By Mr. EBIN PM, AP 52



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 3

EDULINE

CONDITIONS FOR DEDALOCK
A deadlock situation can arise if the following four conditions hold

simultaneously in a system:
1. Mutual exclusion: At least one resource must be held in a non-
sharable mode; that is, only one process at a time can use the
resource. If another process requests that resource, the requesting
process must be delayed until the resource has been released.
2. Hold and wait: A process must be holding at least one resource
and waiting to acquire additional resources that are currently being
held by other processes.

Prepared By Mr. EBIN PM, AP 53

EDULINE

3. No preemption: Resources cannot be preempted; that is, a
resource can be released only voluntarily by the process holding it,
after that process has completed its task.
4. Circular wait: A set {P0, P1 , . . ., Pn } of waiting processes must
exist such that Po is waiting for a resource that is held by P1, P1 is
waiting for a resource that is held by P2, ..., Pn-1 is waiting for a
resource that is held by Pn and finally Pn is waiting for a resource
that is held by P0.

Prepared By Mr. EBIN PM, AP 54



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 4

EDULINE

RESOURCE ALLOCATION GRAPH
• A tool for recognizing deadlock is ―Resource allocation graph

(RAG). This graph consists of a set of vertices V and a set of edges
E. Vertices are partitioned in to processes {P1, P2…..Pn} and
resources {R1, R2…..Rm}. Its edges are of two types:
Request edges: This edge indicates the request of a process for

acquiring a particular resource. It is a directed edge like Pi Rj.
Assignment edge: This edge indicates the allocation of a resource

to particular process. It is also a directed edge like Rj Pi. This
edge here indicates that an instance of resource Rj has been
allocated to the process Pi.

• Circle represents processes and rectangles represent resources.

Prepared By Mr. EBIN PM, AP 55

EDULINE

Resource-allocation graph

Prepared By Mr. EBIN PM, AP 56



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 5

EDULINE

Process states:
• Process P1 is holding an instance of resource type R2 and is waiting

for an instance of resource type R1.
• Process P2 is holding an instance of R1 and an instance of R2 and is

waiting for an instance of R3.
• P3 is holding an instance of R3.
If a cycle does not exist in RAG, then we can say that there is no

deadlock exists.
If a cycle exists in a RAG, there must be a possibility of deadlock.
If a resource has only one instance and also a cycle exist, then

deadlock must occur. In the case of multiple instances, the
possibility of occurring deadlock is small.

Prepared By Mr. EBIN PM, AP 57

EDULINE

• Now consider the following resource-allocation graph. In this
example, we also have a cycle:

P1 → R1 → P3 → R2 → P1
However, there is no deadlock.

Prepared By Mr. EBIN PM, AP 58



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 6

EDULINE

• In figure1 ,P2 holds an instance of R1, and P4 holds an instance of
R2. P2 and P4 can release their resources.

• If they do, then R1 and R2 will both have free instances, so there
will be no deadlock, as those free instances can be assigned to P1
and P3, respectively, and the arrows will be reversed.

• The request edges will turn into assignment edges. Then the graph
will be acyclic.

Prepared By Mr. EBIN PM, AP 59

EDULINE

METHODS FOR HANDLING DEADLOCK
The four methods are:
Prevention
Avoidance
Detection and recovery
 Ignore (used in UNIX, ignore and restart)
DEADLOCK PREVENTION
For a deadlock to occur, each of the four necessary conditions
(mutual exclusion, Hold and wait, No preemption, Circular wait)
must hold. By ensuring that at least one of these conditions cannot
hold, we can prevent the occurrence of a deadlock

Prepared By Mr. EBIN PM, AP 60



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 7

EDULINE

1. Mutual Exclusion
• Make all the non-sharable resources sharable.
• The mutual-exclusion condition must hold for non-sharable

resources. For example, a printer cannot be simultaneously shared
by several processes.

• Sharable resources, on the other hand, do not require mutually
exclusive access, and thus cannot be involved in a deadlock.

• Read-only files are a good example of a sharable resource. We
cannot prevent deadlocks by denying the mutual-exclusion condition
because some resources are intrinsically non-sharable and mutual
exclusion is one of the requirements of the critical section problems
solution.

Prepared By Mr. EBIN PM, AP 61

EDULINE

2. Hold and Wait
To prevent Hold and wait condition from happening, we can have a

rule that says
• A process may not request a resource if it is holding another

resource.
• So, to take the print out of the contents of a file, you first request the

disk, and then you get it, use it and release it. Then you request the
printer, you get it, use it, and then you release it.

• Thus, it implies that a process should have released all its resources
before it requests for additional resources.

• Disadvantage is starvation.

Prepared By Mr. EBIN PM, AP 62



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 8

EDULINE

• Another rule can be there that “a process should request and
acquire all the requested resources before its execution begins”.

• For example, to take the print out of the contents of a file, the
disk and printer should be requested beforehand.

• Disadvantage of this method is resource utilization will be low.

Prepared By Mr. EBIN PM, AP 63

EDULINE

3. No Preemption
• To ensure that this condition does not happen, preemption of the

resources should be allowed. Preemption can be added in two
manners:

1. If a process is holding some resources and requests another
resource that cannot be immediately allocated to it (that is, the
process must wait), then all resources currently being held are
preempted.
In other words, these resources are implicitly released. The
preempted resources are added to the list of resources for which the
process is waiting. The process will be restarted only when it can
regain its old resources, as well as the new ones that it is requesting.

Prepared By Mr. EBIN PM, AP 64



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 9

EDULINE

2. Alternatively, if a process requests some resources, we first check
whether they are available. If they are, we allocate them.
• If they are not available, we check whether they are allocated to

some other process that is waiting for additional resources.
• If so, we preempt the desired resources from the waiting process

and allocate them to the requesting process.

Prepared By Mr. EBIN PM, AP 65

EDULINE

4. Circular Wait
• For avoiding circular wait we use numbering scheme. We can

assign a number for all resources.
• So each process has requested in a particular order. If the set of

resources types R includes tape drives, disk drives and printer,
then the function F might be

F(tape drive)=1;
F(disk drive)=5;
F(printer)=12;

Prepared By Mr. EBIN PM, AP 66



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 10

EDULINE

• A process can be request any resource based on the condition
f(Rj)>f(Ri).
Ri: The resource number which is currently hold by the process

Pi.
Rj: New request from process Pi.
• If a process holds the disk drive, it cannot be requested for a tape

drive, because the number is less, but it can be give a request for
printer, which has a greater number.

Prepared By Mr. EBIN PM, AP 67

EDULINE

DEADLOCK AVOIDANCE
Safe State: A state is safe if the system can allocate resources to each
process (up to its maximum) in some order and still avoid a
deadlock. More formally, a system is in a safe state only if there
exists a safe sequence. A deadlock state is a form of unsafe state.

Safe, unsafe, and deadlocked state spaces

Prepared By Mr. EBIN PM, AP 68



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 11

EDULINE

Resource-Allocation Graph Algorithm
• This algorithm is used for only single instance resource type.
• In addition to the request and assignment edge, a new type of

edge called a claim edge is introduced.
• A claim edge Pi ----> Rj indicates that process Pi may request

resource Rj at some time in the future.
• Claim edge is represented by a dashed line.
• When process Pi requests resource Rj, the claim edge Pi ---->Rj is

converted to a request edge.
• Similarly, when a resource Rj is released by Pi the assignment edge

Rj —> Pi is reconverted to a claim edge Pi ---->Rj

Prepared By Mr. EBIN PM, AP 69

EDULINE

• Consider the resource allocation graph of fig(a). Suppose that P2
requests R2. Although R2 is currently free, we cannot allocate it to
P2, Since this allocation will create a cycle in the graph (fig(b)).

• A cycle indicates that the system is in an unsafe state. If P1
requests R2, and P2 requests R1, then a deadlock will occur.

Prepared By Mr. EBIN PM, AP 70



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 12

EDULINE

Banker’s Algorithm
• This algorithm‘s purpose is deadlock avoidance.
• Several data structures must be maintained to implement the

banker's algorithm.
Available: A vector of length m indicates the number of available

resources of each type.
Max: The maximum demand of each process.
Allocation: Ann x m matrix defines the number of resources of

each type currently allocated to each process.
Need: An n x m matrix indicates the remaining resource need of

each process. Need[i,j] = Max[i,j] - Allocation[i,j]

Prepared By Mr. EBIN PM, AP 71

EDULINE

Example:

• First we find Need.
Need = Max-Allocation

• Now compare need and available. First we take process P0. It is not
selected because A need 7 but Available of A is 3. Second we take
process P1. It is selected. Then the new

Prepared By Mr. EBIN PM, AP 72



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 13

EDULINE

Available = (Available +Allocation)
= (3 3 2) + (2 0 0) = (5 3 2)

• Next we select P2. Compare its need and the new available. ie,
between (6 0 0) and (5 3 2)

• Here A wants 6 but only 5 is available. So it is rejected.
• Next take P3 and compare its need and available.ie, between

(0 1 1)and (5 3 2). It is accepted.
Then new Available= (5 3 2)+(2 1 1)= (7 4 3)

• Next take P4 and compare with its need and available. ie, between
(4 3 1) and (7 4 3). It is accepted.

Then the new Available =(7 4 3)+(0 0 2)= (7 4 5)
Prepared By Mr. EBIN PM, AP 73

EDULINE

• Next we take P0 and compare with its need and available. ie,
between (7 4 3) and (7 4 5). It is accepted.

Then new Available= (7 4 5)+ (0 1 0)= (7 5 5)
• Now we can take P2 and compare with its need and new available.

ie, between (6 0 0) and(7 5 5).
• It is accepted. Then the new final available = (7 5 5)+(3 0

2)=(10,5,7)
• So the safe sequence is P1, P3, P4, P0, P2.

Prepared By Mr. EBIN PM, AP 74



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 14

EDULINE

DEADLOCK DETECTION
If a system does not employ either a deadlock-prevention or a

deadlock avoidance algorithm, then a deadlock situation may
occur. In this environment, the system must provide:

• An algorithm that examines the state of the system to determine
whether a deadlock has occurred

• An algorithm to recover from the deadlock
• Detection-and-recovery scheme requires overhead that includes

not only the run-time costs of maintaining the necessary
information and executing the detection algorithm, but also the
potential losses inherent in recovering from a deadlock.

Prepared By Mr. EBIN PM, AP 75

EDULINE

Detection in Single Instance of Each Resource Type
• If all resources have only a single instance, then we can define a

deadlock detection algorithm that uses a variant of the resource-
allocation graph, called a wait-for graph.

• We obtain this graph from the resource-allocation graph by
removing the nodes of type resource and collapsing the
appropriate edges.

• If Pi Rj and Rj Pj, then Pi Pj.
• A deadlock exists in the system iff the wait-for graph contains a

cycle. To detect deadlocks, the system needs to maintain the wait-
for graph and periodically to invoke an algorithm that searches for
a cycle in the graph.

Prepared By Mr. EBIN PM, AP 76



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 15

EDULINE

Resource-allocation graph. (b) Corresponding wait-for graph

Prepared By Mr. EBIN PM, AP 77

EDULINE

RECOVERY FROM DEADLOCK
• Recovery can be handled by manually or automatically.
• There are two options for breaking a deadlock. One solution is

simply to abort one or more processes to break the circular wait.
The second option is to preempt some resources from one or more
of the deadlocked processes.
Process Termination
• Here all processes are terminated which is in the deadlock state.

Two methods for the process termination methods are:
Abort all deadlocked processes: This method clearly will break the

deadlock cycle, but at a great expense. If 5 processes are existed,
these 5 processes must be terminated. So the used resources are
wasted.

Prepared By Mr. EBIN PM, AP 78



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 16

EDULINE

 Abort one process at a time until the deadlock cycle is eliminated:
This method incurs considerable overhead, since, after each
process is aborted, a deadlock-detection algorithm must be
invoked to determine whether any processes are still deadlocked.

• Aborting a process may not be easy. If the process was in the midst
of updating a file, terminating it will leave that file in an incorrect
state. Many factors may determine which process is chosen,
including:

1. What the priority of the process is
2. How long the process has computed, and how much longer the
process will compute before completing its designated task
3. How many and what type of resources the process has used (for
example, whether the resources are simple to preempt)

Prepared By Mr. EBIN PM, AP 79

EDULINE

4. How many more resources the process needs in order to
complete
5. How many processes will need to be terminated?
6. Whether the process is interactive or batch
Resource Preemption
• To eliminate deadlocks using resource preemption, we successively

preempt some resources from processes and give these resources
to other processes until the deadlock cycle is broken. The three
conditions are:

1. Selecting a victim: Which resources and which processes are to
be preempted?
we must determine the order of preemption to minimize cost.

Prepared By Mr. EBIN PM, AP 80



OPERATING SYSTEMS http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Er. EBIN PM, CHANDIGARGH 
UNIVERSITY 17

EDULINE

2. Rollback: If we preempt a resource from a process, it cannot
continue with its normal execution; it is missing some needed
resource. We must roll back the process to some safe state, and
restart it from that state. Since, it is difficult to determine what a
safe state is; the simplest solution is a total rollback: Abort the
process and then restart it.
3. Starvation: In a system where victim selection is based primarily
on cost factors, it may happen that the same process is always
picked as a victim. As a result, this process never completes its
designated task, a starvation occurred. Clearly, we must ensure that
a process can be picked as a victim only a (small) finite number of
times. The most common solution is to include the number of
rollbacks in the cost factor.

Prepared By Mr. EBIN PM, AP 81


